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ABSTRACT

This thesis investigates the dynamics of magnetohydrodynamics boundary layer flow of
nanofluid over exponentially shrinking sheet with Arrhenius chemical reaction in the
presence of large magnetic field. The ordinary differential equations were obtained from
the partial differential equations governing the system by applying similarity parameters.
The existence and uniqueness of solution of the dimensional and the transformed equations
were examined by actual solution method, Derick and Grossman approach. The Properties
of Solution were investigated using upper and lower solution method.The transformed
equations were considered in four forms: Transient state with Arrhenius chemical reaction,
steady state with Arrhenius chemical reaction, transient state with chemical reaction of
constant reaction rate and steady state with chemical reaction of constant reaction rate. The
equations for each form were solved using iteration perturbation technique. The physical
effect of various emerging flow parameters on the fluid velocity, temperature and
concentration are presented graphically and discussed. From the results obtained, it was
observed that the Magnetic parameter enhanced both thermal boundary layer thickness and
fluid flow along x and vy direction. Also, velocity parameter and thermophoresis parameter

enhanced both thermal boundary layer thickness and species concentration. The fluid
temperature is at maximum value 6(r)=4.3 whenn =10. It was also discovered that

increasing values of local Reynolds number, velocity ratio and unsteadiness decreases the
primary velocity while permeability, magnetic effect, thermal grashof number and
activation energy increases the velocity. The secondary velocity is increased with
increasing values of local Reynolds number, permeability, magnetic effect and unsteadiness
while velocity ratio and activation energy decrease the velocity. Temperature is enhanced
with increase in local Reynolds number, Prandtl, magnetic effect, heat source, velocity
ratio, Brownian diffusion, thermophoresis, Eckert number, Frank-kamenetskii and
unsteadiness parameters, though was decreased by Radiation and activation energy.
Concentration appreciates with increase in Prandtl, velocity ratio, thermophoresis and
activation energy and decreases with local Reynolds number, Schmidt number, chemical
reaction parameter and unsteadiness respectively. The outcome from this research work is
of importance to engineering and industries especially in packaging of bulk products where
shrink wrapping of products like foods, paper production, textile and even high temperature
environment such as geothermal engineering where reactions rates are dependent on
temperature. The result from this research work is of importance to industries that produce
domestic consumables like toothpaste and food industries in production of tomato paste and
fruit juice.
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CHAPTER ONE

1.0 INTRODUCTION

1.1  Background to the Study

The human race has always been interested in discovering nature and some fundamental
factors affecting source of life. Life as we know it would not exist without fluids and
without the behaviour that fluids exhibit. The air and water we take which make most of
our body mass are fluids. Motion of air keeps us comfortable in warm room, and air
provides the oxygen we need to sustain life. Similarly, most of our body fluids are water
based. And proper motion of these fluids within our body system, even down to the cellular
level, is essential to good health. It is clear that fluids are completely necessary for the
support of carbon-based life forms. The knowledge and understanding of the basic
principles and concept of fluid mechanics are essential to analyse any system in which fluid
Is the working medium. The design of almost all means of transportation requires
application of fluid mechanics. Fluids occur, and often dominate physical phenomena. In a
more practical setting, we easily see that fluids greatly influence our comfort (or lack
thereof); they are involved in our transportation systems in many ways we stated above;
they have an effect on our recreation (e.g. basket ball’s and footballs are inflated with air)
and entertainment (the sound from the speakers of a TV would not reach our ears in the

absence of air) and even on our sleep (water beds). (McDonough, 2009)

From this it is easy to see that engineers must have at least a working knowledge of fluid

behaviour to accurately analyze many, if not most, of the systems they will encounter.



1.1.1 Magnetohydrodynamics

In recent year, a great deal of interest has been evidenced in the study of
magnetohydrodynamics boundary layer flow because of its much industrial application.
Magnetohydrodynamics (MHD) is a discipline concerned with the dynamics of electrically
conducting fluids in a magnetic field. These fluids include salt water, liquid metals (such as
mercury, gallium, and molten iron) and ionized gases or plasma (such as solar atmosphere).
The term MHD is made up of the words magneto-meaning magnetic, hydro-meaning fluids
and dynamics-meaning movement. The field of MHD was initiated by the Swedish
physicist Hanes Alfven (1908-1995), who received the Nobel Prize in physics in 1970 for
fundamental work and discoveries in magnetohydrodynamics with fruitful applications in
different parts of plasma physics. MHD covers those phenomena, where, in an electrically
conducting fluid, the velocity V and the magnetic field B are coupled. The magnetic field
induces an electric current of density j in the moving conducting fluid (electromagnetism).
The induced current creates forces on the liquid and also changes the magnetic field. Each
unit volume of the fluid having magnetic field B experiences an MHD force jxB known as
Lorentz force. The set of equations which describe MHD flows are combination of Navier-
strokes equation of fluid dynamics and Maxwell’s equation of electromagnetism.

