
1

AN ENSEMBLE BASED CLASSIFIER MODEL FOR THE DETECTION OF

OBFUSCATED MALWARE IN PORTABLE EXECUTABLES.

BY

FADEN, David Nanven

MTech/SICT/2017/6842

DEPARTMENT OF CYBER SECURITY SCIENCE

FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

SEPTEMBER, 2021

2

AN ENSEMBLE BASED CLASSIFIER MODEL FOR THE DETECTION

OF OBFUSCATED MALWARE IN PORTABLE EXECUTABLES.

BY

FADEN, David Nanven

MTech/SICT/2017/6842

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE

DEGREE OF MASTER OF TECHNOLOGY IN CYBER SECURITY SCIENCE

 SEPTEMBER, 2021

3

ABSTRACT

This research work will focus on detection of malicious obfuscated malware by

formulating an Ensemble based model for the detection of obfuscated malware in portable

executable files with the ability to detect obfuscated malware with reasonable accuracy.

A large dataset retrieved from the website https://github.com/chihebchebbi/Mastering-

Machine-Learning-for-Penetration-Testing/blob/master/Chapter03/MalwareData.csv.gz

was used. The training dataset comprises of 138,047 PE header file records samples

which was divided into: 41,323 clean files containing exe and dll file samples and 96,724

malware file samples. The performance metrics evaluates the above mentioned machine

learning algorithms in relation to their predictive capability. Based on the analysis of the

tests and experimental results of the Ensemble Model, the Ensemble Model classifier

predicted the obfuscated malware dataset with an Accuracy metrics of 98.8%, Precision

metrics of 98.9%, Recall metrics of 98.9% and an F1-Score of 98.8%.

4

TABLE OF CONTENTS

Content

Page

Title page

i

Declaration

ii

Certification

iii

Dedication

iv

Acknowledgements

v

Abstract

vi

Table of Contents

vii

List of Tables

x

List of Figures

xi

CHAPTER ONE

5

1.0 INTRODUCTION

1

1.1 Background to the Study

1

1.2 Statement of the Research Problem

3

1.3 Aim and Objective of the Study

3

1.4 Scope of the Study

4

1.5 Significance of the Study

4

CHAPTER TWO

2.0 LITERATURE REVIEW

5

2.1 Overview of Malware Detection Techniques

5

2.2 Portable Executables Features

7

2.2.1 API and system calls

7

2.2.2 Byte sequence n Gram

9

2.2.3 OpCodes

12

6

2.2.4 File system

14

2.3 Machine Learning Classification Algorithm

15

2.3.1 Naïve bayes classifier

15

2.3.2 Support vector machine

17

2.3.3 Decision trees

19

2.3.4 Random forest

19

2.3.5 KNeigbour

20

2.3.6 Gradient boosting classifier

21

2.3.7 Stochastic gradient descent classifier

22

2.3.8 Linear discriminant analysis (LDA) classifier

22

2.4 Feature Selection Analysis

23

2.5 Related Empirical Studies

24

7

2.6 Summary of Literature Review

25

CHAPTER THREE

3.0 METHODOLOGY

27

3.1 Research Methodology

27

3.2 Overview

29

3.2.1 Data Sources

31

3.3 Model Training

32

3.3.1 Train, test and split

32

3.3.2 Obfuscated malware dataset

34

3.3.3 Feature selection/optimization

36

3.4 Model Testing

38

3.5 Machine Learning Evaluation Metrics

39

CHAPTER FOUR

8

4.0 RESULTS AND DISCUSSION

42

4.1 Classifier Performance Evaluation

42

4.2 Ensemble Model Performance Evaluation

44

4.3 Accuracy Performance Metrics

47

4.4 Precision Performance Metrics

49

4.5 Recall Performance Metrics

51

4.6 F-1 Score Performance Metrics

53

4.7 AUCROC Score Performance Metrics

55

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

56

5.1 Conclusion

56

5.2 Contributions to Knowledge

57

5.3 Recommendations

57

9

REFERENCES

58

LIST OF TABLES

Table Title

Page

3.1 Description of the four Training/test Variables

34

3.2 Obfuscated Malware Header File

35

3.3 36 Important Features after Removal of Features with Low Variance

36

3.4 Key Features Obtained after Optimization of High Variance Features

37

4.1 Classifier Training Result With Splitting Ratio (80 / 20)

43

4.2 Classifier Training Result With Splitting Ratio (70 / 30)

44

4.3 Performance Evaluation of Ensemble Model Compared to

other Classifiers

45

10

4.4 Performance Evaluation of Ensemble Model Combined with another

 Classifier

46

4.5 Performance Evaluation of Ensemble Combined with two

Other Classifiers

46

11

LIST OF FIGURES

Figure Title

Page

3.1 Methodology for an Ensemble Based Model for the Detection of

Obfuscated Malware.

28

4.1 Accuracy Performance Metrics for the Ensemble Model Against

other Classifiers

47

4.2 Accuracy Performance Metrics after Combining the Ensemble Model

 with the Decision Tree Classifier.

48

4.3 Accuracy Performance Metrics after Combining the Ensemble Model

with the Decision Tree and K-Neigbour Classifiers.

48

4.4 Precision Performance Metrics for the Ensemble Model against other

Classifiers

49

4.5 Precision Performance Metrics after Combining the Ensemble Model

with the Decision Tree Classifier.

50

4.6 Precision Performance Metrics after Combining the Ensemble Model

with the Decision Tree And Kneigbor Classifiers.

50

4.7 Recall Performance Metrics for the Ensemble Model against other

12

Classifiers

51

4.8 Recall Performance Metrics after Combining the Ensemble Model with

the Decision Tree Classifier.

52

4.9 Recall Performance Metrics after Combining the Ensemble Model

with the Decision Tree and Kneigbor Classifiers.

52

4.10 F-1 Score Performance Metrics for the Ensemble Model against other

 Classifiers

53

4.11 F-1 Score Performance Metrics after Combining the Ensemble Model

with the Decision Tree Classifier.

54

4.12 F-1 Score Performance Metrics after Combining the Ensemble Model

with the Decision Tree and Kneigbor Classifiers.

54

13

CHAPTER ONE 1.0

 INTRODUCTION

1.1 Background to the Study

Malware is shorthand for malicious software. It was first introduced in the early 1970s

when the creeper virus was introduced. Moreover different techniques have been explored

to mitigate and detect malware chiefly the use of machine learning Ensemble algorithms

on Portable Executables (PE) to predict whether a portable executable is a malware or

benign file and to also determine the accuracy of prediction (Ucci et al.,

2018). Over the years we have seen multiple variants of malware running into well over

500 thousand malware variants which are all harmful to individuals and organizations

that use the internet through electronic devices such as Portable executables and handheld

devices (Olalere et al., 2016).

Analysis of malware files are carried out in two ways either through static or dynamic

techniques which are then classified into different malware families. Machine learning

algorithms are used to predict and classify signatures based on features extracted from

malware program code (Damodaran, 2015). The features extracted from static malware

analysis may range from byte sequence n grams, operational code and syntactic library

calls where function calls are checked to ascertain the libraries accessed by the functions

(Pham et al., 2018). Malware authors began to develop new ways to stealth the payload

of a malware through the introduction of polymorphism and metamorphism into malware

behaviour; thus began the era of evasive/Obfuscated malware which cannot be classified

using ordinary static analysis of malware code.

Major success has been recorded by anti-virus vendors in detecting malware since the

advent of machine learning classifiers as tools to detect malware signatures and variants

until the recent emergence of obfuscated malware ranging from viruses, worms, rootkits,

14

key loggers, spyware and ransomware (Agnihotri, 2018). Much of today’s malware are

created to stealth during infection and operation through obfuscation techniques to stall

and prevent removal or behavioural analysis. Recent malware achieves such stealth

manoeuvres using several obfuscation techniques to stealth detection such as dead code

insertion, sub routine reordering in the operating system, code transportation, obscure

filenames, or masking under the pretence of legitimate programs and services as a white

listed program (You & Yim, 2010) .

This Obfuscated technique used by malware authors to bypass static analysis paved way

for the introduction and development of dynamic analysis of malware. In dynamic

analysis of a malicious code, the behaviour of the malware is monitored as it is executed

in a sandbox which is a controlled environment; the natural behaviour of a malware can

be observed without requiring the Portable Executable to be disassembled (Rieck et al.,

2011). This technique is more effective against evasive/Obfuscated malware because it

reveals the malwares running pattern before and after payload exposing the Obfuscated

behaviour naturally. The behavioural analysis concept is founded on the behavioural

similarity between the unknown malware to the recorded behaviours of already stored

discovered malware. In this way, the detection of unknown malware is possible.

(Damodaran, 2015).

Machine learning is a scientific study of algorithms through the application of artificial

intelligence that enables systems to be able to learn and improve from patterns otherwise

known as experience without explicitly being programmed (Swamynathan, 2019).

Machine Learning discovers patterns automatically through experience from predefined

datasets in order to predict the outcome of unknown occurrences based on previously

identified patterns (Baset, 2017). Ensemble learning is a branch of machine learning that

15

is used to improve the accuracy and performance of traditional machine learning

classifiers through the combination of several base models with the aim to produce one

optimal predictive model thereby improving the performance accuracy of the decision

(Yan et al., 2018).

1.2 Statement of the Research Problem

Due to the concept of obfuscation adopted by malware authors employing mutated hashes,

sophisticated obfuscation mechanisms, self-propagating malware and intelligent

malware; it is no longer sufficient to detect malware using the non-signature based

approach therefore Ensemble learning offers the predictive ability that can provide a much

needed advantage to detect the more ever evasive adversaries known as obfuscated

malware (Kazanciyan & Hastings, 2014; Rubin et al., 2019 & Scott, 2017). Secondly

multiple research work has been carried out in the detection of obfuscated malware using

machine learning algorithms chiefly Ensemble classifiers, unfortunately even when

successful, the research work is usually based on small malware datasets comprising of

not more than 2000 benign and malware files hence the technique used cannot be

simulated to accurately represent real life scenarios due to the small quantity of the

datasets. This work therefore tends to enhance the predictive ability of detecting

obfuscated malware in portable executable with accuracy by formulating an ensemble

model with minimum dataset.

1.3 Aim and Objectives of the Study

The aim of this study is to enhance the predictive ability of detecting obfuscated malware

in portable executable files with reasonable accuracy through formulating an ensemble

with a minimum feature set. The objectives of this research work are to:

16

i.) Optimize large enough dataset through the application of feature selection to

obtain the most significant and relevant features.

ii.) Enhance the detection of obfuscated malware through combining a Gradient

Boosting and Random Forest classifier to form an ensemble based model. iii.)

