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ABSTRACT 

This research work will focus on detection of malicious obfuscated malware by 

formulating an Ensemble based model for the detection of obfuscated malware in portable 

executable files with the ability to detect obfuscated malware with reasonable accuracy. 

A large dataset retrieved from the website https://github.com/chihebchebbi/Mastering-

Machine-Learning-for-Penetration-Testing/blob/master/Chapter03/MalwareData.csv.gz 

was used. The training dataset comprises of 138,047 PE header file records samples 

which was divided into: 41,323 clean files containing exe and dll file samples and 96,724 

malware file samples. The performance metrics evaluates the above mentioned machine 

learning algorithms in relation to their predictive capability. Based on the analysis of the 

tests and experimental results of the Ensemble Model, the Ensemble Model classifier 

predicted the obfuscated malware dataset with an Accuracy metrics of 98.8%, Precision 

metrics of 98.9%, Recall metrics of 98.9% and an F1-Score of 98.8%. 
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CHAPTER ONE 1.0 

 INTRODUCTION  

1.1  Background to the Study  

Malware is shorthand for malicious software. It was first introduced in the early 1970s 

when the creeper virus was introduced. Moreover different techniques have been explored 

to mitigate and detect malware chiefly the use of machine learning Ensemble algorithms 

on Portable Executables (PE) to predict whether a portable executable is a malware or 

benign file and to also determine the accuracy of prediction (Ucci et al.,  

2018). Over the years we have seen multiple variants of malware running into well over 

500 thousand malware variants which are all harmful to individuals and organizations 

that use the internet through electronic devices such as Portable executables and handheld 

devices (Olalere et al., 2016).   

Analysis of malware files are carried out in two ways either through static or dynamic 

techniques which are then classified into different malware families. Machine learning 

algorithms are used to predict and classify signatures based on features extracted from 

malware program code (Damodaran, 2015). The features extracted from static malware 

analysis may range from byte sequence n grams, operational code and syntactic library 

calls where function calls are checked to ascertain the libraries accessed by the functions 

(Pham et al., 2018). Malware authors began to develop new ways to stealth the payload 

of a malware through the introduction of polymorphism and metamorphism into malware 

behaviour; thus began the era of evasive/Obfuscated malware which cannot be classified 

using ordinary static analysis of malware code.   

Major success has been recorded by anti-virus vendors in detecting malware since the 

advent of machine learning classifiers as tools to detect malware signatures and variants 

until the recent emergence of obfuscated malware ranging from viruses, worms, rootkits, 
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key loggers, spyware and ransomware (Agnihotri, 2018). Much of today’s malware are 

created to stealth during infection and operation through obfuscation techniques to stall 

and prevent removal or behavioural analysis. Recent malware achieves such stealth 

manoeuvres using several obfuscation techniques to stealth detection such as dead code 

insertion, sub routine reordering in the operating system, code transportation, obscure 

filenames, or masking under the pretence of legitimate programs and services as a white 

listed program (You & Yim, 2010) .   

This Obfuscated technique used by malware authors to bypass static analysis paved way 

for the introduction and development of dynamic analysis of malware. In dynamic 

analysis of a malicious code, the behaviour of the malware is monitored as it is executed 

in a sandbox which is a controlled environment; the natural behaviour of a malware can 

be observed without requiring the Portable Executable to be disassembled (Rieck et al., 

2011). This technique is more effective against evasive/Obfuscated malware because it 

reveals the malwares running pattern before and after payload exposing the Obfuscated 

behaviour naturally. The behavioural analysis concept is founded on the behavioural 

similarity between the unknown malware to the recorded behaviours of already stored 

discovered malware. In this way, the detection of unknown malware is possible. 

(Damodaran, 2015).  

Machine learning is a scientific study of algorithms through the application of artificial 

intelligence that enables systems to be able to learn and improve from patterns otherwise 

known as experience without explicitly being programmed (Swamynathan, 2019). 

Machine Learning discovers patterns automatically through experience from predefined 

datasets in order to predict the outcome of unknown occurrences based on previously 

identified patterns (Baset, 2017). Ensemble learning is a branch of machine learning that 
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is used to improve the accuracy and performance of traditional machine learning 

classifiers through the combination of several base models  with the aim to produce one 

optimal predictive model thereby improving the performance accuracy of the decision 

(Yan et al., 2018).  

1.2  Statement of the Research Problem  

Due to the concept of obfuscation adopted by malware authors employing mutated hashes, 

sophisticated obfuscation mechanisms, self-propagating malware and intelligent 

malware; it is no longer sufficient to detect malware using the non-signature based 

approach therefore Ensemble learning offers the predictive ability that can provide a much 

needed advantage to detect the more ever evasive adversaries known as obfuscated 

malware (Kazanciyan & Hastings, 2014; Rubin et al., 2019 & Scott, 2017). Secondly 

multiple research work has been carried out in the detection of obfuscated malware using 

machine learning algorithms chiefly Ensemble classifiers, unfortunately even when 

successful, the research work is usually based on small malware datasets comprising of 

not more than 2000 benign and malware files hence the technique used cannot be 

simulated to accurately represent real life scenarios due to the small quantity of the 

datasets. This work therefore tends to enhance the predictive ability of detecting 

obfuscated malware in portable executable with accuracy by formulating an ensemble 

model with minimum dataset.  

1.3  Aim and Objectives of the Study  

The aim of this study is to enhance the predictive ability of detecting obfuscated malware 

in portable executable files with reasonable accuracy through formulating an ensemble 

with a minimum feature set. The objectives of this research work are to:  
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i.) Optimize large enough dataset through the application of feature selection to 

obtain the most significant and relevant features.  

ii.) Enhance the detection of obfuscated malware through combining a Gradient  

Boosting and Random Forest classifier to form an ensemble based model. iii.) 

Evaluate the performance of the ensemble based model by using Accuracy, Precision, 

Recall, F1-Score and Area Under the Receiver Operating  

Characteristics (AUCROC).  

  

1.4  Scope of the Study  

This research work will focus on combining the Gradient Boosting and Random Forest 

classifier to form an ensemble based model. The malware dataset used are datasets for 

Portable Executables (PE) header files only. Evaluation and experimentation is based on 

machine learning simulation in Jupyter notebook.  

1.5  Significance of the Study  

The ensemble based classifier model offers predictive ability to detect obfuscated 

malware despite this, many researchers use little malware datasets which render the 

ensemble classifier technique unable to accurately predict malware. It is therefore 

important that this study be carried out with a large enough dataset so as to enhance the 

detection of obfuscated malware through combining a Gradient Boosting and Random 

Forest classifier to form an ensemble based model and also evaluate the performance of 

the ensemble base classifier model by using Accuracy, Precision, Recall, F1-Score and 

AUCROC. The ensemble based classifier model technique will enhance detecting of 

obfuscated malware more accurately when used with a large enough dataset by taking 

into account real life scenario of malware attacks and detection.  
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 CHAPTER TWO  

2.0                                        LITERATURE REVIEW   

2.1   Overview of Malware Detection Techniques  

Bazrafshan et al. (2013) gave exhaustive survey on comparing heuristic malware 

detection methods, describing three major malware detection methods commonly used 

namely; signature based detection, behavioural based detection and heuristic based 

detection. The research was also able to give advantages and disadvantages of each 

detection method and proffered reasons heuristic malware detection technique is the most 

proffered detection method adopted by researchers against metamorphic malware.  

The researcher   was able to identify three basic components of this method chiefly;  the  

Data Collector; responsible for extracting static and dynamic components from Portable 

Executables (PE), The Interpreter; which converts the file features extracted from the data 

collector and The Matcher; which is used to compare behaviour signatures. Even though 

the behavioural approach builds on the weakness of the signature based approach two 

downsides of this approach is the high positive rate ratio. Another method explored is the 

heuristic method which involves data mining and machine learning algorithms most 

especially classifiers (which this research work is based) to predict and detect 

polymorphic and metamorphic malware variants with low false positive rate than the 

behavioural methods. This method leverages on classification of malware based on 

extracted features from PE files as input. This research work will focus on classification 

algorithms. Some of the features explored by Bazrafshan et al. (2013) include Application 

Package Interface/System calls, OpCode, N-Grams and control flow graphs by providing 

a comparison table of their advantages and disadvantages stating that combining two or 

more features gives better accuracy to the training models moreover the author was able 
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to show that combining Control Flow Graphs and Application Package Interface calls 

gives the most accurate results in the training models. Feature extraction shall be 

discussed later on in this literature.  It is worthy of note that machine learning algorithms 

are trained in any of the three ways namely Supervised Learning, Unsupervised Learning 

and Semi supervised Learning.   

According to Ucci et al.  (2018), supervised learning is the process of using the concept 

of classification where a machine learning algorithm known as classifiers map input 

features of a malware dataset to output labels which are already known. When the process 

is to map input features to a continuous output label it is known as regression. Accurate 

output is usually achieved from the training data; the end product is to learn a function 

that accurately approximates the relationship between input and output malware features. 