(Winifred, 2014)

1.1.2 Nanofluid

In spite of considerable previous research and development on heat transfer enhancement,
major improvements in cooling capabilities have been constrained because of low thermal

conductivity of conventional heat transfer fluids. Traditional heat transfer fluids such as



water, lubricant, ethylene-glycol, engine oil, etc have a limitation in heat transfer
capabilities because of lower thermal conductivities and do not meet modern cooling
requirement. On the other hand, metals possess higher thermal conductivity in contrast to
conventional heat transfer fluids( khan et al., 2015). For instance, at room temperature the
thermal conductivity of copper is approximately 700 times greater than that of water and

3000 times greater that of engine oil (Choi et al., 1995).

Metal oxide and metallic particles have higher thermal conductivity than those of the
conventional heat transfer fluids, and thus opined by different researcher’s that inclusion of
such highly conductive particles can increase thermal conductivity of heat transfer fluids.
The necessity of improving the thermal conductivity and enhancing the heat transfer has led
to the utilization of nanoparticles in the fluid. Nanofluids are engineered colloidal
suspensions of nanoparticles in the base fluid, that is, suspended nanoparticles in
conventional fluids are called nanofluids. This new heat transfer coolant can be considered
to be the next generation heat transfer fluids because they offer exciting new possibilities to

improve heat transfer compared to pure liquids (Nandy et al., 2014)

The term nanoparticle comes from the latin prefix’nano’. It prefix is used to denote the
10~° particle of a unit. In this context, nano-particles have a size between 100nm-2500nm.
Particles smaller than 100nm are termed ultrafine. These objects are being extensively

explored due to their possible application in medical, optical and electronics field. The most
popular nanoparticles that use to produce nanofluids are: Aluminium oxide (AL,O;),

Copper (I1) oxide (CuO), copper (Cu). Water, oil, decene, acetone and ethylene glycol are

the most common base fluids being used in producing nanofluids (Kostic, 2004).



Nanofluids are advantageous as they provide:

- More heat transfer between particles and fluids due to high specific surface area.

- High dispersion stability with predominant Brownian motion of particles.

- Adquate heat transfer intensification because of reduction in pumping power as compared
to pure liquid.

- System miniaturization because particle clogging is reduce as compared to conventional
slurries.

- Adjustable properties, including thermal conductivity and surface wet ability, by varying
particle concentration to suit different applications.

Some of their limitations however include:

High cost of nanofluids.

Difficulties in production process. (Han, 2008).

1.1.3 Heat Transfer

Heat Transfer is the study of the exchange of thermal energy through a body or between
bodies which occurs when there is temperature gradient. When two bodies are at different
temperature, their thermal energy transfers from one with higher temperature to the one
with lower temperature. Thermal energy is related to the temperature of matter for a given

material and mass, the higher the temperature the greater it’s thermal energy.

Heat is typically given the symbol Q, it is expressed in joules (J) as its S.I units. The time

rate of heat transfer (power) is measured in watts (W), equal to joules per second and is

denoted by(. Thermal flux occurs through one of these modes or combination of them.



Heat transfer due to convection involves the energy exchange between a solid surface and
an adjacent fluid. Convection is the term applied to the heat transfer mechanism which
occurs in a fluid by mixing of one portion of the fluid with another portion due to gross
movements of the mass of fluid. Convection of heat transfer is classified as forced
convection and free convection. If heat transfer between the fluid and the solid surface
occurs by fluid motion induced by external forces then the mode of heat transfer is termed
“Forced Convection”. Heat transfer in all types of heat exchangers, nuclear reactors, air
conditioning apparatus are example of devices functioning based on forced convection. If
heat transfer between the fluid and solid surface occurs by the fluid motion due to the
density differences caused by the buoyancy between the surface and fluid, then the mode of
the transfer is termed as free convection or natural convection (as in sea and land breeze).
The circulation of water in a vessel heated on stove, heat flows from a heated metal plate to

the atmosphere are examples of free convection.

The process in which heat is transferred between those object that are in physical contact is
called conduction, while radiation does not require a medium to pass through and it is the
only form of heat transfer present in vacuum. It uses electromagnetic radiation known as
photons which travels at the speed of light and is emitted by any matter with temperature
above 0 degree Kelvin (-27 °C). We all experience radiative heat transfer every day, solar
radiation absorbed by our skin is why we feel warmer in the sun than in the shade.