Evaluate the performance of the ensemble based model by using Accuracy, Precision,

Recall, F1-Score and Area Under the Receiver Operating

Characteristics (AUCROC).

1.4 Scope of the Study

This research work will focus on combining the Gradient Boosting and Random Forest

classifier to form an ensemble based model. The malware dataset used are datasets for

Portable Executables (PE) header files only. Evaluation and experimentation is based on

machine learning simulation in Jupyter notebook.

1.5 Significance of the Study

The ensemble based classifier model offers predictive ability to detect obfuscated

malware despite this, many researchers use little malware datasets which render the

ensemble classifier technique unable to accurately predict malware. It is therefore

important that this study be carried out with a large enough dataset so as to enhance the

detection of obfuscated malware through combining a Gradient Boosting and Random

Forest classifier to form an ensemble based model and also evaluate the performance of

the ensemble base classifier model by using Accuracy, Precision, Recall, F1-Score and

AUCROC. The ensemble based classifier model technique will enhance detecting of

obfuscated malware more accurately when used with a large enough dataset by taking

into account real life scenario of malware attacks and detection.

17

 CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Overview of Malware Detection Techniques

Bazrafshan et al. (2013) gave exhaustive survey on comparing heuristic malware

detection methods, describing three major malware detection methods commonly used

namely; signature based detection, behavioural based detection and heuristic based

detection. The research was also able to give advantages and disadvantages of each

detection method and proffered reasons heuristic malware detection technique is the most

proffered detection method adopted by researchers against metamorphic malware.

The researcher was able to identify three basic components of this method chiefly; the

Data Collector; responsible for extracting static and dynamic components from Portable

Executables (PE), The Interpreter; which converts the file features extracted from the data

collector and The Matcher; which is used to compare behaviour signatures. Even though

the behavioural approach builds on the weakness of the signature based approach two

downsides of this approach is the high positive rate ratio. Another method explored is the

heuristic method which involves data mining and machine learning algorithms most

especially classifiers (which this research work is based) to predict and detect

polymorphic and metamorphic malware variants with low false positive rate than the

behavioural methods. This method leverages on classification of malware based on

extracted features from PE files as input. This research work will focus on classification

algorithms. Some of the features explored by Bazrafshan et al. (2013) include Application

Package Interface/System calls, OpCode, N-Grams and control flow graphs by providing

a comparison table of their advantages and disadvantages stating that combining two or

more features gives better accuracy to the training models moreover the author was able

18

to show that combining Control Flow Graphs and Application Package Interface calls

gives the most accurate results in the training models. Feature extraction shall be

discussed later on in this literature. It is worthy of note that machine learning algorithms

are trained in any of the three ways namely Supervised Learning, Unsupervised Learning

and Semi supervised Learning.

According to Ucci et al. (2018), supervised learning is the process of using the concept

of classification where a machine learning algorithm known as classifiers map input

features of a malware dataset to output labels which are already known. When the process

is to map input features to a continuous output label it is known as regression. Accurate

output is usually achieved from the training data; the end product is to learn a function

that accurately approximates the relationship between input and output malware features.

This research work will adopt supervised learning to carry out a comparative analysis of

the major classifiers used by previous research work based on this research work dataset.

Some of the major classifiers used in detecting malware are Rule-Based Classifier, Bayes

Classifier, Random Forest, Naïve Bayes, Artificial Neural Networks (ANN) and Support

Vector Machine (SVM). Unsupervised learning is the process of learning relationship

between data structures most times identifying the data structures themselves using

unlabelled data that is data without output labels. Unsupervised learning works on the

concept of learning directly from unlabelled data. It deals mostly with clustering and

representation learning (Comar et al., 2013). Unsupervised learning is beyond the scope

of this research work.

The comparative analysis written by Vatamanu et al. (2015) was to find the best

combination of machine learning algorithms to get the lowest false positive rate when

classifying malware, the work was based on One Side Class (OSC) perceptron algorithm

which can detect malware samples with a low false positive rate, they achieved this

19

through computing a set of malware features for every binary file in the training dataset

which were trained with the OSC perceptrons algorithm using a dataset of clean and

infected malware files furthermore cross validation was applied to the dataset to obtain

the correct parameter values. Database of well over 2 million records were used, training

features where extracted using both static and dynamic malware analysis techniques. The

static features extracted includes file geometry, type of packer, type of compiler and

executable flags while the dynamic features extracted during execution in a sandbox

includes behaviour such as if the Portable Executable (PE) clones itself on the disk, if it

seeks permission to connect to the internet, or if it uses the concept of stealth to include

itself in some system processes. The result provided the best detection rate although low

false positive rates was not achieved. It was concluding that the OSC perceptron algorithm

is best used with a method of false positive filtering. The above approach might not be

feasible in detecting metamorphic malware based on the extracted features used for

training, how feature selection affects detection of metamorphic malware shall be discuss

later on. This work will later on show comparison of several machine learning algorithms

against the newly formulated Ensemble model in their predictive ability based on the

lowest false positive rate using an obfuscated malware dataset.

2.2 Portable Executable Features

2.2.1 Application package interface (API) and system calls

Application Package Interface (API) is a group of commands which provides an interface

between Portable Executables with the processor. It contains thousands of functions and,

structures and constants that can be used to issue commands to the processor for execution

whereas system calls are the only available interface to access the underlying operating

system. Furthermore the system calls are the only available interface between a process

20

and the operating system. This combination makes API and System calls feature critical

to detecting malware in that all the function calls and operating system request made by

every process, program and malware as the case maybe can be seen.

Ki et al. (2015) used API call features to detect malware by the use of sequence alignment

algorithms. This algorithm is used in natural language processing and biometrics to

extract similar sub sequences efficiently. The study shows that most API call extraction

is done for each class of malware and signatures are developed based on the extraction,

simply developing signatures based on the frequency of called API is not effective in

detecting polymorphic malware that modifies its behaviour and system calls evasively

most especially when redundant API is introduced by malware authors therefore the need

to use a more generic algorithm that can extract similar sub sequences in the API calls

was used. Brahimi and Moussaoui (2015) gave one of the simplest uses of API calls to

build a machine learning algorithm for detecting malware, incremental process of data

mining was used which was able to efficiently use the number of training samples while

reducing the cost of labelling samples basically using API calls as the feature for

detection. N-grams where extracted from the API calls dynamically. The feature selection

in this work used the following formula () ∑ (x c) log (x c) (x c) () x * , + v, b Where,

X is variable indicates the existence of feature and C indicates the class

(Cv:malware,Cb:benign) to reduce the size of the feature selection in API calls.

Salehi et al. (2012) also gave a good use of API calls in feature selection, innovative

method that used API names and a combination of API names was introduced and input

arguments as features this was because API calls alone are not able to describe the whole

behavioural pattern of a malware file. Different classifiers were used to utilize the dataset

along with 10-fold cross validation to achieve an accuracy of 98.4% with a false positive

21

rate less than two percent. System calls are best used when using clustering to classify

malware into families based on their behavioural pattern.

Hlauschek et al. (2009) used ANUBIS which is an operating system emulator to generate

patterns traces for system calls, control flow dependencies and network analysis results.

Extraction of a system call behaviour pattern from the execution trace of system calls to

identify and mine relevant aspects of a malware behaviour was done, thereby generating

a behavioural pattern model. The key idea was to identify system calls that access

operating system objects such as files, directories, and registers and form behavioural

model based on this patterns. A locality sensitive hashing was used to compute

approximations for clustering that require ON^2 distance computations then the Jaccard

Index for measuring similarity between the generated behavioural patterns. One of the

major downsides of this approach is the inability to tackle recent evasion techniques

employed by malware authors like windows command line obfuscation technique.

2.2.2 Byte sequence n-gram

Byte sequence is basically the bytes contained in the machine language of a Portable

Executable. These bytes represent the sequence of instructions and how they are executed

and combined. When a byte sequence feature of a PE is extracted the common method is

to use n-grams to discover the frequency of the set of co-occurring byte sequence to detect

a pattern in the byte sequence known as a signature. These signatures are used to label

files either as malware for benign. Most researchers use static analysis with no more than

3 n-gram sequences to extract byte sequence features in a dataset. A very practical

example of how byte sequence was used to generate signatures that could accurately

detect malware was done by Schultz et al. (2015). A framework was designed to detect

new samples of malware files by using static analysis to extract the byte sequence on a

22

public dataset containing both malware and benign files then classifiers where trained

over a subset of the data. The main goal was to detect new malware samples by separating

their dataset into two sets; one set which was labelled the training set was classified using

data mining algorithms to classify previously unseen binaries gotten from the byte

sequence of the dataset as malicious or benign. The test set was a subset of the dataset

that had no malware examples in it that were seen during the training of the data mining

algorithms, this gave a good dataset to use in testing the performance of an algorithm over

new malware examples. Cross validation techniques were use during the implementation

of a traditional signature-based algorithm to compare with the data mining algorithms

over new malware examples. A detection rate of 97.76%, was detected, this figure is

double the detection rate of a signature based scanner over a set of new malware

examples. Piyanuntcharatsr (2015) studied the comparative analysis on research

methodology and performance of malware detection using data mining techniques. The

main motivation for this research work was the difficulty of selecting which malware

feature to extract from a malware dataset. Interest was more focus in comparing two

approaches that use features which are based on statistical values and byte sequence

instructions using 1,2,3 n grams. The data set used contains was given two labels; the

reference data set and application data set. The reference set was used for creating the

model and the application set was for testing the accuracy of the data mining algorithm,

they were able to show the correctness by classes for the statistical approach. The method

performs better when the n gram extracted block size is large but a better result was

obtained when the n gram extracted block size equals to the file size.

As earlier stated obfuscation and polymorphism employed by malware authors to avoid

detection at file levels has been the recent norm. The dynamic analysis of malware

binaries during execution provides a technique for categorizing and mitigating the threat

23

of malicious software. In the research work by (Rieck et al., 2011) dynamic analysis of

PE binaries at runtime was the major method employed, the proposed framework allowed

for the discovery of new malware classes with similar behaviour and then assign unknown

malware variants to these new classes. An incremental approach was used for dynamic

analysis which was able to process the behaviour of thousands of malware byte codes on

a daily basis. The hypothesis for the incremental analysis was to reduce the run-time

overhead of current analysis methods at the same time providing accurate discovery of

malicious software variants. The framework first executes and monitors malware byte

codes in a sandbox environment generating a sequential report of the monitored behaviour

for each binary. These generated sequential reports are then placed into a high-

dimensional vector space to enable the similarity of behaviour to be accessible

geometrically, according to the researchers this allows for designing intelligent and

powerful clustering and classification methods using machine learning algorithms which

can identify unknown and known classes of malware based on the sequential reports. The

next step employed was to alternate between clustering and classification processes

providing the discovered behaviour of malware to be analysed incrementally on a daily

basis. Furthermore reports with unidentified behaviour are clustered for discovery of

unknown malware classes.