This research work will adopt supervised learning to carry out a comparative analysis of 

the major classifiers used by previous research work based on this research work dataset. 

Some of the major classifiers used in detecting malware are Rule-Based Classifier, Bayes 

Classifier, Random Forest, Naïve Bayes, Artificial Neural Networks (ANN) and Support 

Vector Machine (SVM). Unsupervised learning is the process of learning relationship 

between data structures most times identifying the data structures themselves using 

unlabelled data that is data without output labels. Unsupervised learning works on the 

concept of learning directly from unlabelled data. It deals mostly with clustering and 

representation learning (Comar et al., 2013). Unsupervised learning is beyond the scope 

of this research work.  

The comparative analysis written by Vatamanu et al. (2015) was to find the best 

combination of machine learning algorithms to get the lowest false positive rate when 

classifying malware, the work was based on One Side Class (OSC) perceptron  algorithm 

which can detect malware samples with a low false positive rate, they achieved this  
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through computing a set of malware features for every binary file in the training dataset 

which were trained with the OSC perceptrons algorithm using a dataset of clean and 

infected malware files furthermore cross validation was applied to the dataset to obtain 

the correct parameter values. Database of well over 2 million records were used, training 

features where extracted using both static and dynamic malware analysis techniques. The 

static features extracted includes file geometry, type of packer, type of compiler and 

executable flags while the dynamic features extracted during execution in a sandbox 

includes behaviour such as if the Portable Executable (PE) clones itself on the disk, if it 

seeks permission to connect to the internet, or if it uses the concept of stealth to include 

itself in some system processes. The result provided the best detection rate although low 

false positive rates was not achieved. It was concluding that the OSC perceptron algorithm 

is best used with a method of false positive filtering. The above approach might not be 

feasible in detecting metamorphic malware based on the extracted features used for 

training, how feature selection affects detection of metamorphic malware shall be discuss 

later on. This work will later on show comparison of several machine learning algorithms 

against the newly formulated Ensemble model in their predictive ability based on the 

lowest false positive rate using an obfuscated malware dataset.  

2.2   Portable Executable Features   

2.2.1  Application package interface (API) and system calls  

Application Package Interface (API) is a group of commands which provides an interface 

between Portable Executables with the processor. It contains thousands of functions and, 

structures and constants that can be used to issue commands to the processor for execution 

whereas system calls are the only available interface to access the underlying operating 

system. Furthermore the system calls are the only available interface between a process 
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and the operating system. This combination makes API and System calls feature critical 

to detecting malware in that all the function calls and operating system request made by 

every process, program and malware as the case maybe can be seen.  

Ki et al. (2015) used API call features to detect malware by the use of sequence alignment 

algorithms. This algorithm is used in natural language processing and biometrics to 

extract similar sub sequences efficiently. The study shows that most API call extraction 

is done for each class of malware and signatures are developed based on the extraction, 

simply developing signatures based on the frequency of called API is not effective in 

detecting polymorphic malware that modifies its behaviour and system calls evasively 

most especially when redundant API is introduced by malware authors therefore the need 

to use a more generic algorithm that can extract similar sub sequences in the API calls 

was used. Brahimi and Moussaoui (2015) gave one of the simplest uses of API calls to 

build a machine learning algorithm for detecting malware, incremental process of data 

mining was used which was able to efficiently use the number of training samples while 

reducing the cost of labelling samples basically using API calls as the feature for 

detection. N-grams where extracted from the API calls dynamically. The feature selection 

in this work used the following formula ( ) ∑ ( x c) log ( x c) ( x c) ( ) x * , + v, b Where, 

X is variable indicates the existence of feature and C indicates the class 

(Cv:malware,Cb:benign) to reduce the size of the feature selection in API calls.   

Salehi et al. (2012) also gave a good use of API calls in feature selection, innovative 

method that used API names and a combination of API names was introduced and input 

arguments as features this was because API calls alone are not able to describe the whole 

behavioural pattern of a malware file. Different classifiers were used to utilize the dataset 

along with 10-fold cross validation to achieve an accuracy of 98.4% with a false positive 
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rate less than two percent. System calls are best used when using clustering to classify 

malware into families based on their behavioural pattern.   

Hlauschek et al. (2009) used ANUBIS which is an operating system emulator to generate 

patterns traces for system calls, control flow dependencies and network analysis results. 

Extraction of a system call behaviour pattern from the execution trace of system calls to 

identify and mine relevant aspects of a malware behaviour was done, thereby generating 

a behavioural pattern model. The key idea was to identify system calls that access 

operating system objects such as files, directories, and registers and form behavioural 

model based on this patterns. A locality sensitive hashing was used to compute 

approximations for clustering that require ON^2 distance computations then the Jaccard 

Index for measuring similarity between the generated behavioural patterns. One of the 

major downsides of this approach is the inability to tackle recent evasion techniques 

employed by malware authors like windows command line obfuscation technique.  

2.2.2  Byte sequence n-gram  

Byte sequence is basically the bytes contained in the machine language of a Portable 

Executable. These bytes represent the sequence of instructions and how they are executed 

and combined. When a byte sequence feature of a PE is extracted the common method is 

to use n-grams to discover the frequency of the set of co-occurring byte sequence to detect 

a pattern in the byte sequence known as a signature. These signatures are used to label 

files either as malware for benign. Most researchers use static analysis with no more than 

3 n-gram sequences to extract byte sequence features in a dataset. A very practical 

example of how byte sequence was used to generate signatures that could accurately 

detect malware was done by Schultz et al. (2015). A framework was designed  to detect 

new samples of malware files by using static analysis to extract the byte sequence on a 
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public dataset containing both malware and benign files then classifiers where trained 

over a subset of the data. The main goal was to detect new malware samples by separating 

their dataset into two sets; one set which was labelled the training set was classified using 

data mining algorithms to classify previously unseen binaries gotten from the byte 

sequence of the dataset as malicious or benign. The test set was a subset of the dataset 

that had no malware examples in it that were seen during the training of the data mining 

algorithms, this gave a good dataset to use in testing the performance of an algorithm over 

new malware examples.  Cross validation techniques were use during the implementation 

of a traditional signature-based algorithm to compare with the data mining algorithms 

over new malware examples. A detection rate of 97.76%, was detected, this figure is 

double the detection rate of a signature based scanner over a set of new malware 

examples.  Piyanuntcharatsr (2015) studied the comparative analysis on research 

methodology and performance of malware detection using data mining techniques. The 

main motivation for this research work was the difficulty of selecting which malware 

feature to extract from a malware dataset. Interest was more focus in comparing two 

approaches that use features which are based on statistical values and byte sequence 

instructions using 1,2,3 n grams. The data set used contains was given two labels; the 

reference data set and application data set. The reference set was used for creating the 

model and the application set was for testing the accuracy of the data mining algorithm, 

they were able to show the correctness by classes for the statistical approach. The method 

performs better when the n gram extracted block size is large but a better result was 

obtained when the n gram extracted block size equals to the file size.  

As earlier stated obfuscation and polymorphism employed by malware authors to avoid 

detection at file levels has been the recent norm. The dynamic analysis of malware 

binaries during execution provides a technique for categorizing and mitigating the threat 
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of malicious software. In the research work by (Rieck  et al., 2011) dynamic analysis of 

PE binaries at runtime was the major method employed, the proposed framework allowed 

for the discovery of new malware classes with similar behaviour and then assign unknown 

malware variants to these new classes. An incremental approach was used for dynamic 

analysis which was able to process the behaviour of thousands of malware byte codes on 

a daily basis. The hypothesis for the incremental analysis was to reduce the run-time 

overhead of current analysis methods at the same time providing accurate discovery of 

malicious software variants. The framework first executes and monitors malware byte 

codes in a sandbox environment generating a sequential report of the monitored behaviour 

for each binary. These generated sequential reports are then placed into a high-

dimensional vector space to enable the similarity of behaviour to be accessible 

geometrically, according to the researchers this allows for designing intelligent and 

powerful clustering and classification methods using machine learning algorithms which 

can identify unknown and known classes of malware based on the sequential reports. The 

next step employed was to alternate between clustering and classification processes 

providing the discovered behaviour of malware to be analysed incrementally on a daily 

basis. Furthermore reports with unidentified behaviour are clustered for discovery of 

unknown malware classes.  

  

2.2.3  Opcodes  

According to literature opcodes features are one of the most frequently used features. This 

is because opcodes reveal the machine language operations to be executed together with 

the data they will process and they are extracted by static analysis. Wong and Wong and 

Stamp (2006) analysed several metamorphic virus generators by using opcodes defining 

a similarity index to quantify the degree of metamorphism that each individual generator 
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produces. The model was based on Hidden Markov Models (HMM) which are used for 

statistical pattern analysis. The framework works by extracting the sequence of opcodes 

from two assembly programs to obtain opcode sequences of length n, and m, where n and 

m are the numbers of opcodes in the two assembly programs. Sequential numbers are 

given to each opcode in the sequence to allow comparison between n and m by 

considering all subsequence of three consecutive opcodes from each sequence, whenever 

any of the three opcodes are the same it is counted as a match and marked using 

coordinates x and y to obtain a graph. This approach provides a framework to effectively 

detect new malware variants if the variants are metamorphic and cannot be detected by 

signature based scanning. The downside of this method is the new malware variants that 

use command line obfuscation to hide a malware payload. A combination of extracted 

features will go a long way to enhance this method against command line obfuscation 

where opcode and system calls are used.   