(Cengel,2003)

Some of the problems studied by many researchers are limited to steady state flow. In many
engineering problems, such as helicopter rotor, the ship propeller, the cascades of blades of

turbo-machinery unsteady environment occurs. However, the flow of heat transfer



problems in reality has unsteady nature owing to the sudden stretching/shrinking of the
sheet. Hence it is very much important to investigate the simultaneous effects of thermal

radiation, magnetic field and unsteadiness.

1.2 Statement of the Research Problem

There is increasing need for advance heat transfer fluids with reasonably higher thermal
conductivities than are presently available because major improvement in cooling
capability have been limited due to low thermal conductivities of ordinary heat transfer
fluids. The frequent demand and interest by researchers to enhance the flow over
shrinking/stretching surface because of many engineering process and applications has
motivated us to seek for higher thermal conductivity of heat conveyance over a shrinking
sheet. Based on these scenarios, there is need for this study to broaden the scope of what is
already known about the boundary layer flow of nanofluid over permeable shrinking sheet.

1.3 Aim and Objectives of the Research

1.3.1 Aim of the Research

The aim of this research is to develop a mathematical model and study the dynamics of
magnetohydrodynamics boundary layer flow of a nanofluid over a permeable shrinking

sheet in the presence of thermal radiation with Arrhenius chemical reaction.

1.3.2 Objectives of the Study

The objectives of the study are to:

(i) Establish the criteria for the existence and the uniqueness of solution of the model
formulated

(if) Examine the properties of the solution of the model



(iii)Solve the resulting equations describing the MHD phenomenon over the shrinking
sheet using the Iteration Perturbation Technique (IPT)

(iv)Provide the graphical representation of the system responses
1.4 Justification of the Study
Understanding fluid and the behaviour of fluid flow is important aspect of life and
technology. In spite of recent development in heat transfer, ordinary heat transfer fluids has
a limitation due to their low heat transfer strength. In contrast metallic particles known as
nano particles gives new possibilities on improving heat transfer capacity, because the
quality of a final product depends on the rate of heat transfer. It is hoped therefore that the
outcome of this study will assist in identifying these sensitive parameters affecting the flow
and suggest a framework that will improve it. Research institution, stakeholders in
government and non-government bodies would find the study beneficial in creating
innovative methods and techniques in improving the flow concept over the shrinking sheet.
1.5  Scope and Limitation of the Study
The focus of the work will be basically on modeling and simulation of
magnetohydrodynamics boundary layer flow of a nanofluid over a permeable shrinking
sheet in the presence of thermal radiation with Arrhenius chemical reaction. We shall
establish the criteria for the existence and the uniqueness of solution of the model and also
examine the features of solution of the model and then solve the equations by Iteration
perturbation method. The work will be restricted to dynamics of incompressible nanofluid.
1.6 Definition of Terms
Nanofluid: Nanofluid are engineered colloidal suspensions of nanoparticles in the base

fluid (Manca et al., 2010; Elena et al., 2011; Wang et al., 2020; Roberto et al., 2015).



Incompressible Flow: A flow in which the density of flow remains approximately constant
throughout the flow field is called incompressible flow (e.g. liquid flow) (Ronald, 2013).
Thermal Conductivity: The property of the material which is related to the capacity of
transmitting heat is called thermal conductivity (Yang, 2004).

Permeability: The property that allow fluids or gases to pass or diffuse through (Rahmouni
etal., 2013).

Hydrodynamic Boundary Layer: The region near solid surface where the flow
configuration is achieved by viscous drag directly from surface wall (Nikolov, 2021).

Steady Flow: The flow that are independent on time, that is if the properties at any point in

the flow field do not change with time. Mathematically, it can be written as ‘fj_‘:’ =0, Where

¢ is the fluid property (Swain, 2016).

Thermal Diffusivity: This is the ratio of thermal conductivity to the product of density and

specific heat capacity at constant pressure (Salazar, 2003).

Unsteady Flow: This is a flow that changes with time, that is the rate of change with time

IS non zero. Mathematically, it can be written as (jj_f # 0, where ¢ is the fluid property.

Convection: A process whereby heat is transferred through fluids (gases or liquids).

Radiation: A process in which heat is transferred directly by electromagnetic waves and it

occurs when two bodies of different temperature are aligned (Fermi,1932).