2.2.3 Opcodes

According to literature opcodes features are one of the most frequently used features. This

is because opcodes reveal the machine language operations to be executed together with

the data they will process and they are extracted by static analysis. Wong and Wong and

Stamp (2006) analysed several metamorphic virus generators by using opcodes defining

a similarity index to quantify the degree of metamorphism that each individual generator

24

produces. The model was based on Hidden Markov Models (HMM) which are used for

statistical pattern analysis. The framework works by extracting the sequence of opcodes

from two assembly programs to obtain opcode sequences of length n, and m, where n and

m are the numbers of opcodes in the two assembly programs. Sequential numbers are

given to each opcode in the sequence to allow comparison between n and m by

considering all subsequence of three consecutive opcodes from each sequence, whenever

any of the three opcodes are the same it is counted as a match and marked using

coordinates x and y to obtain a graph. This approach provides a framework to effectively

detect new malware variants if the variants are metamorphic and cannot be detected by

signature based scanning. The downside of this method is the new malware variants that

use command line obfuscation to hide a malware payload. A combination of extracted

features will go a long way to enhance this method against command line obfuscation

where opcode and system calls are used.

 Observing the frequency of opcodes sequence occurrence is the one of the major ways

of detecting novel malware as described by (Santos et al., 2013); the model is based on

the frequency of opcodes sequence in a PE. The opcode sequence feature was extracted

for every file in the dataset for lengths n = 1 and n = 2, this was due to the downside of

extracting large amount of features which renders the extraction very slow. After

extraction, a k fold cross validation was applied to the features obtain by dividing the

dataset into training datasets and test dataset with k = 10 which means for every classifier

tested the datasets was split 10 times into 10 different sets. The four models used for

learning were the Bayesian networks, Decision Trees, K- Nearest Neighbour and Support

Vector Machines. These models were used for each validation step. The model was now

tested to measure the processing overhead of the model by measuring the True Positive

Ratio (TPR) of each classifier. The machine-learning classifiers achieved high

25

performance in classifying unknown malware but the downside is that the processing

overhead of this framework is highly dependent of the length of the opcode sequences.

Another research work which used the Hidden Markov model and opcodes sequence was

done by Derhami et al. (2015) but the difference from Santos et al. (2013) was the method

of opcode sequence feature extraction showing that extracting specific features in the

opcodes sequence to train the HMM was more effective in detecting metamorphic

malware variants. The extraction of these specific features was done by methods similar

to sound processing. The specific features pin pointed by the authors are the various

important opcode commands contained in malware files which were separated from each

other by defining a label of less important opcodes which are identified as the ones that

have more similarity to benign files this way the important opcode sequence are separated

from the less important ones. The Hidden Markov Model is trained based on these

separated commands of opcodes. The trained HMM is now used to classify files of the

test set then the members of the same metamorphic malware variants are separated from

non-members. The framework showed that the Hidden Markov Model when trained based

on the important sequences of opcode was able to process with higher speed and was

more than most HMM models that are trained with both the less important and important

opcode sequence.

2.2.4 File system

File system changes are also used to monitor the behaviour novel malware. The type of

executed file operations by malware variants is very key in getting behavioural patterns

of these malwares. Operations such as, how many files were read, deleted or modified

and in what directories are very important features to look into to detect novel malware.

Nari and Ghorbani (2013) did a research work to address how ineffective antivirus

products detect malware and categorize them wrongly by proposing a classification

26

technique that describes malware behaviour in terms of changes to a system’s files rather

than on system calls, opcode sequence or byte sequence. This is achieved dynamically by

observing the malware behaviour in a controlled environment and classifying the

behaviours accordingly. Network activity is one major way of monitoring the malware

behaviour that cannot be otherwise categorized by antivirus products due to the

metamorphic behaviour of recent malware. The main goal was to apply automated

clustering to detect and understand malware behaviour by monitoring the state of file

changes and network activity in a controlled environment to identify various malware

families. Limitations of this research work is the common limitation associated with

dynamic analysis where a metamorphic malware may not drop its payload if it suspects

it is being monitored in a sandbox, such evasive techniques makes this process sometimes

ineffective from intelligent malware.

 The literature reviews above reveal that PE features are important in detecting malware

behaviour most especially the new metamorphic malware variants. Some features are best

suited to detect specific kind of malware for example opcodes and byte sequence n grams

are best suited for detecting metamorphic malwares as they deal with the binaries and

machine language operation sequence, API and system calls were used to classify more

ancient malware family variants but they are not effective in detecting metamorphic

malware variants due to fact that API/Systems calls only look at the function calls and

operating system request made by every process.

What if there is a function calls masked inside an application such as the windows Power

shell or windows Command line tool which are both white listed applications, the chances

for detection becomes very slim not until the payload is delivered furthermore file system

feature is another feature that deals with monitoring what files are written or deleted in a

system but also not so effective in detecting file less metamorphic malware variants such

27

as the Powershell.exe which is a Trojan created to steal your data and disrupt normal

activities of your system while hiding under the umbrella of a legitimate piece of software

on your system. Therefore this research work will focus on a combination of features to

use in comparing the different classifier algorithms so as to see the most efficient group

of features to use in classifiers for detecting metamorphic malware variants, this work

will use opcodes and byte sequence n-grams PE features.

2.3 Machine Learning Classification Algorithms (Ensembles)

As stated earlier the various classification algorithms will be discuss in detail and how it

have been used in previous research papers.

2.3.1 Naïve bayes classifier

Bayes theorem is based on the probability of an event based on past knowledge of

particular conditions that might be similar or related to that event; Naïve Bayes classifiers

are based on applying Bayes theorem with the assumption that features of measurement

are independent of each other. It is a family of algorithms where all of the algorithms have

a common principle in which every pair of features being classified is independent of

each other. It works by predicting family probabilities for each class of feature such as

the probability that a given data point belongs to a particular class. The class with the

highest probability is seen as the most likely class. It is known to work very well with

natural language processing problems.

Schultz et al. (2015) conducted a research on a data mining framework which

automatically detects malicious binaries. After feature selection was carried out on a data

set consisting of 4,266 programs broken down into 3,265 malicious binaries and 1,001

clean files; every example in the set was labelled either malicious or benign by the

commercial virus scanner. The researcher compared signature based methods and several

28

Classifier Algorithms such as RIPPER, Naive Bayes and Multi naïve Bayes on the

extracted features to get the most accurate algorithm with least False Positives (FP) rate,

for example the RIPPER algorithm was used on the dataset; which is a rule-based learner

that builds a set of rules to identify the classes of either positive examples and negative

examples while minimizing the amount of error. The Naïve Bayes algorithm was also

applied by the researcher to express the probability that a program is in a given class given

the program contains the set of features F by defining C to be a random variable over the

set of classes; benign, and malicious executables, so as to compute P (C|F). The Naive

Bayes algorithm using strings as features outperformed the other learning algorithm

which was far better than the signature method in terms of false positive rate and accuracy.

The researcher was able to get the most accurate result with 97.11% and within 1% of the

highest detection rate which far exceeds other algorithms in every category.

 Kolter and Maloof (2006) compared several major machine learning algorithms to detect

and classify malicious executables in the wild, Naïve Bayes was one of the algorithms

used to evaluate the training examples made up of n-grams of byte code although the

results showed that boosted decision tree outperformed other classifiers with a true-

positive rate of 0.98 and a false-positive rate of 0.05 which was desirable. There was a

cost of misclassification error that was discovered by the researcher and to tackle this

issue they used the receiver operating characteristic (ROC) analysis to get a graphical plot

to illustrate the diagnostic ability of binary classifiers by plotting the true positive rate

against false positive rate at various threshold settings and the boosted decision trees

outclassed the Naïve Bayes and other classifiers with an area under the curve of 0.996.

Firdausi et al. (2010) also did a comparison of machine learning classifiers using

automated behaviour-based malware detection to carry out analysis of malware

behaviour. The aim was to generate sparse vector models for classification using different

29

machine learning classifiers to get the overall best performance result of each classifier.

The classifiers used in this research are the k-Nearest Neighbours

(kNN), Naïve Bayes, J48 Decision Tree, Support Vector Machine (SVM), and Multilayer

Perceptron Neural Network (MLP). The researcher was able to prove that the overall best

performance was achieved by J48 decision tree with a recall of 95.9%, a false positive

rate of 2.4%, a precision of 97.3%, and an accuracy of 96.8%.

2.3.2 Support vector machine (SVM)

Support Vector Machine are learning models under supervised learning models that

analyse data used for classification and regression analysis problems. SVM finds out the

line in a hyper plane separating two defined classes. Support Vectors are simply the

coordinates of individual observation.

Chen et al. (2012) carried out a research on how Support Vector Machines are used, in

his research Support Vector Machines were used alongside decision trees to categorize

malware. Support vector Machine was applied to the training dataset features to minimize

the classification errors on a set of randomly selected samples to attain the best

classification performance to detect malware evolution and zero-day attacks. The

framework builds models with support vector machines (SVMs) and gradient boosting

decision trees (GBDTs) to aid in visualizing malware categorizations.

Comar et al. (2013) also combined supervised and unsupervised learning for zero day

malware detection using layer 3 and layer 4 network traffic features by harnessing on the

advantage of accuracy offered by supervised learning classification in detecting known

malware classes and families as well as the advantage of unsupervised learning to detect

new and unknown classes of malware. The result was a framework that demonstrates high

effectiveness in detecting zero day malware using real network data from large Internet

30

service providers. The researcher designed a tree-based kernel to use for one-class SVM

supervised learning classifiers to remove the data imperfection issues that arise in the

network flow data. The framework was able to detect existing and novel malwares with

very high precision.

Santos et al. (2013) proposed a new method to detect unknown malware families based

on the frequency of appearance of opcodes sequence, several classifiers were tested and

SVM with polynomial kernel had the fastest of the tested algorithms for SVM, achieving

a training time of 3.76 milliseconds and a testing time of 0.01 milliseconds, problems

were encountered in feature selection due to the explosion of opcodes features which was

tackled by Ranveer and Hiray (2015) using opcodes density histograms to reduce the

explosion of features. Eigen vector subspace analysis was used to filter and lower the

misclassification and interference of features. This paved way for a system that detects

with high accuracy and low false.