 Observing the frequency of opcodes sequence occurrence is the one of the major ways 

of detecting novel malware as described by (Santos et al., 2013); the model is based on 

the frequency of opcodes sequence in a PE. The opcode sequence feature was extracted 

for every file in the dataset for lengths n = 1 and n = 2, this was due to the downside of 

extracting large amount of features which renders the extraction very slow.  After 

extraction, a k fold cross validation was applied to the features obtain by dividing the 

dataset into training datasets and test dataset with k = 10 which means for every classifier 

tested the datasets was split 10 times into 10 different sets. The four models used for 

learning were the Bayesian networks, Decision Trees, K- Nearest Neighbour and Support 

Vector Machines. These models were used for each validation step. The model was now 

tested to measure the processing overhead of the model by measuring the True Positive 

Ratio (TPR) of each classifier. The machine-learning classifiers achieved high 
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performance in classifying unknown malware but the downside is that the processing 

overhead of this framework is highly dependent of the length of the opcode sequences. 

Another research work which used the  Hidden Markov model and opcodes sequence was 

done by Derhami et al. (2015) but the difference from Santos et al. (2013) was the method 

of opcode sequence feature extraction showing that extracting specific features in the 

opcodes sequence to train the HMM was more effective in detecting metamorphic 

malware variants.  The extraction of these specific features was done by methods similar 

to sound processing. The specific features pin pointed by the authors are the various 

important opcode commands contained in malware files which were separated from each 

other by defining a label of less important opcodes which are identified as the ones that 

have more similarity to benign files this way the important opcode sequence are separated 

from the less important ones. The Hidden Markov Model is trained based on these 

separated commands of opcodes. The trained HMM is now used to classify files of the 

test set then the members of the same metamorphic malware variants are separated from 

non-members. The framework showed that the Hidden Markov Model when trained based 

on the important sequences of opcode was able to process with higher speed and was 

more than most HMM models that are trained with both the less important and important 

opcode sequence.  

2.2.4  File system  

File system changes are also used to monitor the behaviour novel malware. The type of 

executed file operations by malware variants is very key in getting behavioural patterns 

of these malwares. Operations such as, how many files were read, deleted or modified 

and in what directories are very important features to look into to detect novel malware.  

Nari and Ghorbani (2013) did a research work to address how ineffective antivirus 

products detect malware and categorize them wrongly by proposing a classification 
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technique that describes malware behaviour in terms of changes to a system’s files rather 

than on system calls, opcode sequence or byte sequence. This is achieved dynamically by 

observing the malware behaviour in a controlled environment and classifying the 

behaviours accordingly. Network activity is one major way of monitoring the malware 

behaviour that cannot be otherwise categorized by antivirus products due to the 

metamorphic behaviour of recent malware. The main goal was to apply automated 

clustering to detect and understand malware behaviour by monitoring the state of file 

changes and network activity in a controlled environment to identify various malware 

families. Limitations of this research work is the common limitation associated with 

dynamic analysis where a metamorphic malware may not drop its payload if it suspects 

it is being monitored in a sandbox, such evasive techniques makes this process sometimes 

ineffective from intelligent malware.   

 The literature reviews above reveal that PE features are important in detecting malware 

behaviour most especially the new metamorphic malware variants. Some features are best 

suited to detect specific kind of malware for example opcodes and byte sequence n grams 

are best suited for detecting metamorphic malwares as they deal with the binaries and 

machine language operation sequence, API and system calls were used to classify more 

ancient malware family variants but they are not effective in detecting metamorphic 

malware variants due to fact that API/Systems calls only look at the function calls and 

operating system request made by every process.   

What if there is a function calls masked inside an application such as the windows Power 

shell or windows Command line tool which are both white listed applications, the chances 

for detection becomes very slim not until the payload is delivered furthermore file system 

feature is  another feature that deals with monitoring what files are written or deleted in a 

system but also not so effective in detecting file less metamorphic malware variants such 
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as the Powershell.exe which is a Trojan created to steal your data and disrupt normal 

activities of your system while hiding under the umbrella of a legitimate piece of software 

on your system. Therefore this research work will focus on a combination of features to 

use in comparing the different classifier algorithms so as to see the most efficient group 

of features to use in classifiers for detecting metamorphic malware variants, this work 

will use opcodes and byte sequence n-grams PE features.  

2.3   Machine Learning Classification Algorithms (Ensembles)  

As stated earlier the various classification algorithms will be discuss in detail and how it 

have been used in previous research papers.   

2.3.1  Naïve bayes classifier  

Bayes theorem is based on the probability of an event based on past knowledge of 

particular conditions that might be similar or related to that event; Naïve Bayes classifiers 

are based on applying Bayes theorem with the assumption that features of measurement 

are independent of each other. It is a family of algorithms where all of the algorithms have 

a common principle in which every pair of features being classified is independent of 

each other. It works by predicting family probabilities for each class of feature such as 

the probability that a given data point belongs to a particular class. The class with the 

highest probability is seen as the most likely class. It is known to work very well with 

natural language processing problems.  

Schultz et al. (2015) conducted a research on a data mining framework which 

automatically detects malicious binaries. After feature selection was carried out on a data 

set consisting of 4,266 programs broken down into 3,265 malicious binaries and 1,001 

clean files; every example in the set was labelled either malicious or benign by the 

commercial virus scanner.  The researcher compared signature based methods and several 
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Classifier Algorithms such as RIPPER, Naive Bayes and Multi naïve Bayes on the 

extracted features to get the most accurate algorithm with least False Positives (FP) rate, 

for example the RIPPER algorithm was used on the dataset; which is a rule-based learner 

that builds a set of rules to identify the classes of either positive examples and negative 

examples while minimizing the amount of error. The Naïve Bayes algorithm was also 

applied by the researcher to express the probability that a program is in a given class given 

the program contains the set of features F by defining C to be a random variable over the 

set of classes; benign, and malicious executables, so as to compute P (C|F). The Naive 

Bayes algorithm using strings as features outperformed the other learning algorithm 

which was far better than the signature method in terms of false positive rate and accuracy. 

The researcher was able to get the most accurate result with 97.11% and within 1% of the 

highest detection rate which far exceeds other algorithms in every category.  

 Kolter and Maloof (2006) compared several major machine learning algorithms to detect 

and classify malicious executables in the wild, Naïve Bayes was one of the algorithms 

used to evaluate the training examples made up of n-grams of byte code although the 

results showed that boosted decision tree outperformed other classifiers with a true-

positive rate of 0.98 and a false-positive rate of 0.05 which was desirable. There was a 

cost of misclassification error that was discovered by the researcher and to tackle this 

issue they used the receiver operating characteristic (ROC) analysis to get a graphical plot 

to illustrate the diagnostic ability of binary classifiers by plotting the true positive rate 

against false positive rate at various threshold settings and the boosted decision trees 

outclassed the Naïve Bayes and other classifiers with an area under the curve of 0.996. 

Firdausi et al. (2010) also did a comparison of machine learning classifiers using 

automated behaviour-based malware detection to carry out analysis of malware 

behaviour. The aim was to generate sparse vector models for classification using different 
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machine learning classifiers to get the overall best performance result of each classifier. 

The classifiers used in this research are the k-Nearest Neighbours  

(kNN), Naïve Bayes, J48 Decision Tree, Support Vector Machine (SVM), and Multilayer 

Perceptron Neural Network (MLP).  The researcher was able to prove that the overall best 

performance was achieved by J48 decision tree with a recall of 95.9%, a false positive 

rate of 2.4%, a precision of 97.3%, and an accuracy of 96.8%.  

2.3.2  Support vector machine (SVM)  

Support Vector Machine are learning models under supervised learning models that 

analyse data used for classification and regression analysis problems. SVM finds out the 

line in a hyper plane separating two defined classes. Support Vectors are simply the 

coordinates of individual observation.   

Chen et al. (2012) carried out a research on how Support Vector Machines are used, in 

his research Support Vector Machines were used alongside decision trees to categorize 

malware. Support vector Machine was applied to the training dataset features to minimize 

the classification errors on a set of randomly selected samples to attain the best 

classification performance to detect malware evolution and zero-day attacks. The 

framework builds models with support vector machines (SVMs) and gradient boosting 

decision trees (GBDTs) to aid in visualizing malware categorizations.   