2.3.3 Decision trees

Decision Trees are excellent for helping a researcher to choose between several courses

of action. It provide options and describe the possible outcomes of choosing those options.

Decision trees are mostly used in operations research to provide decision analysis to aid

in discovering a strategy that will attain to a prescribed outcome. Decision Trees in

Machine Learning are used as classifiers in classification and regression under supervised

learning. The basic algorithm used in decision trees is known as the ID3 algorithm, the

ID3 algorithm builds decision trees using a top-down greedy approach. Decision Tree

shows the correlation between several

31

features and non-linearity between the features, a decision tree is easy to understand

requires very little data cleaning and no constraints on the data type.

Anderson et al. (2011) came up with a framework for automated classification of malware

samples based on malware network behaviour; the concept of the framework is to abstract

network behaviour of malware samples to high level behavioural patterns that must

contain all network activity communication together with dependencies between network

activities. The patterns are modelled as graphs and the graph features were found to be

effective in classifying malware samples. All classification of the graphs used Decision

Trees to classify the malware samples.

2.3.4 Random forest

Random Forest algorithm can also be used for both classification and regression kind of

problems. The Random Forest Algorithm works by creating a forest given a number of

trees, the higher the number of trees in the forest the higher the accuracy of the results.

When a Random Forest classifier is fed the training dataset with targets and features, the

Random Forest classifier will come up with some set of rules that are used to perform

prediction on the test dataset. The underlying principle of Random Forest classifier is the

principle that a group of weak learners can come together to form a strong learner thereby

making the Random Forest classifier to be able to classify large amounts of dataset with

high accuracy . Random Forests are do not over fit because of the law of large numbers

by introducing the right kind of randomness it makes them accurate

classifiers.

Wang (2014) used Random Forest classifiers to get a detection rate of 95.6% on novel

worms whose data was not used in the model building process. The author used opcode

sequences as the underlying feature extraction method to form binary classification

32

problems and built tree based classifiers although Bagging and Decision Trees were also

used to obtain optimal results.

Ahmadi et al. (2016) developed a framework that is effective in categorizing malware

variants into actual family groups. The concept was to extract, and select a set of novel

features for the effective representation of malware samples. These features were later

grouped according to different characteristics of malware behaviour and the proposed

method achieved high accuracy after using Random Forest classifier to categorize

malware variants.

2.3.5 k-Nearest neighbour (k-NN)

K-NN is a type of instance-based learning, or lazy learning, where the function is

approximated locally and all computation is deferred until classification. It is used for

both classification and regression predictive problems. Its major advantage is the ease to

interpret output, calculation time and prediction power. The goal is usually to find the k

influence in the algorithm. The k-NN algorithm always assumes that similar things exist

within the same area of focus and they are usually close to each other which means similar

things are near to each other.

 Kong (2013) used SVM and k-NN for classification; in this framework the classifiers are

trained with respect to each attribute type after which the Adaboost algorithm is used to

learn the confidence level associated with each classifier. Depending on the values

provided for each attribute type together with the confidence level associated with each

type of value obtained from the Adaboost algorithm, the classifiers were able to make a

decision on which family the new malware sample belongs to by choosing the malware

family that has the highest total confidence weight from all the individual classifiers.

Kumar (2017) carried out an analysis of machine learning algorithms used in malware

33

classification in cloud computing environments. The classifiers used in this research are

k-Nearest Neighbours (kNN) and J48 Decision Tree using n-grams byte sequence as

features, although the overall best performance was achieved by J48 decision tree with a

recall of 96.3%, the k-NN had a close recall to it.

2.3.6 Gradient boosting classifier

Boosting is a process of enhancing weak learning models into strong learning models

therefore Gradient Boosting classifier is a machine learning classifier that joins several

weak learning models together to create strong predictive models and it mostly uses

Decision trees. The process of boosting involves fitting every new tree into a modified

version of the original malware dataset. Agnihotri (2018) used Gradient boosting

classifier to detect ransomware through a static analysis of the ransomware PE file.

Extraction of the static attributes was first carried out to obtain numerical values for the

attributes which were used as inputs to the gradient boosting classifier to predict if the

given sample is malicious or not. The performance metrics used was the false positive

rate to grade the performance of the classifier; 0.3 percent false positive rate was obtained.

Furthermore (Pham et al., 2018) did a research on Static PE Malware Detection Using

Gradient Boosting Decision Trees Algorithm stating that the problem with gradient

boosting is the training time and also the ability to predict using imbalanced data makes

the performance metrics somewhat inaccurate. They were able to reduce the training time

by selective feature extraction and obtained a detection rate of 99.394 percent and a false

positive rate of 1 percent.

2.3.7 Stochastic gradient descent classifier (SGD)

SGD forms the basis of Neural Networks and a gradient means a slope or a slant surface

therefore a gradient descent means to descend down a slope to achieve the lowest point

34

on that surface. Stochastic gradient descent is a simple and effective numerical

optimization machine learning classifier which is used in solving large-scale machine

learning problems particularly for ridge regression and regularized logistic regression

clearly showing the superiority of stochastic gradient descent to other machine learning

algorithms for large-scale machine learning problems.

2.3.8 Linear discriminant analysis classifier (LDA)

Linear Discriminant Analysis was developed as early as 1936 by Ronald A. Fisher. It is a

statistical learning method mostly used for classifying observations to a class or category.

LDA predicts a common covariance matrix that exists in all classes in a data set; a

covariance matrix being a square matrix that contains the variance and covariance related

with several variables. Kuriakose and Vinod (2014) did a research on metamorphic

malware detection using LDA with an accuracy of 99%. The research work used non

signature based approach using feature selection techniques to achieve their objective.

2.4 Feature Selection Analysis

Feature selection plays a vital role in training datasets with classifiers to categorize or

detect novel malware variants most especially the new metamorphic malware variants.

Jiang et al. (2011) stated that the type of feature selected affects the ability to detect

accurately the metamorphic malware variants proving by his research work, unnecessary

and redundant PE features when selected may decrease the detection rate of metamorphic

malware variants. He proved that feature selection phase in malware detection plays a

vital role in the whole detection process and can efficiently reduce the redundant and

unnecessary features in the malware dataset, this in turn will reduce the false positive rate

for a malware detection model using classifiers.

35

Obfuscated malware have proven to be more challenging to detect using random malware

dataset feature selection for example (Derhami et al., 2015) noted importance should be

given to some part of the malware dataset with the goal to extract the significant sequences

of malware opcodes in the dataset, they used the dissimilarity of these significant

sequence of malware opcodes to the benign files to select the significant sequence because

all parts of a malware dataset feature are not representative of the malicious nature of the

malware. As seen above all the reviewed work used ngrams byte sequence, opcodes,

API/System calls with feature selection for training the various classifiers used in

malware detection which are effective in detecting known and unknown malware variants

but not so effective in detecting metamorphic malware for example obfuscated malware

in Portable executables that inject themselves inside a white listed software so as to

disguise itself as a trusted system process.

2.5 Related Empirical Studies

A very good example of an obfuscated malware that injects itself inside a white listed

software is the Powershell.exe virus that masks itself inside a Windows system

Powershell tool and executes malicious Powershell commands traditional malware

datasets feature selection may miss the obfuscation hidden in the Powershell during

feature selection due to the fact that Powershell is white listed software under the windows

operating system. Hendler et al. (2018) in their research on Detecting Malicious

PowerShell Commands using Deep Neural Networks expanded on the wide gap between

the lack of research on automatic detection of obfuscated malicious PowerShell

commands and the high cases of PowerShell based malicious cyber

exploits.

36

This point was later developed upon by Bohannon, (2017) who showed that recent

approach is effective in detecting metamorphic malware but not so effective in detecting

obfuscated PowerShell attack which is fast becoming an ever increasing trend due to the

fact that PowerShell attack is evasive and nearly impossible to detect because obfuscated

command line arguments and PowerShell events are not logged and monitored and also

Powershell commands are white listed commands therefore most malware samples do not

capture command line arguments/Powershell commands. For example the following

command: Get-ChildItem -Force -R .*.txt | ForEach-Object {Get-Content

$_ -TotalCount 4; Get-Content $_ -Tail 2} *>> o.log will output the first and last four lines of

every text file in a directory/folder, moving down child directories repeatedly and

including any hidden or invisible files it finds. The following command: Set-MpPreference

-DisableRealTimeMonitoring $true will disable the Microsoft Defender anti-virus engine.

Obfuscation of such commands can make the CLA/powershell a powerful tool to use as

a malware when masked by obfuscation. The above commands are all legitimate and

white listed commands in windows CLA/Powershell.

2.6 Summary of Literature Review

From the exhaustive literature review it can be seen that machine learning has come a

long way to aid the detection of malware chiefly the use of Ensembles. It is also worthy

of note that some of the methods employed are not so effective in detecting obfuscated

malwares depending on the mode of feature extraction and the Ensemble used.

Furthermore, even while most research work and academia have carried out research on

predicting malware engines with high end accuracy according to the performance metrics

used it has been established by literature that Obfuscated malicious white listed malware

are not detected easily and in cases that the research work achieves high accuracy, the

dataset used is very small in nature to capture real life scenarios therefore a method of

37

identifying Obfuscated malware variants through a large enough dataset to accurately

predict Obfuscated malware signatures in Portable Executable header files is needed to

augment the process of malware detection. This research work intends to breach that gap

through the development of an Ensemble based malware detection model using machine

learning classifiers (ensembles) that can detect Obfuscated malware accurately.

In addition a baseline approach for feature selection/optimization comprising of a

variance threshold and Pearson’s Correlation to improve estimators, accuracy scores and

to boost performance of the Ensemble model while training the model on the dataset.

Feature selection is achieved by removing all features whose variance doesn’t meet a

specific threshold which will measure how strong a relationship is between the remaining

features. This research work intends to draw techniques from (Swamynathan, 2019;

Bohannon, 2017).

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold

38

 CHAPTER THREE

3.0 METHODOLOGY

3.1 Research Methodology

The description for the methods and steps adopted for the purpose of formulating an

Ensemble based model for detecting obfuscated malware in a Portable Executable with

reasonable accuracy is discussed in this chapter. A large dataset from

https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration

Testing/blob/master/Chapter03/MalwareData.csv.gz was used. All examples in the

dataset are in the Windows Portable Executable header file format.

As stated in the literature review, this research will use a baseline approach based on

SK_learn python library for feature selection/optimization comprising of a variance

threshold and Pearson’s Correlation to achieve optimization of the malware dataset

features by removing all features whose variance does not meet some threshold and

measure how strong a relationship is between the remaining features, this will improve

estimators, accuracy scores and to boost performance of the predictive capability of the

Ensemble based model on the dataset. This Research work shall use the Majority

weighted voting method to combine the Gradient Boosting and the Random Forest

algorithm which are both classification algorithms, the final prediction decision of the

ensemble model relied on voting. There are two major optional strategies for voting which

are majority voting and weighted voting. Some of the dependencies include, windows 10

operating system, python 3 server, Anaconda; which is a free and open source python

programming language platform for scientific computing (data science, machine learning

, data processing and predictive analytics) that aims to simplify package management and

deployment, PEfile; which is an independent module to parse and work with PE files,

Pandas; which is a software library for the python programming language for data

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold

39

manipulation, data cleaning and analysis, Jupyter Notebook; an open source web

application that allows you to create and share documents that contain live code, equations

and visualizations used mostly for machine learning, modelling, simulation which will be

used as the GUI and IDE for running tests on the malware datasets, DOSfuscator.exe; a

software used to modify original malware dataset to get a new Obfuscated malware

dataset version.

The methodology as shown in Figure 3.1 is implemented in four main steps which are

data gathering, feature selection, training phase and testing phase.

Figure 3.1: Methodology for an ensemble based model for the detection of

Obfuscated Malware

data

Training Phase

Classifier w

Malware

dataset

Feature

Optimization

- Application

of Pearsons

Correlation

- Setting a

variance

threshold

value

Classifier s E valuation

Classifiers:

Gradient

Boosting,

Random Forest,

K - neighbour,

Deci sion Trees,

MLP, SVM, LDA

Evaluation of

Classifier s (ACC,

Precision, F1 score,

AUCROC)

Testing Phase

0 ptimized

dataset

Trained Ensemble

Model (Gradient

boosting Random

Forest)

Benign

file

Malware

file
Ensemble Model
Gradient
boosting+Rando
m forest

40

3.2 Overview

The main goal of feature selection is to obtain features that would increase the efficiency

of the Ensemble by selecting features that contribute strongly towards predictions. There

was a total of 56 features that define the malware dataset. Reducing the dimensionality of

the features will prevent the Ensemble model from overfitting and also reduce the

computational time.

This research applied a baseline threshold variance. For analysis of baseline variance,

baseline values need to be accurate in this case all the 96,724 malware files are accurate.

Calculating the threshold will be based upon the features for the Portable executable

header files for the each corresponding malware file by removing all low variance

features. Features with a training set variance lower than the set threshold will be

removed.

The idea is when a feature doesn’t have a variation much within itself; it generally has

very little predictive power (low variance) and it will be removed by the application of

the threshold variance value. The application of sklearn. Ensemble library will remove

features with a training set variance lower than the set threshold. The set Threshold value

was 0.5 which means that any feature with a variance less than 0.5 will be removed. The

choice of variance threshold was motivated by the literature review. The next step which

is to improve the accuracy by using the Filter method through the application of Pearson

Correlation. The Pearson correlation coefficient is symmetric: corr(X.Y) = corr(Y,X)

Pearson correlation is the measure of the linear correlation between two variables in this

case the two major variables derived from the malware dataset in section (3.5). It finds

the mutual relationship or connection between the headers for the benign variable and the

malware variable. The experiment selected features which have a correlation above 0.5

(factoring the absolute value) with the output variable. The correlation coefficient has

41

values between -1 to 1: (i.) A value closer to 0 implies weaker downhill correlation

(exact 0 implying no correlation)

(ii) A value closer to 1 implies stronger uphill positive correlation

(iii.) A value closer to -1 implies stronger downhill negative correlation

The application of sklearn, feature selection library with a set correlation of 0.5 will

further more reduce the dimensionality of the malware dataset features.

When training a model to handle a classification problem, a function is gained that takes

an input and returns an output which is directly defined with respect to the training dataset.

Owing to the theoretical variance of the training dataset, there exists variability to the

fitted dataset therefore we want to fit several independent models and “average” their

predictions in order to obtain an Ensemble model with a lower variance. However to fit

fully independent models will require too much data therefore we depend on the good

approximate properties of bootstrapping which assigns measures if accuracy like bias and

variance to sample estimates to fit models that are almost independent. The initial step is

to create multiple bootstrap samples in such a way as to make each new bootstrap sample

to act as another independent dataset drawn from a true distribution. The Experiment can

now further fit a weak learner for each of these samples and aggregate them such that an

average for all their outputs is obtained therefore obtaining an ensemble model that has

the characteristics with less variance than its elements. As the bootstrap samples are

approximatively independent and identically distributed so are the learned base models

so when we apply averaging on the weak learners outputs, the outputs do not change the

expected results but hence reduce its variance similar to the case of averaging independent

and identically distributed random variables retains the expected value but reduce

variance.

42

So, assuming that there are dataset samples which is the approximations of independent

datasets of size A and 7 machine learning classifiers denoted by

 {𝐸11,𝐸21,…,𝐸𝐴1 }, {𝐸12,𝐸22,…,𝐸𝐴2 }, … , {𝐸17,𝐸27,…,𝐸𝐴7 } 𝐸𝑎7 ≡ 𝑎 −

𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎 − 𝑡ℎ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒…………………. (i)

The experiment can now confidently fit 7 independent weak learners by fitting one on

each dataset

𝑑𝑡1, 𝑑𝑡2, … , 𝑑𝑡7 … … … … … … … (ii)

 The experiment can now then aggregate results of the models into some kind of averaging

process to get an ensemble model with a lower variance. Furthermore, we can define our

strong model such that

𝑧𝑎 = arg max[𝑐𝑎𝑟𝑑(𝑎|𝑑𝑡

= 𝑘 (𝑠𝑖𝑚𝑝𝑙𝑒 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒, 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠) … . . (iii)

Fitting the model will now present several possible ways to aggregate the multiple models

fitted in parallel for a classification problem but the experiment can check all the

probabilities of each classes returned by all the models that can further average these

probabilities and keep the class with the highest average probability which is known as

soft voting. The averages or votes can either be simple or weighted if any relevant weights

can be used weights being the proportional trust or performance of ensemble members on

a dataset. 3.2.1 Data Sources

As stated earlier the dataset was retrieved from https://github.com/chihebchebbi/Masteri

ng-Machine-Learning-for-Penetration

Testing/blob/master/Chapter03/MalwareData.csv.gz containing 138,047 PE header file

records samples which were divided into 41, 323 clean files containing exe and dll file

samples and 96,724 malware file samples. The malware dataset comprises of a total of

https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration
https://github.com/chihebchebbi/Mastering-Machine-Learning-for-Penetration

43

features 56 features which is the information found in every sample that define the

malware datasets as either malicious or benign.

3.3 Model Training

The training phase is the backbone of the Ensemble model. The purpose of the training

phase is to evaluate the performance of different nominee classifiers. A total of ten

different classifiers belonging to different learning models were used as nominee

classifiers. The training phase as shown in Figure 3.1 was divided into two phases namely

classifiers evaluation, and classifiers selection respectively. In classifiers evaluation, all

nominee classifiers are trained using the same training dataset set after feature selection.

The most predictive N classifiers are selected and combined into an ensemble model using

the weighted voting framework. If N = 2 nominee classifiers.

 Furthermore the choice of N is depending on the learning accuracy threshold value which

means if a classifier has a predictive learning accuracy above 95 percent that nominee

classifier is chosen during experimentation. In the classifiers selection phase, the formed

ensemble model is also trained using the same training set as carried out in the classifiers

evaluation phase. Performance of the ensemble model is also evaluated.

The output model of ensemble represents the final training model.

3.3.1 Train, Test and Split Variables

The tests and experiments was conducted using python 3 server and several dependencies

explained in the previous sub section. In machine learning data separation is crucial so as

to differentiate the benign files from the malware files in order to make training activities

suitable to train the classifier to predict the malware files from the benign files. Data

Separation shall be achieved by using the code snippet below which intends to create two

variables separating the malware files from the benign files:

legitimate= = FUTmalData[0:41323].drop(["legitimate"], axis

44

1) FUTmalware = FUTmalData[41324::].drop(["legitimate"], axis

= 1)

Two major variables shall be obtained containing the legitimate files and the malware

files.

In training the nominee classifiers, we prepare variables that will be used for training and

testing the nominee classifiers in the Ensemble model. The first step in achieving this is

to split the two major containing the Malware files and the benign files into smaller

manageable bits. The intended output for this stage will be 4 variables namely

benign_test, benign_train, malware_test, malware_train respectively. Table 3.1 gives a

brief of the variables:

 Table 3.1: Description of the four training/test variables

S/N Variable Name Description

1. Benign_train This variable will be employed to train the nominee

classifiers to predict benign files, it is made up of 80

percent of the benign files.

2. Benign_test This variable will be employed to test the predictive

performance of the nominee classifiers against data it

hasn’t seen. It is 20 percent of the benign files in the

malware dataset

3. Malware_train This variable will be employed to train the nominee

classifiers to predict malware files it is made up of 80

percent of the malware files.

4. Malware_test

This variable will be employed to test the predictive

performance of the nominee classifiers against data it

hasn’t seen. It is 20 percent of the malware files in the

malware dataset.

45

The application of sklearn model selection library will achieve the splitting of the

variables.

 In addition cross validation will be carried out after training the nominee classifiers; this

is done in section 3.5.

3.3.2 Obfuscated malware dataset

The next step in the research is to obfuscate the malware dataset using a DOSfuscator to

obfuscate the original malware dataset creating an obfuscated malware dataset. The aim

is to get an obfuscated version of the original malware dataset.

As earlier stated in the literature review, Invoke-DOSfuscator is a python script that can

create and obfuscate PE header files in this case, the original malware dataset. This tool

is key in this research work to obfuscate the original malware dataset to obtain an

obfuscated version of the original malware dataset. The malware dataset will have 41,323

clean files containing exe and dll file samples and 96,724 obfuscated malware file sample

after obfuscation. Table 3.1 shows an intended sample single PE header file information

after obfuscating the original malware dataset attack vector created using invoke

DOSfuscator

 Header File Description

1 SizeOfOptionalHeader 332 This is required for

executable files not

object files.

2 MajorLinkerVersion 621568 This tells the OS the

major DLL to use when

running the exe.

3 MinorLinkerVersion 4.426324 This tells the OS the

minor DLL to use when

running the exe.

46

Table 3.2: Obfuscated Malware Header File

The next phase in the research work is the same procedure as outlined in (3.4) where the

intended optimization of the new malware dataset is carried out to obtain key features to

use in training the nominee classifiers.