Comar et al. (2013) also combined supervised and unsupervised learning for zero day 

malware detection using layer 3 and layer 4 network traffic features by harnessing on the 

advantage of accuracy offered by supervised learning classification in detecting known 

malware classes and families as well as the advantage of unsupervised learning to detect 

new and unknown classes of malware. The result was a framework that demonstrates high 

effectiveness in detecting zero day malware using real network data from large Internet 
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service providers. The researcher designed a tree-based kernel to use for one-class SVM 

supervised learning classifiers to remove the data imperfection issues that arise in the 

network flow data. The framework was able to detect existing and novel malwares with 

very high precision.  

Santos et al. ( 2013) proposed a new method to detect unknown malware families based 

on the frequency of appearance of opcodes sequence, several classifiers were tested and 

SVM with polynomial kernel had the fastest of the tested algorithms for SVM, achieving 

a training time of 3.76 milliseconds and a testing time of 0.01 milliseconds, problems 

were encountered in feature selection due to the explosion of opcodes features which was 

tackled by Ranveer and Hiray (2015)  using opcodes density histograms to reduce the 

explosion of features.  Eigen vector subspace analysis was used to filter and lower the 

misclassification and interference of features. This paved way for a system that detects 

with high accuracy and low false.  

  

  

2.3.3 Decision trees  

Decision Trees are excellent for helping a researcher to choose between several courses 

of action. It provide options and describe the possible outcomes of choosing those options. 

Decision trees are mostly used in operations research to provide decision analysis to aid 

in discovering a strategy that will attain to a prescribed outcome. Decision Trees in 

Machine Learning are used as classifiers in classification and regression under supervised 

learning. The basic algorithm used in decision trees is known as the ID3 algorithm, the 

ID3 algorithm builds decision trees using a top-down greedy approach. Decision Tree 

shows the correlation between several  
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features and non-linearity between the features, a decision tree is easy to understand 

requires very little data cleaning and no constraints on the data type.   

Anderson et al. (2011) came up with a framework for automated classification of malware 

samples based on malware network behaviour; the concept of the framework is to abstract 

network behaviour of malware samples to high level behavioural patterns that must 

contain all network activity communication together with dependencies between network 

activities.  The patterns are modelled as graphs and the graph features were found to be 

effective in classifying malware samples. All classification of the graphs used Decision 

Trees to classify the malware samples.  

2.3.4  Random forest   

Random Forest algorithm can also be used for both classification and regression kind of 

problems. The Random Forest Algorithm works by creating a forest given a number of 

trees, the higher the number of trees in the forest the higher the accuracy of the results. 

When a Random Forest classifier is fed the training dataset with targets and features, the  

Random Forest classifier will come up with some set of rules that are used to perform 

prediction on the test dataset. The underlying principle of Random Forest classifier is the 

principle that a group of weak learners can come together to form a strong learner thereby 

making the Random Forest classifier to be able to classify large amounts of dataset with 

high accuracy . Random Forests are do not over fit because of the law of large numbers 

by introducing the right kind of randomness it makes them accurate  

classifiers.  

Wang (2014) used Random Forest classifiers to get a detection rate of 95.6% on novel 

worms whose data was not used in the model building process. The author used opcode 

sequences as the underlying feature extraction method to form binary classification 



 

32  

  

problems and built tree based classifiers although Bagging and Decision Trees were also 

used to obtain optimal results.   

Ahmadi et al. (2016) developed a framework that is effective in categorizing malware 

variants into actual family groups. The concept was to extract, and select a set of novel 

features for the effective representation of malware samples. These features were later 

grouped according to different characteristics of malware behaviour and the proposed 

method achieved high accuracy after using Random Forest classifier to categorize 

malware variants.  

2.3.5  k-Nearest neighbour (k-NN)  

K-NN is a type of instance-based learning, or lazy learning, where the function is 

approximated locally and all computation is deferred until classification. It is used for 

both classification and regression predictive problems. Its major advantage is the ease to 

interpret output, calculation time and prediction power. The goal is usually to find the k 

influence in the algorithm. The k-NN algorithm always assumes that similar things exist 

within the same area of focus and they are usually close to each other which means similar 

things are near to each other.  

 Kong (2013) used SVM and k-NN for classification; in this framework the classifiers are 

trained with respect to each attribute type after which the Adaboost algorithm is used to 

learn the confidence level associated with each classifier. Depending on the values 

provided for each attribute type together with the confidence level associated with each 

type of value obtained from the Adaboost algorithm, the classifiers were able to make a 

decision on which family the new malware sample belongs to by choosing the malware 

family that has the highest total confidence weight from all the individual classifiers. 

Kumar (2017) carried out an analysis of machine learning algorithms used in malware 
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classification in cloud computing environments. The classifiers used in this research are 

k-Nearest Neighbours (kNN) and J48 Decision Tree using n-grams byte sequence as 

features, although the overall best performance was achieved by J48 decision tree with a 

recall of 96.3%, the k-NN had a close recall to it.  

2.3.6  Gradient boosting classifier  

Boosting is a process of enhancing weak learning models into strong learning models 

therefore Gradient Boosting classifier is a machine learning classifier that joins several 

weak learning models together to create  strong predictive models and it mostly uses 

Decision trees. The process of boosting involves fitting every new tree into a modified 

version of the original malware dataset. Agnihotri (2018) used Gradient boosting 

classifier to detect ransomware through a static analysis of the ransomware PE file. 

Extraction of the static attributes was first carried out to obtain numerical values for the 

attributes which were used as inputs to the gradient boosting classifier to predict if the 

given sample is malicious or not. The performance metrics used was the false positive 

rate to grade the performance of the classifier; 0.3 percent false positive rate was obtained. 

Furthermore (Pham et al., 2018) did a research on Static PE Malware Detection Using 

Gradient Boosting Decision Trees Algorithm stating that the problem with gradient 

boosting is the training time and also the ability to predict using imbalanced data makes 

the performance metrics somewhat inaccurate. They were able to reduce the training time 

by selective feature extraction and obtained a detection rate of 99.394 percent and a false 

positive rate of 1 percent.  

2.3.7  Stochastic gradient descent classifier (SGD)  

SGD forms the basis of Neural Networks and a gradient means a slope or a slant surface 

therefore a gradient descent means to descend down a slope to achieve the lowest point 
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on that surface. Stochastic gradient descent is a simple and effective numerical 

optimization machine learning classifier which is used in solving large-scale machine 

learning problems particularly for ridge regression and regularized logistic regression 

clearly showing the superiority of stochastic gradient descent to other machine learning 

algorithms for large-scale machine learning problems.  

2.3.8  Linear discriminant analysis classifier (LDA)  

Linear Discriminant Analysis was developed as early as 1936 by Ronald A. Fisher. It is a 

statistical learning method mostly used for classifying observations to a class or category. 

LDA predicts a common covariance matrix that exists in all classes in a data set; a 

covariance matrix being a square matrix that contains the variance and covariance related 

with several variables. Kuriakose and Vinod (2014) did a research on metamorphic 

malware detection using LDA with an accuracy of 99%. The research work used non 

signature based approach using feature selection techniques to achieve their objective.  

2.4   Feature Selection Analysis  

Feature selection plays a vital role in training datasets with classifiers to categorize or 

detect novel malware variants most especially the new metamorphic malware variants. 

Jiang et al. (2011) stated that the type of feature selected affects the ability to detect 

accurately the metamorphic malware variants proving by his research work, unnecessary 

and redundant PE features when selected may decrease the detection rate of metamorphic 

malware variants. He proved that feature selection phase in malware detection plays a 

vital role in the whole detection process and can efficiently reduce the redundant and 

unnecessary features in the malware dataset, this in turn will reduce the false positive rate 

for a malware detection model using classifiers.   
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Obfuscated malware have proven to be more challenging to detect using random malware 

dataset feature selection for example (Derhami et al., 2015) noted  importance should be 

given to some part of the malware dataset with the goal to extract the significant sequences 

of malware opcodes in the dataset, they used the dissimilarity of these significant 

sequence of malware opcodes to the benign files to select the significant sequence because 

all parts of a malware dataset feature are not representative of the malicious nature of the 

malware. As seen above all the reviewed work used ngrams byte sequence, opcodes, 

API/System calls with feature selection for training the various classifiers used in 

malware detection which are effective in detecting known and unknown malware variants 

but not so effective in detecting metamorphic malware for example obfuscated malware 

in Portable executables that inject themselves inside a white listed software so as to 

disguise itself as a trusted system process.   

    

2.5   Related Empirical Studies  

A very good example of an obfuscated malware that injects itself inside a white listed 

software is the Powershell.exe virus that masks itself inside a Windows system 

Powershell tool and executes malicious Powershell commands traditional malware 

datasets feature selection may miss the obfuscation hidden in the Powershell during 

feature selection due to the fact that Powershell is white listed software under the windows 

operating system. Hendler et al. (2018) in their research on Detecting Malicious 

PowerShell Commands using Deep Neural Networks expanded on the wide gap between 

the lack of research on automatic detection of obfuscated malicious PowerShell 

commands and the high cases of PowerShell based malicious cyber  

exploits.   
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This point was later developed upon by Bohannon, (2017) who showed that recent 

approach is effective in detecting metamorphic malware but not so effective in detecting 

obfuscated PowerShell attack which is fast becoming an ever increasing trend due to the 

fact that PowerShell attack is evasive and nearly impossible to detect because obfuscated 

command line arguments and PowerShell events are not logged and monitored and also 

Powershell commands are white listed commands therefore most malware samples do not 

capture command line arguments/Powershell commands. For example the following 

command: Get-ChildItem -Force -R .\*.txt | ForEach-Object {Get-Content  

$_ -TotalCount 4; Get-Content $_ -Tail 2} *>> o.log  will output the first and last four lines of 

every text file in a directory/folder, moving down child directories repeatedly and 

including any hidden or invisible files it finds. The following command: Set-MpPreference  

-DisableRealTimeMonitoring $true will disable the Microsoft Defender anti-virus engine.  

Obfuscation of such commands can make the CLA/powershell a powerful tool to use as 

a malware when masked by obfuscation. The above commands are all legitimate and 

white listed commands in windows CLA/Powershell.   

2.6   Summary of Literature Review  

From the exhaustive literature review it can be seen that machine learning has come a 

long way to aid the detection of malware chiefly the use of Ensembles. It is also worthy 

of note that some of the methods employed are not so effective in detecting obfuscated 

malwares depending on the mode of feature extraction and the Ensemble used. 

Furthermore, even while most research work and academia have carried out research on  

predicting malware engines with high end accuracy according to the performance metrics 

used it has been established by literature that Obfuscated malicious white listed malware 

are not detected easily and in cases that the research work achieves high accuracy, the 

dataset used is very small in nature to capture real life scenarios therefore a method of 
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identifying Obfuscated malware variants through a large enough dataset to accurately 

predict Obfuscated malware signatures in Portable Executable header files is needed to 

augment the process of malware detection. This research work intends to breach that gap 

through the development of an Ensemble based malware detection model using machine 

learning classifiers (ensembles) that can detect Obfuscated malware accurately.  

In addition a baseline approach for feature selection/optimization comprising of a 

variance threshold and Pearson’s Correlation to improve estimators, accuracy scores and 

to boost performance of the Ensemble model while training the model on the dataset. 

Feature selection is achieved by removing all features whose variance doesn’t meet a 

specific threshold which will measure how strong a relationship is between the remaining 

features. This research work intends to draw techniques from (Swamynathan, 2019; 

Bohannon, 2017).  

     

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
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      CHAPTER THREE  

3.0                    METHODOLOGY  

3.1  Research Methodology  

The description for the methods and steps adopted for the purpose of formulating an 

Ensemble based model for detecting obfuscated malware in a Portable Executable with 

reasonable accuracy is discussed in this chapter. A large dataset from 

https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration 

Testing/blob/master/Chapter03/MalwareData.csv.gz was used. All examples in the 

dataset are in the Windows Portable Executable header file format.   

As stated in the literature review, this research will use a baseline approach based on 

SK_learn python library for feature selection/optimization comprising of a variance 

threshold and Pearson’s Correlation to achieve optimization of the malware dataset 

features by removing all features whose variance does not meet some threshold and 

measure how strong a relationship is between the remaining features, this will improve 

estimators, accuracy scores and to boost performance of the predictive capability of the 

Ensemble based model on the dataset. This Research work shall use the Majority 

weighted voting method to combine the Gradient Boosting and the Random Forest 

algorithm which are both classification algorithms, the final prediction decision of the 

ensemble model relied on voting. There are two major optional strategies for voting which 

are majority voting and weighted voting. Some of the dependencies include, windows 10 

operating system, python 3 server, Anaconda; which  is a free and open source python 

programming language platform for scientific computing (data science, machine learning 

, data processing and predictive analytics) that aims to simplify package management and 

deployment, PEfile; which is an independent module to parse and work with PE files, 

Pandas; which is a software library for the python programming language for data 

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
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manipulation, data cleaning  and analysis, Jupyter Notebook; an open source web 

application that allows you to create and share documents that contain live code, equations 

and visualizations used mostly for machine learning, modelling, simulation which will be 

used as the GUI and IDE for running tests on the malware datasets, DOSfuscator.exe; a 

software used to modify original malware dataset to get a new Obfuscated malware 

dataset version.  

The methodology as shown in Figure 3.1 is implemented in four main steps which are 

data gathering, feature selection, training phase and testing phase.   

    

 

Figure 3.1: Methodology for an ensemble based model for the detection of  

Obfuscated Malware  
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3.2    Overview  

The main goal of feature selection is to obtain features that would increase the efficiency 

of the Ensemble by selecting features that contribute strongly towards predictions. There 

was a total of 56 features that define the malware dataset. Reducing the dimensionality of 

the features will prevent the Ensemble model from overfitting and also reduce the 

computational time.  

This research applied a baseline threshold variance. For analysis of baseline variance, 

baseline values need to be accurate in this case all the 96,724 malware files are accurate. 

Calculating the threshold will be based upon the features for the Portable executable 

header files for the each corresponding malware file by removing all low variance 

features. Features with a training set variance lower than the set threshold will be 

removed.  

The idea is when a feature doesn’t have a variation much within itself; it generally has 

very little predictive power (low variance) and it will be removed by the application of 

the threshold variance value. The application of sklearn. Ensemble library will remove 

features with a training set variance lower than the set threshold. The set Threshold value 

was 0.5 which means that any feature with a variance less than 0.5 will be removed. The 

choice of variance threshold was motivated by the literature review. The next step which 

is to improve the accuracy by using the Filter method through the application of Pearson 

Correlation. The Pearson correlation coefficient is symmetric: corr(X.Y) = corr(Y,X) 

Pearson correlation is the measure of the linear correlation between two variables in this 

case the two major variables derived from the malware dataset in section (3.5). It finds 

the mutual relationship or connection between the headers for the benign variable and the 

malware variable. The experiment selected features which have a correlation above 0.5 

(factoring the absolute value) with the output variable. The correlation coefficient has 
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values between -1 to 1:  (i.)    A value closer to 0 implies weaker downhill correlation 

(exact 0 implying no correlation)   

(ii)  A  value  closer  to  1  implies  stronger  uphill  positive  correlation   

(iii.)  A value closer to -1 implies stronger downhill negative correlation  

The application of sklearn, feature selection library with a set correlation of 0.5 will 

further more reduce the dimensionality of the malware dataset features.  

When training a model to handle a classification problem, a function is gained that takes 

an input and returns an output which is directly defined with respect to the training dataset. 

Owing to the theoretical variance of the training dataset, there exists variability to the 

fitted dataset therefore we want to fit several independent models and “average” their 

predictions in order to obtain an Ensemble model with a lower variance. However to fit 

fully independent models will require too much data therefore we depend on the good 

approximate properties of bootstrapping which assigns measures if accuracy like bias and 

variance to sample estimates to fit models that are almost independent. The initial step is 

to create multiple bootstrap samples in such a way as to make each new bootstrap sample 

to act as another independent dataset drawn from a true distribution. The Experiment can 

now further fit a weak learner for each of these samples and aggregate them such that an 

average for all their outputs is obtained therefore obtaining an ensemble model that has 

the characteristics with less variance than its elements. As the bootstrap samples are 

approximatively independent and identically distributed so are the learned base models 

so when we  apply averaging on the weak learners outputs, the outputs do not change the 

expected results but hence reduce its variance similar to the case of averaging independent 

and identically distributed random variables retains the expected value but reduce 

variance.  
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So, assuming that there are dataset samples which is the approximations of independent 

datasets of size A and 7 machine learning classifiers denoted by  

 {𝐸11,𝐸21,…,𝐸𝐴1  }, {𝐸12,𝐸22,…,𝐸𝐴2  }, … , {𝐸17,𝐸27,…,𝐸𝐴7  }            𝐸𝑎7 ≡ 𝑎 − 

𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎 −  𝑡ℎ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒…………………. (i)  

The experiment can now confidently fit 7 independent weak learners by fitting one on 

each dataset  

𝑑𝑡1, 𝑑𝑡2, … , 𝑑𝑡7 … … … … … … … (ii)  

 The experiment can now then aggregate results of the models into some kind of averaging 

process to get an ensemble model with a lower variance. Furthermore, we can define our 

strong model such that  

𝑧𝑎 = arg max[𝑐𝑎𝑟𝑑(𝑎|𝑑𝑡 

= 𝑘    (𝑠𝑖𝑚𝑝𝑙𝑒 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒, 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠) … . . (iii)  

Fitting the model will now present several possible ways to aggregate the multiple models 

fitted in parallel for a classification problem but the experiment can check all the 

probabilities of each classes returned by all the models that can further average these 

probabilities and keep the class with the highest average probability which is known as 

soft voting. The averages or votes can either be simple or weighted if any relevant weights 

can be used weights being the proportional trust or performance of ensemble members on 

a dataset. 3.2.1 Data Sources   

As stated earlier the dataset was retrieved from https://github.com/chihebchebbi/Masteri 

ng-Machine-Learning-for-Penetration  

Testing/blob/master/Chapter03/MalwareData.csv.gz containing 138,047 PE header file 

records samples which were divided into 41, 323 clean files containing exe and dll file 

samples and 96,724 malware file samples. The malware dataset comprises of a total of 

https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
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features 56 features which is the information found in every sample that define the 

malware datasets as either malicious or benign.   