3.3.3 Feature Selection/Optimization

Section 3.1 discussed about feature selection and revealed the two aspects of feature

selection which was carried out in this research to reduce the dimensionality of the

obfuscated malware dataset and obtain only the most significant features. In the dataset,

the original number of features is 56. The first step in feature reduction was to apply a

variance threshold to the obfuscated malware dataset; Experimental results marked 36

features to be significant after the application of a variance threshold on the malware

dataset. The idea is when a feature doesn’t have a variation much within itself; it generally

4 ResourcesMeanEntropy 2.846449 The memory location

for the secrect resource

needed to run the exe.

5 LoadConfigurationSize 270376 Memory location to

load the configuration

files to run the exe

.

6 LoaderFlag ('546869785432673206A75737420

7269646963756C6F75732E2E2E'

split '(?<=\G.{2})',26|%{[char][int]

"0x$_"})

This argument tells the

operating system to

split a hard disk sector.

This is one of the

obfuscated header by

Dosfuscator.

7 SizeOfStackCommit 3110 Major Size of the exe to

save on disk.

S/N F eature

47

has very little predictive power (low variance) and it will be removed by the application

of the sklearn ensemble library. Table 3.3 shows 36 features that are classified as

important by the application of the sklearn ensemble library.

 Table 3.3: 36 Important features after removal of features with low variance

S/N 1 Feature Name

Name

S/N

10

Feature Name S/N Feature Name

SizeOfUninitializedData 19 SizeOfStackReserve

2 md5 11 AddressOfEntryPoint 20 SectionsMeanEntropy

3 Machine 12

BaseOfCode

21 SectionsMinEntropy

4
SizeOfOptionalHeader

13 BaseOfData 22 SectionsMaxEntropy

5
Characteristics

14 ImageBase 23 SectionsMeanRawsize

6
MajorLinkerVersion

15 SectionAlignment 24 ResourcesMaxSize

7 MinorLinkerVersion 16 SizeOfStackCommit 25 ResourcesMinSize

8

SizeOfCode
17 SizeOfHeapReserve 26 SizeOfUninitializedData

9

SizeOfInitializedData

18 DllCharacteristics 27 SizeOfInitializedData

28
VersionInformationSize

31 SectionsMinRawsize 34 ResourcesMinEntropy

29 LoaderFlag 32 SectionMaxRawsize 35 ResourcesMaxEntropy

30

NumberOfRvaAndSizes 33 SectionsMinVirtualsize 36 MinorImageVersion

The features obtained after selecting features with high variance constitute about 66% of

all 56 features. The reduction of features further decreases the complexity of the

experiments using the ensemble model.

The second step in feature reduction is the application of the Filter method which will

filter the 36 features with high variance. This research achieved this by applying Pearsons

Correlation as stated in section 3.3.2. The idea is to further optimize the 36 features to

obtain key features that will aid the ensemble model to achieve more accurate predictions

48

in detecting obfuscated malware. Table 3.4 shows the results obtained after the

application of Pearsons Correlation.

 Table 3.4: Key features obtained after optimization of high variance features

S/N Feature Name S/N Feature Name

1 LoaderFlags 7 ResourcesMaxSize

2 NumberOfRvaAndSizes 8 SectionMaxRawsize

3 SizeOfHeapCommit 9 SectionsMeanRawsize

4 SizeOfUninitializedData 10 SizeOfImage

5 BaseOfCode 11 ResourcesMeanSize

6
SizeOfStackCommit

12
SizeOfCode

3.4 Model Testing

After the training phase of the model, 2 nominee classifiers were selected based on the set

accuracy threshold value as earlier stated. The model testing stage is where the experiment

is carried out with the 2 nominee classifier is now called the Ensemble model comprising

of the Random Forest and Gradient Boosting classifiers. The experiment will now test the

model using the obfuscated malware dataset with splitting ratio (80 / 20) which the

Ensemble model has never seen. Testing is the last step of the Ensemble model. The main

aim is to evaluate the Ensemble model performance in terms of measuring the prediction

accuracy in classifying new benign and malware samples with splitting ratio (80 / 20) as

stated above. For the purpose of testing, the experiment 8264 benign and 19344 malware

49

samples from the obfuscated malware dataset to be used as test samples which accounts

for 20 percent each from the benign and malware files respectively.

 As stated in section 3.2 voting and averaging are two methods employed to combine

ensembles. Voting is normally used for classification algorithms and averaging is used

for regression algorithms. In our experiment, we shall use the Majority weighted voting

method to combine the Gradient Boosting and the Random Forest algorithm which are

both classification algorithms, the final prediction decision of the ensemble model relied

on voting. There are two major optional strategies for voting which are majority voting

and weighted voting. In majority voting each classifier makes a prediction for each test

instance and the final result for prediction depends on the classifier on the combination

of the prediction accuracy for the two classifiers. However, in weighted voting, the

average is taken for the prediction of the better models multiple times depending on the

weight the researcher chooses. The experiment shall use the weighted voting strategy and

set a weight depending on how large our dataset is and time taken to complete prediction.

3.4 Machine Learning Evaluation Metrics

To prove that the ensemble model accurately predicted an obfuscated malware, evaluation

metrics shall be used to determine the prediction accuracy of a classifier. This research

intends to use the following evaluation metrics explained below:

1.) Accuracy: provides general information about how many obfuscated malware

samples are misclassified. Accuracy is calculated as the sum of correct predictions

divided by the total number of predictions as show in equation iv

 𝑨𝑪𝑪 = 𝑻𝑷+𝑻𝑵 ……. (iv)

𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵

50

2.) Precision Metrics: This is used when the aim is to limit the number of false

positives measured from highest to lowest which means the classifier with the

highest precision score has the best precision and can be used in cases where false

positive reduction is the aim. Precision can further be defined as the true positive

class out of the predicted malware labels. This research intends to use the precision

metrics to gauge the precision of the Ensemble Model to correctly predict

obfuscated malware instances against a dataset that the classifier has not been

trained on namely the malware_test variable dataset as show in equation v.

𝑻𝑷

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = ……. (v)

𝑻𝑷+𝑭𝑷

3.) Recall Metrics: This is the direct opposite of the Precision Metrics. It is mostly

used when the aim of the research is to reduce the number of false negatives; it

measures the predictive ability of the classifier to find all true samples/benign

labels. It is also called sensitivity or true positive rate because it is the ratio of tp /

(tp + fn) using the confusion matrix where tp is the number of true positives and

fn is the number of false negatives. This research intends to use the recall metrics

to measure the Ensemble Model’s ability to predict obfuscated malware instances

against the total number of true obfuscated malware instances as show in equation

vi.

𝑻𝑷

 𝑹𝒆𝒄𝒂𝒍𝒍 = ……(vi)

𝑻𝑷+𝑭𝑵

4.) F1_SCORE: This optimizes both precision and recall metrics. It is the numerical

mean average between a set of positive variables; in this case it is the mean

between precision and recall. It is used as a more verbose measure of a classifier’s

accuracy which goes beyond simply correctly classified obfuscated instances.

51

This research intends to use the F1_Score evaluation metrics to find the harmonic

mean between the precision metrics and the recall metrics to understand how

accurate the Ensemble Model is in predicting obfuscated malware as show in

equation vii.

𝟐∗(𝑹𝒆𝒄𝒂𝒍𝒍∗𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)

 𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = ……. (vii)
𝑹𝒆𝒄𝒂𝒍𝒍+𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

5.) AUCROC: Area Under the Receiver Operating Characteristics (AUCROC) is

the possible thresholds that are considered during the Receiver Operating

Characteristics (ROC) curve. The AUCROC is one of the most important

evaluation metrics for checking the predictive performance of a classifier because

the diagonal of an AUCROC graph can be interpreted by considering the

classifiers performance according to its position below or above the diagonal in

an ROC curve plot, for example if the Gradient Boosting classifiers performance

falls into the top left corner of the AUCROC with a True Positive Rate of 1 and

a False Positive rate of 0 means the classifier has a perfect predictive capability;

the higher the AUC, the better the Ensemble Model is at predicting malware as

malware and a benign file as a benign file. In the ROC curve plot, the True Positive

Rate (TPR) against the False Positive Rate (FPR) is plotted with the TPR on the

y-axis and the FPR on the x-axis. A perfect classifier has an AUCROC near to 1

meaning it has a good measure of classification and a poor classifier has an

AUCROC near to zero. Whenever the AUCROC is 0.5 it means the Ensemble

Model has no predictive capability for classification.

52

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Classifier Performance Evaluation

In ensemble learning aspect of machine learning, it is necessary to build predictive models

that have the ability to generalize effectively the extracted features. When training a

model, a disturbed generalization is recognized by over fitting. A major workaround to

avoid over fitting is to use an appropriate data splitting techniques. Classification is a

process of supervised learning in which the computer program learns from the input data

and uses the learning to classify new observations or behaviours. To avoid the poor

generalization for the ensemble model experiments were carried out with different

splitting ratios for training and testing, the goal is to train and test the nominee classifiers

to learn behaviours and patterns accurately and to use that learning to make accurate

53

predictions. It is worthy of note that ensemble learning models could be ranked according

to their efficiency; efficiency is the inherent capability of an ensemble learning model to

generalize accurately to new data. To avoid poor generalization, the nominee classifiers

are experimented using two splitting criteria with different ratios. The first experiment is

done by splitting the optimized dataset into 80/20 for training and testing in the same way

the second experiment is done by splitting the optimized dataset into 70/30 for training

and testing respectively. Evaluation metrics such as accuracy, precision, recall, and F-

measure are used to evaluate the nominee classifiers performance.

The results of the nominee classifiers performance for the 80/20 and 70/30 splitting

criteria are summarized in Table 4.3 and Table 4.4 respectively. Results showed that the

nominee classifiers performance revealed similar results with little differences. The

splitting criteria didn’t influence the classification decision of the nominee classifiers.

This research experimented with different ensemble classifiers like the Gradient Boosting,

Random Forest, K-nearest Neighbour (KNN), Multi-layer perceptron (MLP) and

Decision Trees (DT). In terms of accuracy according to the accuracy selection threshold

value for our Ensemble Model during the selection phase, the Gradient Boosting

Classifier and Random Forest classifier gave the best result among all other nominee

classifiers. Other classifiers like MLP, Decision Trees and K-nearest neighbour also

showed considerable high accurate results but not up to accuracy selection threshold

value. Further experiments were carried out using a combination of non-ensemble

classifiers with the nominee ensemble classifiers to measure whether it may affect the

accuracy of the ensemble model. The ensemble model will be formed with the following

two classifiers Gradient Boosting Classifier and the Random Forest classifier through the

strategy of voting as stated in section 3.5.