3.3    Model Training  

The training phase is the backbone of the Ensemble model. The purpose of the training 

phase is to evaluate the performance of different nominee classifiers. A total of ten 

different classifiers belonging to different learning models were used as nominee 

classifiers. The training phase as shown in Figure 3.1 was divided into two phases namely 

classifiers evaluation, and classifiers selection respectively. In classifiers evaluation, all 

nominee classifiers are trained using the same training dataset set after feature selection. 

The most predictive N classifiers are selected and combined into an ensemble model using 

the weighted voting framework. If N = 2 nominee classifiers.   

 Furthermore the choice of N is depending on the learning accuracy threshold value which 

means if a classifier has a predictive learning accuracy above 95 percent that nominee 

classifier is chosen during experimentation. In the classifiers selection phase, the formed 

ensemble model is also trained using the same training set as carried out in the classifiers 

evaluation phase. Performance of the ensemble model is also evaluated.  

The output model of ensemble represents the final training model.  

3.3.1 Train, Test and Split Variables  

The tests and experiments was conducted using python 3 server and several dependencies 

explained in the previous sub section. In machine learning data separation is crucial so as 

to differentiate the benign files from the malware files in order to make training activities 

suitable to train the classifier to predict the malware files from the benign files. Data 

Separation shall be achieved by using the code snippet below which intends to create two 

variables separating the malware files from the benign files:  

legitimate=    =   FUTmalData[0:41323].drop(["legitimate"],   axis   
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1) FUTmalware = FUTmalData[41324::].drop(["legitimate"], axis  

= 1)  

Two major variables shall be obtained containing the legitimate files and the malware  

files.  

In training the nominee classifiers, we prepare variables that will be used for training and 

testing the nominee classifiers in the Ensemble model. The first step in achieving this is 

to split the two major containing the Malware files and the benign files into smaller 

manageable bits. The intended output for this stage will be 4 variables namely 

benign_test, benign_train, malware_test, malware_train respectively. Table 3.1 gives a 

brief of the variables:  

  

  

  

    

                        Table 3.1: Description of the four training/test variables  

S/N  Variable Name  Description  

1.  Benign_train  This variable will be employed to train the nominee 

classifiers to predict benign files, it is made up of 80 

percent of the benign files.  

  

2.  Benign_test  This variable will be employed to test the predictive 

performance of the nominee classifiers against data it 

hasn’t seen. It is 20 percent of the benign files in the 

malware dataset  

  

3.  Malware_train  This variable will be employed to train the nominee 

classifiers to predict malware files it is made up of 80 

percent of the malware files.  

4.  Malware_test    

This variable will be employed to test the predictive 

performance of the nominee classifiers against data it 

hasn’t seen. It is 20 percent of the malware files in the 

malware dataset.  
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The application of sklearn model selection library will achieve the splitting of the 

variables.  

 In addition cross validation will be carried out after training the nominee classifiers; this 

is done in section 3.5.  

3.3.2 Obfuscated malware dataset  

The next step in the research is to obfuscate the malware dataset using a DOSfuscator to 

obfuscate the original malware dataset creating an obfuscated malware dataset. The aim 

is to get an obfuscated version of the original malware dataset.  

As earlier stated in the literature review, Invoke-DOSfuscator is a python script that can 

create and obfuscate PE header files in this case, the original malware dataset. This tool 

is key in this research work to obfuscate the original malware dataset to obtain an 

obfuscated version of the original malware dataset. The malware dataset will have 41,323 

clean files containing exe and dll file samples and 96,724 obfuscated malware file sample 

after obfuscation. Table 3.1 shows an intended sample single PE header file information 

after obfuscating the original malware dataset attack vector created using invoke 

DOSfuscator  

 Header File   Description  

1  SizeOfOptionalHeader  332  This is required for 

executable files not 

object files.  

  

2  MajorLinkerVersion  621568  This tells the OS the 

major DLL to use when 

running the exe.  

  

3  MinorLinkerVersion  4.426324  This tells the OS the 

minor DLL to use when 

running the exe.  
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Table 3.2: Obfuscated Malware Header File  

 
  

The next phase in the research work is the same procedure as outlined in (3.4) where the 

intended optimization of the new malware dataset is carried out to obtain key features to 

use in training the nominee classifiers.  

  

  

  

3.3.3  Feature Selection/Optimization  

Section 3.1 discussed about feature selection and revealed the two aspects of feature 

selection which was carried out in this research to reduce the dimensionality of the 

obfuscated malware dataset and obtain only the most significant features. In the dataset, 

the original number of features is 56. The first step in feature reduction was to apply a 

variance threshold to the obfuscated malware dataset; Experimental results marked 36 

features to be significant after the application of a variance threshold on the malware 

dataset. The idea is when a feature doesn’t have a variation much within itself; it generally 

4  ResourcesMeanEntropy  2.846449  The memory location 

for the secrect resource 

needed to run the exe.  

  

5  LoadConfigurationSize  270376  Memory location to 

load the configuration 

files to run the exe  

.  

6  LoaderFlag  ('546869785432673206A75737420 

7269646963756C6F75732E2E2E' 

split '(?<=\G.{2})',26|%{[char][int] 

"0x$_"})  

 
  

This argument tells the 

operating system to 

split a hard disk sector.  

This is one of the 

obfuscated header by 

Dosfuscator.  

7  SizeOfStackCommit  3110  Major Size of the exe to 

save on disk.  

S/N   F eature   
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has very little predictive power (low variance) and it will be removed by the application 

of the sklearn ensemble library. Table 3.3 shows 36 features that are classified as 

important by the application of the sklearn ensemble library.   

          Table 3.3: 36 Important features after removal of features with low variance  

S/N 1  Feature Name 

Name  

S/N 

10  

Feature Name  S/N  Feature Name  

SizeOfUninitializedData  19  SizeOfStackReserve  

2  md5  11  AddressOfEntryPoint  20  SectionsMeanEntropy  

3  Machine  12  

  

BaseOfCode  

  

21  SectionsMinEntropy  

4  
SizeOfOptionalHeader  

  
13  BaseOfData  22  SectionsMaxEntropy  

5  
Characteristics  

  
14  ImageBase  23  SectionsMeanRawsize  

6  
MajorLinkerVersion  

  
15  SectionAlignment  24  ResourcesMaxSize  

7  MinorLinkerVersion  16  SizeOfStackCommit  25  ResourcesMinSize  

8  
  

SizeOfCode  
17  SizeOfHeapReserve  26  SizeOfUninitializedData  

9  

  

SizeOfInitializedData  

  

18  DllCharacteristics  27  SizeOfInitializedData  

28  
VersionInformationSize  

  
31  SectionsMinRawsize  34  ResourcesMinEntropy  

29  LoaderFlag  32  SectionMaxRawsize  35  ResourcesMaxEntropy  

30  

  

NumberOfRvaAndSizes  33  SectionsMinVirtualsize  36  MinorImageVersion  

  

The features obtained after selecting features with high variance constitute about 66% of 

all 56 features. The reduction of features further decreases the complexity of the 

experiments using the ensemble model.  

The second step in feature reduction is the application of the Filter method which will 

filter the 36 features with high variance. This research achieved this by applying Pearsons 

Correlation as stated in section 3.3.2. The idea is to further optimize the 36 features to 

obtain key features that will aid the ensemble model to achieve more accurate predictions 
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in detecting obfuscated malware. Table 3.4 shows the results obtained after the 

application of Pearsons Correlation.  

   Table 3.4:  Key features obtained after optimization of high variance features   

S/N  Feature Name  S/N  Feature Name  

1  LoaderFlags  7  ResourcesMaxSize  

2  NumberOfRvaAndSizes  8  SectionMaxRawsize  

3  SizeOfHeapCommit  9  SectionsMeanRawsize  

4  SizeOfUninitializedData  10  SizeOfImage  

5  BaseOfCode  11  ResourcesMeanSize  

6  
SizeOfStackCommit  

12  
SizeOfCode  

  

  

  

  

  

    

3.4      Model Testing  

After the training phase of the model, 2 nominee classifiers were selected based on the set 

accuracy threshold value as earlier stated. The model testing stage is where the experiment 

is carried out with the 2 nominee classifier is now called the Ensemble model comprising 

of the Random Forest and Gradient Boosting classifiers. The experiment will now test the 

model using the obfuscated malware dataset with splitting ratio (80 / 20) which the 

Ensemble model has never seen. Testing is the last step of the Ensemble model. The main 

aim is to evaluate the Ensemble model performance in terms of measuring the prediction 

accuracy in classifying new benign and malware samples with splitting ratio (80 / 20) as 

stated above. For the purpose of testing, the experiment 8264 benign and 19344 malware 
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samples from the obfuscated malware dataset to be used as test samples which accounts 

for 20 percent each from the benign and malware files respectively.  

 As stated in section 3.2 voting and averaging are two methods employed to combine 

ensembles. Voting is normally used for classification algorithms and averaging is used 

for regression algorithms. In our experiment, we shall use the Majority weighted voting 

method to combine the Gradient Boosting and the Random Forest algorithm which are 

both classification algorithms, the final prediction decision of the ensemble model relied 

on voting. There are two major optional strategies for voting which are majority voting 

and weighted voting. In majority voting each classifier makes a prediction for each test 

instance and the final result for prediction depends on the classifier on the combination 

of the prediction accuracy for the two classifiers. However, in weighted voting, the 

average is taken for the prediction of the better models multiple times depending on the 

weight the researcher chooses. The experiment shall use the weighted voting strategy and 

set a weight depending on how large our dataset is and time taken to complete prediction.  

  

3.4  Machine Learning Evaluation Metrics  

To prove that the ensemble model accurately predicted an obfuscated malware, evaluation 

metrics shall be used to determine the prediction accuracy of a classifier. This research 

intends to use the following evaluation metrics explained below:  

1.) Accuracy: provides general information about how many obfuscated malware 

samples are misclassified. Accuracy is calculated as the sum of correct predictions 

divided by the total number of predictions as show in equation iv  

   𝑨𝑪𝑪 = 𝑻𝑷+𝑻𝑵 ……. (iv)  

𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵 
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2.) Precision Metrics: This is used when the aim is to limit the number of false 

positives measured from highest to lowest which means the classifier with the 

highest precision score has the best precision and can be used in cases where false 

positive reduction is the aim. Precision can further be defined as the true positive 

class out of the predicted malware labels. This research intends to use the precision 

metrics to gauge the precision of the Ensemble Model to correctly predict 

obfuscated malware instances against a dataset that the classifier has not been 

trained on namely the malware_test variable dataset as show in equation v.  

𝑻𝑷 

                                                  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  ……. (v)  

𝑻𝑷+𝑭𝑷 

3.) Recall Metrics: This is the direct opposite of the Precision Metrics. It is mostly 

used when the aim of the research is to reduce the number of false negatives; it 

measures the predictive ability of the classifier to find all true samples/benign 

labels. It is also called sensitivity or true positive rate because it is the ratio of tp / 

(tp + fn) using the confusion matrix where tp is the number of true positives and 

fn is the number of false negatives. This research intends to use the recall metrics 

to measure the Ensemble Model’s ability to predict obfuscated malware instances 

against the total number of true obfuscated malware instances as show in equation 

vi.    

𝑻𝑷 

 𝑹𝒆𝒄𝒂𝒍𝒍 =  ……(vi)    

𝑻𝑷+𝑭𝑵 

4.) F1_SCORE: This optimizes both precision and recall metrics. It is the numerical 

mean average between a set of positive variables; in this case it is the mean 

between precision and recall. It is used as a more verbose measure of a classifier’s 

accuracy which goes beyond simply correctly classified obfuscated instances. 
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This research intends to use the F1_Score evaluation metrics to find the harmonic 

mean between the precision metrics and the recall metrics to understand how 

accurate the Ensemble Model is in predicting obfuscated malware as show in 

equation vii.   

𝟐∗(𝑹𝒆𝒄𝒂𝒍𝒍∗𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏) 

                                             𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =  ……. (vii)  
𝑹𝒆𝒄𝒂𝒍𝒍+𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 

5.) AUCROC:  Area Under the Receiver Operating Characteristics (AUCROC) is 

the possible thresholds that are considered during the Receiver Operating 

Characteristics (ROC) curve. The AUCROC is one of the most important 

evaluation metrics for checking the predictive performance of a classifier because  

the diagonal of an AUCROC graph  can be interpreted by considering the 

classifiers performance according to its position below or above the diagonal in 

an ROC curve plot, for example if the Gradient Boosting classifiers performance 

falls into the top left corner of  the AUCROC with a True Positive Rate of 1 and 

a False Positive rate of  0 means  the classifier has a perfect predictive capability; 

the higher the AUC, the better the Ensemble Model is at predicting malware as 

malware and a benign file as a benign file. In the ROC curve plot, the True Positive 

Rate (TPR) against the False Positive Rate (FPR) is plotted with the TPR on the 

y-axis and the FPR on the x-axis. A perfect classifier has an AUCROC near to 1 

meaning it has a good measure of classification and a poor classifier has an 

AUCROC near to zero. Whenever the AUCROC is 0.5 it means the Ensemble 

Model has no predictive capability for classification.  
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CHAPTER FOUR  

4.0         RESULTS AND DISCUSSION  

4.1     Classifier Performance Evaluation   

In ensemble learning aspect of machine learning, it is necessary to build predictive models 

that have the ability to generalize effectively the extracted features. When training a 

model, a disturbed generalization is recognized by over fitting. A major workaround to 

avoid over fitting is to use an appropriate data splitting techniques. Classification is a 

process of supervised learning in which the computer program learns from the input data 

and uses the learning to classify new observations or behaviours. To avoid the poor 

generalization for the ensemble model experiments were carried out with different 

splitting ratios for training and testing, the goal is to train and test the nominee classifiers 

to learn behaviours and patterns accurately and to use that learning to make accurate 
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predictions. It is worthy of note that ensemble learning models could be ranked according 

to their efficiency; efficiency is the inherent capability of an ensemble learning model to 

generalize accurately to new data. To avoid poor generalization, the nominee classifiers 

are experimented using two splitting criteria with different ratios. The first experiment is 

done by splitting the optimized dataset into 80/20 for training and testing in the same way 

the second experiment is done by splitting the optimized dataset into 70/30 for training 

and testing respectively. Evaluation metrics such as accuracy, precision, recall, and F-

measure are used to evaluate the nominee classifiers performance.  

The results of the nominee classifiers performance for the 80/20 and 70/30 splitting 

criteria are summarized in Table 4.3 and Table 4.4 respectively. Results showed that the 

nominee classifiers performance revealed similar results with little differences. The 

splitting criteria didn’t influence the classification decision of the nominee classifiers.  

This research experimented with different ensemble classifiers like the Gradient Boosting, 

Random Forest, K-nearest Neighbour (KNN), Multi-layer perceptron (MLP) and 

Decision Trees (DT). In terms of accuracy according to the accuracy selection threshold 

value for our Ensemble Model during the selection phase, the Gradient Boosting 

Classifier and Random Forest classifier gave the best result among all other nominee 

classifiers. Other classifiers like MLP, Decision Trees and K-nearest neighbour also 

showed considerable high accurate results but not up to accuracy selection threshold 

value. Further experiments were carried out using a combination of non-ensemble 

classifiers with the nominee ensemble classifiers to measure whether it may affect the 

accuracy of the ensemble model. The ensemble model will be formed with the following 

two classifiers Gradient Boosting Classifier and the Random Forest classifier through the 

strategy of voting as stated in section 3.5.  
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Table 4.1: Classifier training result with splitting ratio (80 / 20)  

Classifier  Accuracy  Precision  Recall  F1-Score  AUCROC  

Gradient  

Boosting  

96.8  96.7  96.4  96.6  0.7  

Random Forest  96.5  96.4  96.0  96.4  0.68  

Decision Tress  96.5  96.3  95.9  96.4  0.66  

K-Neighbour  92.8  92.4  92.3  92.3  0.52  

MLP  92.7  92.6  92.3  92.2  0.54  

  

  

    

Table 4.2: Classifier training result with splitting ratio (70 / 30)  

Classifier  Accuracy  Precision  Recall  F1-Score  AUCROC  

Gradient  

Boosting  

96.4  96.4  96.3  96.2  0.7  

Random Forest  95.9  95.7  95.2  95.2  0.63  

Decision Trees  93.3  93.2  93.4  93.2  0.56  

K-Neighbour  92.8  92.6  92.4  92.5  0.53  

MLP  92.6  92.6  92.3  92.0  0.54  

  

4.2     Ensemble Model Performance Evaluation   

This research carried out 3 different experiments to evaluate the performance of the 

ensemble model. The first experiment evaluates the performance of each of the ensemble 

model against individual ensemble classifiers and non-ensemble classifiers. The second 

experiment evaluates the ensemble model when integrating two ensemble models which 

are the ensemble model + Decision Trees. The third experiment evaluates the combination 

of three ensemble models which are the ensemble model + Decision  

Trees + K-Neighbour. Evaluation of the ensemble model is showed in Table 4.3.  

Experimentation revealed that the performance of the ensemble model is slightly better 
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than the individual non-ensemble classifiers. Experimental results demonstrated that the 

ensemble model gave a similar accuracy to the Random forest and Gradient Boosting with 

a rate of 98.7%. It was observed that the performance of the ensemble model showed a 

minor accuracy difference to the Gradient Boosting classifier that returned accuracy rate 

of 96.4. However, one of the major drawbacks of the Gradient Boosting is over fitting 

which the ensemble model solves because ensembles classify more accurately when 

combined with reduced dimensionality in the features.  