54

Table 4.1: Classifier training result with splitting ratio (80 / 20)

Classifier Accuracy Precision Recall F1-Score AUCROC

Gradient

Boosting

96.8 96.7 96.4 96.6 0.7

Random Forest 96.5 96.4 96.0 96.4 0.68

Decision Tress 96.5 96.3 95.9 96.4 0.66

K-Neighbour 92.8 92.4 92.3 92.3 0.52

MLP 92.7 92.6 92.3 92.2 0.54

Table 4.2: Classifier training result with splitting ratio (70 / 30)

Classifier Accuracy Precision Recall F1-Score AUCROC

Gradient

Boosting

96.4 96.4 96.3 96.2 0.7

Random Forest 95.9 95.7 95.2 95.2 0.63

Decision Trees 93.3 93.2 93.4 93.2 0.56

K-Neighbour 92.8 92.6 92.4 92.5 0.53

MLP 92.6 92.6 92.3 92.0 0.54

4.2 Ensemble Model Performance Evaluation

This research carried out 3 different experiments to evaluate the performance of the

ensemble model. The first experiment evaluates the performance of each of the ensemble

model against individual ensemble classifiers and non-ensemble classifiers. The second

experiment evaluates the ensemble model when integrating two ensemble models which

are the ensemble model + Decision Trees. The third experiment evaluates the combination

of three ensemble models which are the ensemble model + Decision

Trees + K-Neighbour. Evaluation of the ensemble model is showed in Table 4.3.

Experimentation revealed that the performance of the ensemble model is slightly better

55

than the individual non-ensemble classifiers. Experimental results demonstrated that the

ensemble model gave a similar accuracy to the Random forest and Gradient Boosting with

a rate of 98.7%. It was observed that the performance of the ensemble model showed a

minor accuracy difference to the Gradient Boosting classifier that returned accuracy rate

of 96.4. However, one of the major drawbacks of the Gradient Boosting is over fitting

which the ensemble model solves because ensembles classify more accurately when

combined with reduced dimensionality in the features.

Table 4.3: Performance evaluation of Ensemble model compared to other

classifiers

Classifier Accuracy Precision Recall F1-Score AUCROC

Ensemble Model

(Gradient

Boosting+Random

Forest)

98.7 98.4 98.8 98.4 0.8

Gradient Boosting 96.4 96.4 96.3 96.2 0.7

Random Forest 95.9 95.7 95.2 95.2 0.63

Decision Trees 93.3 93.2 93.4 93.2 0.56

K-Neighbour 92.8 92.6 92.4 92.5 0.53

MLP 92.6 92.6 92.3 92.0 0.54

SVM 92.3 92.7 92.2 92.1 0.53

LDA 91.8 90.9 91.3 91.6 0.52

Table 4.4 shows the result of combining the ensemble model with the Decision tree

classifier. The combination achieved more accuracy results compared to the accuracy

value obtained from the initial ensemble model. Table 4.5 shows the result of combining

the ensemble model with two other classifiers namely the Decision Tree and the

KNeigbour classifiers respectively.

56

Table 4.4: Performance evaluation of Ensemble Model combined with another

classifier

Classifier Accuracy Precision Recall F1-Score AUCROC

Ensemble Model

(Gradient

Boosting+Random

Forest)+Decision

Tree

98.8 98.6 98.9 98.6 0.8

Gradient Boosting 96.4 96.4 96.3 96.2 0.7

Random Forest 95.9 95.7 95.2 95.2 0.63

K-Neighbour 92.8 92.6 92.4 92.5 0.53

MLP 92.6 92.6 92.3 92.0 0.54

SVM 92.3 92.7 92.2 92.1 0.53

LDA 91.8 90.9 91.3 91.6 0.52

Table 4.5: Performance evaluation of Ensemble combined with two other

classifiers

Classifier Accuracy Precision Recall F1-Score AUCROC

Ensemble

Model(Gradient

Boosting+Random

Forest)+Decision

Tree + KNeighbor

98.7 98.9 98.9 98.8 0.8

Gradient Boosting 96.4 96.4 96.3 96.2 0.7

Random Forest 95.9 95.7 95.2 95.2 0.63

MLP 92.6 92.6 92.3 92.0 0.54

SVM 92.3 92.7 92.2 92.1 0.53

LDA 91.8 90.9 91.3 91.6 0.52

57

4.3 Accuracy Performance Metrics

As mentioned in section 3.6, accuracy performance metrics provides general information

about how many samples are misclassified Figure 4.1 shows a bar chart for the accuracy

performance metrics of the Ensemble model against other classifiers.

Figure 4.1: Accuracy performance metrics for the ensemble model against other

classifiers

88

90

92

94

96

98

100

Accuracy%

Ensemble Model

Gradient Boosting

Random Forest

Decision Trees

K-Neighbor

MLP

SVM

LDA

58

Figure 4.2: Accuracy performance metrics after combining the ensemble model

with the Decision Tree classifier

Figure 4.3: Accuracy performance metrics after combining the ensemble model

with the Decision Tree and the KNeighbor classifier

88

90

92

94

96

98

100

Accuracy%

Ensemble Model +Decision
Trees

Gradient Boosting

Random Forest

Decision Trees

K-Neighbor

MLP

SVM

LDA

88

90

92

94

96

98

100

Accuracy%

Ensemble Model +Decision
Trees+Kneighbor

Gradient Boosting

Random Forest

Decision Trees

K-Neighbor

MLP

SVM

LDA

59

Results revealed that the accuracy value returned from combining the ensemble model

with two other classifiers is similar to the accuracy obtained from table 4.6 when the

ensemble model was combined with one other classifier implying that out of the 96,724

obfuscated malware instances, the ensemble Model correctly predicted 95,563 samples.

The experimental conclusion was that the combination of multiple ensemble models can

enhance the accuracy of detecting obfuscated malware in general; however, the

performance of combining two or more classifiers to an already existing Ensemble model

may not increase the accuracy of prediction.

4.4 Precision Performance Metrics

Precision can be defined as the true positive class out of the predicted malware labels.

Figure 4.4, 4.5 and 4.6 show bar charts for the precision performance metrics for the

ensemble model.

Figure 4.4: Precision performance metrics for the ensemble model against other

classifiers

88

90

92

94

96

98

100

Precision%

Ensemble Model

Gradient Boosting

Random Forest

Decision Trees

K-Neighbor

MLP

SVM

LDA

60

Figure 4.5: Precision performance metrics after combining the ensemble model with

the Decision Tree classifier

86

88

90

92

94

96

98

100

Precision%

Ensemble Model +Decision
Trees

Gradient Boosting

Random Forest

K-Neighbor

MLP

SVM

LDA

86

88

90

92

94

96

98

100

Precision%

Ensemble Model +Decision
Trees+Kneighbor

Gradient Boosting

Random Forest

MLP

SVM

LDA

61

Figure 4.6: Precision performance metrics after combining the ensemble model with

the Decision Tree and the KNeighbor classifiers

The ensemble model precision predictive output was at 98.6 percent this means that out of

96,724 malware instances the ensemble model predicted 1355 instances as false positives

and 95,369 obfuscated malware instance as true positives which is relatively good.

4.5 Recall Performance Metrics

This is the direct opposite of the precision metrics. It is mostly used when the aim of the

research is to reduce the number of false negatives; it measures the predictive ability of

the classifier to find all true samples/benign labels. Figure 4.7, 4.8 and 4.9 show bar charts

for the recall performance metrics for the ensemble model.

Figure 4.7: Recall performance metrics for the ensemble model against other

classifiers

86

88

90

92

94

96

98

100

Recall%

Ensemble Model

Gradient Boosting

Random Forest

Decision Trees

K-Neighbor

MLP

SVM

LDA

62

Figure 4.8: Recall performance metrics after combining the ensemble model with the

Decision Tree classifier

86

88

90

92

94

96

98

100

Recall%

Ensemble Model +Decision
Trees

Gradient Boosting

Random Forest

K-Neighbor

MLP

SVM

LDA

86

88

90

92

94

96

98

100

Recall%

Ensemble Model +Decision
Trees+Kneigbor

Gradient Boosting

Random Forest

K-Neighbor

MLP

SVM

LDA

63

Figure 4.9: Recall performance metrics after combining the ensemble model with the

Decision Tree and the KNeighbor classifiers

The ensemble model had a recall of 98.9% this implies that the ensemble model predicted

40165 to be benign/true samples out of the 41323 benign/true samples in the obfuscated

malware dataset having the highest recall among the other classifiers

4.6 F-1 Score Performance Metrics

This optimizes both precision and recall metrics. It is the numerical mean average

between a set of positive variables; in this case it is the mean between precision and recall.

The F-1 Score reveals how accurate the ensemble model is in predicting obfuscated

malware. Figure 4.10, 4.11 and 4.12 show bar charts for the F1 Score performance metrics

for the ensemble model.

86

88

90

92

94

96

98

100

F-1
Score%

Ensemble Model

Gradient Boosting

Random Forest

Decision Trees

K-Neighbor

MLP

SVM

LDA

64

Figure 4.10: F-1 Score performance metrics for the ensemble model against other

classifiers

Figure 4.11: F-1 Score performance metrics after combining the ensemble model

with the Decision Tree classifier

88

90

92

94

96

98

100

F-1 Score%

Ensemble Model+Decision
Trees

Gradient Boosting

Random Forest

K-Neighbor

MLP

SVM

LDA

88

90

92

94

96

98

100

F-1
Score%

Ensemble Model+Decision
Trees+Kneigbour

Gradient Boosting

Random Forest

MLP

SVM

LDA

65

Figure 4.12: F-1 score performance metrics after combining the ensemble model

with the Decision Tree and the KNeighbor classifiers

The ensemble model still had the highest F1_score of approximately 98.8% which is 0.98

making the harmonic mean very close to 1. This implies the ensemble model has very

good predictive capability according to the harmonic mean.

4.7 AUCROC Score Performance Metrics

The AUC is one of the most important evaluation metrics for checking the predictive

performance of a classifier because a perfect classifier has an AUC near to the number

‘1’ meaning it has a good measure of classification and a poor classifier has an AUC near

to the number ‘0’. The Ensemble Model came up with an AUCROC of 0.8 which implies

the ensemble model has a very good predictive capability in detecting obfuscated

malware according to the area under the curve of the receiver operating characteristics

curve (AUCROC).

66

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Much of today’s malware are created to stealth during infection and operation through

obfuscation techniques to stall and prevent removal or behavioural analysis. Furthermore

Non-signature based approaches to malware detection can be vulnerable to false positives

or false negatives results after detection due to the concept of obfuscation adopted by

malware authors. Hence, this research work adopted an ensemble machine learning

approach to defeat the setbacks of recent commercial signature based approaches of

obfuscated malware detection. By adopting the concept of reducing data feature set

dimensionality, the most significant features that characterize obfuscated malware PE

files was obtained. The features were experimented and evaluated by different classifiers

to choose candidate classifiers to be used in the ensemble model based on an accuracy

threshold of 95 percent.

The recorded experiments reveal that the classification accuracy was satisfactory for

selecting candidate classifiers to use in the ensemble model by showing experimental

comparisons between the efficiency of different classifiers. Furthermore, the recorded

research combined experimentally two candidate classifiers to form an ensemble model

based on the weighted voting method of combining classifiers.

Experimental results established that the ensemble model was more efficient than

individual classifiers. The ensemble model obtained an accuracy rate in identifying

unseen obfuscated malware samples with an accuracy ratio of 0.988, F1 Score of 0.988

and area under curve of receiver operating characteristic curve (AUCROC) of 0.8.

67

5.2 Recommendations

From the experimental findings of this research, the following recommendations were

made;

i. More accuracy, tuning, adaptation and reliability can be achieved by the

ensemble model with training larger malware samples.

ii. Malware dataset feature dimensionality reduction using other existing

reduction methods can be explored to achieve more accurate predictive results

from the ensemble model is still attainable.

5.3 Contributions to Knowledge

This research contributed the following to knowledge:

Combining two or more classifiers to form an ensemble model to enhance the predictive

ability by classifiers in detecting obfuscated malware in Portable Executables against the

baseline literature by Amer et al., (2019); Yan et al., (2018); Scott, (2017); Rubin et al.,

(2019).

68

REFERENCES

Piyanuntcharatsr, S. S., Adulkasem, S., & Chantrapornchai, C. (2015). On the

Comparison of Malware Detection Methods Using Data Mining with Two Feature

Sets. International Journal of Security and Its Applications, 9(3), 293–318,

doi:10.14257/ijseia.2015.9.3.23

Agnihotri, N. (2018). Ransomware Classifier using Extreme Gradient Boosting.

International Journal of Computer Science and Information Technologies 9(2), 45–

47.

Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., & Giacinto, G. (2016). Novel

Feature Extraction, Selection and Fusion for Effective Malware Family

Classification. Cornell University Library. arXiv:1511.04317

Amer, E. A., Zelinka, I., & Engineers, E. (2019). An ensemble-based malware detection
model using minimum an ensemble-based malware detection model. Mendel soft
computing Journal, 25, 2-3, doi.org/10.13164/mendel.2019.2.001.

Anderson, B., Quist, D., Neil, J., Storlie, C., & Lane, T. (2011). Graph-based malware

detection using dynamic analysis. Journal in Computer Virology. 7, 247-258,

doi:10.1007/s11416-011-0152-x.

Baset, M. (2017). Machine learning for malware.

doi.org/10.13140/RG.2.2.18107.00801.

Bazrafshan, Z., Hashemi, H., Fard, S. M. H., & Hamzeh, A. (2013). "A survey on heuristic

malware detection techniques," The 5th Conference on Information and Knowledge

Technology, 113-120, doi:10.1109/IKT.2013.6620049.

Bohannon, D. (2017.). Techniques & How To (Try To) D " " e ` Tec ` T ’ Th ’ + ’ em ’

 Invoke-Obfuscation. Retrievied from

https://www.slideshare.net/DanielBohannon2/invokeobfuscation-derbycon-2016

Brahimi, M., & Moussaoui, A. (2015). Machine learning for malware detection using api

calls. Troisième conference internationale sur la vision artificielle, 3. Retrieved from

https://www.researchgate.net/publication/279854349_MACHINE_LEARNING_F

OR_MALWARE_DETECTION_USING_API_CALLS

Chen, X., Yang, J., & Liang, J. A (2012). Flexible support vector machine for regression.

Neural Computer & Application, 21, 2005–2013, doi:10.1007/s00521011-0623-5

Comar, P. M., Liu, L., Saha, S., Tan, P., & Nucci, A. (2013). Combining Supervised and

Unsupervised Learning for Zero-Day Malware Detection. 2022–2030. Retrieved
from http://www.cse.msu.edu/~ptan/papers/infocom2013.pdf

Damodaran, A. (2015). Combining Dynamic and Static Analysis for Malware Detection.

Master's Projects. San Jose State University, California doi: 10.31979/etd.794g-7hf

Derhami, V., Hashemi, S., Mehdi, S., & Fard, H. (2015). Proposing an approach to detect

metamorphic mal-ware based on Hidden Markov Model. 2015 4th Iranian

 Joint Congress on Fuzzy and Intelligent Systems, 1-5, doi:

69

10.1109/CFIS.2015.7391648.

Kumar, A. (2017). Analysis of Machine Learning Techniques used in Malware

Classification in Cloud Computing Environment. International Journal of Computer

Applications, 133, 0975 – 8887, doi.org/10.5120/ijca2016908184

Firdausi, I., Lim, C., & Erwin, A. (2010). Analysis of machine learning techniques used

in behavior-based malware detection. Second International Conference on Advances

in Computing, Control, and Telecommunication Technologies, 201-203

Hlauschek, C., Kirda, E., Krügel, C., & Lamarca, S. (2009). Slides Retrieved from

http://cobweb.cs.uga.edu/~perdisci/CSCI6900-F10/SLaMarca_Presentation1.pdf.

Jiang, Q., Zhao, X., & Huang, K. (2011). A feature selection method for malware

detection. doi:10.1109/ICINFA.2011.5949122.

Kazanciyan, R., & Hastings, M. (2014). Investigating PowerShell Attacks. Mandiant.

Retrieved from https://www.blackhat.com/docs/us-14/materials/us-14-

KazanciyanInvestigating-Powershell-Attacks-WP.pdf

Ki, Y., Kim, E., & Kim, H. K. (2015). A Novel Approach to Detect Malware Based on

API Call Sequence Analysis. Sage Journal, 11, 6, doi.org/10.1155/2015/659101

Kolter, J. Z., & Maloof, M. A. (2006). Learning to Detect and Classify Malicious

Executables in the Wild, Journal of Machine Learning Research, 7 (2006) 2721-

2744. Retrieved from

https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.

aspx?ReferenceID=2132764

Kong, D. (2013). Discriminant Malware Distance Learning on Structural Information for

Automated Malware Classification. 357–1365, doi:10.1145/2487575.2488219

Kuriakose, J., & Vinod, P. (2014). Ranked linear discriminant analysis features for

metamorphic malware detection. Souvenir of the 2014 IEEE International Advance

Computing Conference, 112–117, doi.org/10.1109/IAdCC.2014.6779304

Nari, S., & Ghorbani, A. A. (2013). Automated Malware Classification based on Network

Behavior. International Conference on Computing, Networking and

Communication, 642-647, doi: 10.1109/ICCNC.2013.6504162.

Olalere, M., Abdullah, M. T., Mahmod, R., & Abdullah, A. (2016). Identification and

Evaluation of Discriminative Lexical Features of Malware URL for Real-Time

Classification. Proceedings - 6th International Conference on Computer and

Communication Engineering: Innovative Technologies to Serve Humanity, 16, 90–

95. doi:10.1109/ICCCE.2016.31

Pham, H., Le, T. D., & Vu, T. N. (2018). Static PE Malware Detection Using Gradient

Boosting Decision Trees Algorithm. In T. Dang, J. Küng, R. Wagner, N. Thoai, M.

Takizawa (Eds) Future Data and Security Engineering. FDSE 2018. Lecture Notes

in Computer Science, (vol 11251). Springer, Cham. https://doi.org/10.1007/978-

3030-03192-3_17

70

Ranveer, S., & Hiray, S. (2015). SVM Based Effective Malware Detection System.

International Journal of Computer Science and Information Technologies, 6(4),

3361-3365.

Rieck, K., Trinius, P., Willems, C., & Holz, T. (2011). Automatic Analysis of Malware

Behavior using Machine Learning. Journal of Computer Security, 19(4)639-668,

doi:10.3233/JCS-2010-0410

Rubin, A., Kels, S., & Hendler, D. (2019). AMSI-Based Detection of Malicious

PowerShell Code Using Contextual Embeddings. Retrieved from

http://arxiv.org/abs/1905.09538

Salehi, Z., Ghiasi, M., & Sami, A. (2012). A Miner for malware detection based on API

function calls and their arguments. The 16th CSI International Symposium on

Artificial Intelligence and Signal Processing, 563-568,

doi:10.1109/AISP.2012.6313810

Santos, I., Brezo, F., Ugarte-pedrero, X., & Bringas, P. G. (2013). Opcode sequences as

representation of executables for data-mining-based unknown malware detection.

Information Sciences, 231, 64–82, doi:10.1016/j.ins.2011.08.020

Schultz, M. G., Eskin, E., & Stolfo, S. J. (2015). Data Mining Methods for Detection of

New Malicious Executables. Data mining methods for detection of new malicious

executables. Proceedings 2001 IEEE Symposium on Security and Privacy, 38-49,
doi:10.1109/SECPRI.2001.924286

Scott, J. (2017). Signature Based Malware Detection is Dead. Cybersecurity Think Tank,

Retrieved from www.ICITForum.org

Swamynathan, M. (2019). Mastering Machine Learning with Python in Six Steps. In

Mastering Machine Learning with Python in Six Steps. New york: Apress.

doi:10.1007/978-1-4842-4947-5

Vatamanu, C., Cosovan, D., & Luchian, H. (2015). A Comparative Study of Malware

Detection Techniques Using Machine Learning Methods. International Journal of

Computer and Information Engineering, 9(5), 1157–1164.

doi.org/10.5281/zenodo.1100939

Wang, M. C. (2014). Detecting Internet Worms Using Data Mining Techniques.

Retrieved from https://www.semanticscholar.org/paper/Detecting-Internet-Worms-

Using-Data-Mining-Siddiqui-ang/b58621ddd3e79290112a3f7863dc58ca7e6963ab

Wong, W., & Stamp, M. (2006). Hunting for metamorphic engines. Journal of Computer

Virol, 2, 211–229, doi:10.1007/s11416-006-0028-7.

Yan, J., Qi, Y., & Rao, Q. (2018). Detecting Malware with an Ensemble Method Based

on Deep Neural Network. Security and Communication Networks,

doi.org/10.1155/2018/7247095

You, I., & Yim, K. (2010). Malware Obfuscation Techniques: A Brief Survey.

Proceedings - 2010 International Conference on Broadband, Wireless Computing

Communication and Applications, 297-300, doi:10.1109/BWCCA.2010.85.5

71