  

Table 4.3: Performance evaluation of Ensemble model compared to other 

classifiers  

Classifier  Accuracy  Precision  Recall  F1-Score  AUCROC  

Ensemble  Model  

(Gradient  

Boosting+Random  

Forest)  

98.7  98.4  98.8  98.4  0.8  

Gradient Boosting  96.4  96.4  96.3  96.2  0.7  

Random Forest  95.9  95.7  95.2  95.2  0.63  

Decision Trees  93.3  93.2  93.4  93.2  0.56  

K-Neighbour  92.8  92.6  92.4  92.5  0.53  

MLP  92.6  92.6  92.3  92.0  0.54  

SVM  92.3  92.7  92.2  92.1  0.53  

LDA  91.8  90.9  91.3  91.6  0.52  

  

Table 4.4 shows the result of combining the ensemble model with the Decision tree 

classifier. The combination achieved more accuracy results compared to the accuracy 

value obtained from the initial ensemble model. Table 4.5 shows the result of combining 

the ensemble model with two other classifiers namely the Decision Tree and the 

KNeigbour classifiers respectively.   
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Table 4.4: Performance evaluation of Ensemble Model combined with another 

classifier  

Classifier  Accuracy  Precision  Recall  F1-Score  AUCROC  

Ensemble  Model  

(Gradient  

Boosting+Random  

Forest)+Decision  

Tree  

98.8  98.6  98.9  98.6  0.8  

Gradient Boosting  96.4  96.4  96.3  96.2  0.7  

Random Forest  95.9  95.7  95.2  95.2  0.63  

K-Neighbour  92.8  92.6  92.4  92.5  0.53  

MLP  92.6  92.6  92.3  92.0  0.54  

SVM  92.3  92.7  92.2  92.1  0.53  

LDA  91.8  90.9  91.3  91.6  0.52  

  

Table 4.5: Performance evaluation of Ensemble combined with two other 

classifiers  

Classifier  Accuracy  Precision  Recall  F1-Score  AUCROC  

Ensemble  

Model(Gradient  

Boosting+Random  

Forest)+Decision  

Tree + KNeighbor  

98.7  98.9  98.9  98.8  0.8  

Gradient Boosting  96.4  96.4  96.3  96.2  0.7  

Random Forest  95.9  95.7  95.2  95.2  0.63  

MLP  92.6  92.6  92.3  92.0  0.54  

SVM  92.3  92.7  92.2  92.1  0.53  

LDA  91.8  90.9  91.3  91.6  0.52  
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4.3    Accuracy Performance Metrics  

As mentioned in section 3.6, accuracy performance metrics provides general information 

about how many samples are misclassified Figure 4.1 shows a bar chart for the accuracy 

performance metrics of the Ensemble model against other classifiers.  

  

 

Figure 4.1: Accuracy performance metrics for the ensemble model against other 

classifiers  
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Figure 4.2: Accuracy performance metrics after combining the ensemble model 

with the Decision Tree classifier  

  

 

Figure 4.3: Accuracy performance metrics after combining the ensemble model 

with the Decision Tree and the KNeighbor classifier  
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Results revealed that the accuracy value returned from combining the ensemble model 

with two other classifiers is similar to the accuracy obtained from table 4.6 when the 

ensemble model was combined with one other classifier implying that out of the 96,724 

obfuscated malware instances, the ensemble Model correctly predicted 95,563 samples. 

The experimental conclusion was that the combination of multiple ensemble models can 

enhance the accuracy of detecting obfuscated malware in general; however, the 

performance of combining two or more classifiers to an already existing Ensemble model 

may not increase the accuracy of prediction.   

4.4     Precision Performance Metrics  

Precision can be defined as the true positive class out of the predicted malware labels. 

Figure 4.4, 4.5 and 4.6 show bar charts for the precision performance metrics for the 

ensemble model.  

  

 

Figure 4.4:  Precision performance metrics for the ensemble model against other 

classifiers  
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Figure 4.5:  Precision performance metrics after combining the ensemble model with 

the Decision Tree classifier  
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Figure 4.6: Precision performance metrics after combining the ensemble model with 

the Decision Tree and the KNeighbor classifiers  

  

The ensemble model precision predictive output was at 98.6 percent this means that out of 

96,724 malware instances the ensemble model predicted 1355 instances as false positives 

and 95,369 obfuscated malware instance as true positives which is relatively good.  

4.5     Recall Performance Metrics  

This is the direct opposite of the precision metrics. It is mostly used when the aim of the 

research is to reduce the number of false negatives; it measures the predictive ability of 

the classifier to find all true samples/benign labels. Figure 4.7, 4.8 and 4.9 show bar charts 

for the recall performance metrics for the ensemble model.  

  

 

  

Figure 4.7:  Recall performance metrics for the ensemble model against other 

classifiers  
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Figure 4.8: Recall performance metrics after combining the ensemble model with the 

Decision Tree classifier  
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Figure 4.9: Recall performance metrics after combining the ensemble model with the 

Decision Tree and the KNeighbor classifiers  

  

The ensemble model had a recall of 98.9% this implies that the ensemble model predicted 

40165 to be benign/true samples out of the 41323 benign/true samples in the obfuscated 

malware dataset having the highest recall among the other classifiers  

4.6     F-1 Score Performance Metrics  

This optimizes both precision and recall metrics. It is the numerical mean average 

between a set of positive variables; in this case it is the mean between precision and recall. 

The F-1 Score reveals how accurate the ensemble model is in predicting obfuscated 

malware. Figure 4.10, 4.11 and 4.12 show bar charts for the F1 Score performance metrics 

for the ensemble model.  
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Figure 4.10:  F-1 Score performance metrics for the ensemble model against other 

classifiers  

 

  

Figure 4.11:  F-1 Score performance metrics after combining the ensemble model 

with the Decision Tree classifier  
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Figure 4.12:  F-1 score performance metrics after combining the ensemble model 

with the Decision Tree and the KNeighbor classifiers  

  

The ensemble model still had the highest F1_score of approximately 98.8% which is 0.98 

making the harmonic mean very close to 1. This implies the ensemble model has very 

good predictive capability according to the harmonic mean.  

4.7  AUCROC Score Performance Metrics  

The AUC is one of the most important evaluation metrics for checking the predictive 

performance of a classifier because a perfect classifier has an AUC near to the number 

‘1’ meaning it has a good measure of classification and a poor classifier has an AUC near 

to the number ‘0’. The Ensemble Model came up with an AUCROC of 0.8 which implies 

the ensemble model has a very good predictive capability in detecting obfuscated 

malware according to the area under the curve of the receiver operating characteristics 

curve (AUCROC).  
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CHAPTER FIVE  

5.0           CONCLUSION AND RECOMMENDATIONS  

5.1   Conclusion  

Much of today’s malware are created to stealth during infection and operation through 

obfuscation techniques to stall and prevent removal or behavioural analysis. Furthermore 

Non-signature based approaches to malware detection can be vulnerable to false positives 

or false negatives results after detection due to the concept of obfuscation adopted by 

malware authors. Hence, this research work adopted an ensemble machine learning 

approach to defeat the setbacks of recent commercial signature based approaches of 

obfuscated malware detection. By adopting the concept of reducing data feature set 

dimensionality, the most significant features that characterize obfuscated malware PE 

files was obtained. The features were experimented and evaluated by different classifiers 

to choose candidate classifiers to be used in the ensemble model based on an accuracy 

threshold of 95 percent.   

The recorded experiments reveal that the classification accuracy was satisfactory for 

selecting candidate classifiers to use in the ensemble model by showing experimental 

comparisons between the efficiency of different classifiers. Furthermore, the recorded 

research combined experimentally two candidate classifiers to form an ensemble model 

based on the weighted voting method of combining classifiers.   

Experimental results established that the ensemble model was more efficient than 

individual classifiers. The ensemble model obtained an accuracy rate in identifying 

unseen obfuscated malware samples with an accuracy ratio of 0.988, F1 Score of 0.988 

and area under curve of receiver operating characteristic curve (AUCROC) of 0.8.  
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5.2   Recommendations  

From the experimental findings of this research, the following recommendations were 

made;  

i. More accuracy, tuning, adaptation and reliability can be achieved by the 

ensemble model with training larger malware samples.  

ii. Malware dataset feature dimensionality reduction using other existing 

reduction methods can be explored to achieve more accurate predictive results 

from the ensemble model is still attainable.  

5.3   Contributions to Knowledge  

This research contributed the following to knowledge:  

Combining two or more classifiers to form an ensemble model to enhance the predictive 

ability by classifiers in detecting obfuscated malware in Portable Executables against the 

baseline literature by Amer et al., (2019); Yan et al., (2018); Scott, (2017); Rubin et al., 

(2019).   
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