Grashof Number (G,): A dimensionless quantity which approximates the ratio of the

buoyancy to viscous force acting on the fluid. Mathematically it is expressed as

_9p( . -T )L —2Tw) L for thermal grashof and G, = ACH 2—ca)L3 for solutal grashof.
9) 19

G

Prandtl Number (R): This is the ratio momentum diffusivity upon thermal diffusivity

v
which is given by the relation Pr:; .

Reynold Number (R, ): is the ratio of inertial forces to viscous forces within a fluid. The
region where these forces change behavior is referred to as boundary layer. It is exoressed

as R, _ PLU where p density, y is the velocity, Lis the length scale and x is the
y7i

viscosity of the fluid.

schmidt NumberS; : s the ratio momentum diffusivity (kinematic viscosity) and mass

)
diffusivity and mathematically given by °c = B

Eckert Number E; : is a dimensionless number defining the ratio between kinetic of the

2

u
flow and enthalpy. Mathematically, Ec:C (WAT) where UW2 is the flow velocity, Cp the

p

specific heat and AT is the temperature.

IPM: Iteration Perturbation Method.



Mathematical Modelling: is a description of a system using mathematical concepts and

language.

Definitions:

Definition 1 (Olayiwola, 2011): A smooth function y is said to be a lower solution of the

problem
Lu=f(xtu)

where

2
L :§+a(x,t)%+b(x,t)§+c(x,t)

If ysatisfies
Lu< f(xtu)
u(x0)<f(x), u(Ot)<h(t), u(Lt)<h(t)

Definition 2 (Olayiwola, 2011): A smooth function u is said to be an upper solution of the

problem
Lu=f(xtu)

where

10



2
L:%+a(x,t)%+b(x,t)§+c(x,t)

If usatisfies

Lu> f (X,t,L_J)

ﬁ(x,O)z f(x), G(O,t)zhl(t), G(L,t)zh2 (t)

Definition 3 (Olayiwola, 2011): A smooth function y is said to be a lower solution of the
problem

Lu=f(xu)

where

L:a(x)@+b(x)—+c(x)

If ysatisfies

Lu> f(xu)

u(0)<h, u(L)<h,

Definition 4 (Olayiwola, 2011): A smooth function u is said to be an upper solution of the

problem

Lu=f(xu)

where

L= a(x)d—2+b(x)i+c(x)
dx dx

If usatisfies

Lu<f(xu) u(0)=h, u(L)>h,

11



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Reviews of some related work

Many researchers have developed and extensively studied the transport properties of
nanofluid over the last few decades. The first nanofluid model was proposed by
Buongiorno (2006) and Recently, a lot of work have used mathematical nanofluid model
developed by Buongiorno to examine different problems concerning the behavior of
nanofluids. Abu-Nadal et al., (2008), Nady et al., (2014), Khan et al., (2015), Aiyesimi et
al., (2015), Yusuf et al., (2016) to list few among others have worked on nanofluid under

various application and different situation.

Buongiorno (2006) worked on convective transport in nanofluids. He considerd
thermophoresis and Brownian motion effects, and highlighted that even though there are
different elements which affects nanofluid flow such as gravity, diffusiophoresis, magnus
effects, fluid drainage, Brownian diffusion and inertia, only thermophoresis and Brownian
diffusion have significant effect on nanofluid. Recently, a lot of works with reference to
Buongiorno idea have examined different problem concerning the behavior of nanofluid

and their various applications under different situations.

Rajesh et al. (2015) examined Transient MHD Nanofluid Flow and Heat Transfer due to a
Moving Vertical plate with Thermal Radiation and Temperature Oscillation Effects. The
different physical parameters on the nanofluid flow and heat transfer characteristics were
numerically examined and also that the heat transfer rate reduce with increase in Eckert
number and magnetic parameter and heat transfer rate increase with nano particle volume

fraction.

12



Nady et al. (2014) investigated unsteady MHD boundary layer flow and heat transfer of
nanofluid over a permeable shrinking sheet in the presence of thermal radiation. They
found out dual existence for the flow over the shrinking sheet. Magnetic and suction
parameter, temperature, nanoparticle volume fraction, effective prandtl parameter, lewis
number, nusselt and Sherwood numbers all have reasonable effects on the flow. It was
discovered that magnetic field and wall mass suction widen the range of unsteadiness
parameter for which the solution exists. The skin friction coefficient, local nusselt and
sherwood numbers increase for the first solution and decrease for the the second solution

with increase in magnetic parameter.

Yusuf et al. (2016) discussed the Analysis of couette flow of a nanofluid in an inclined
channel with soret and dafour effects. They concluded that decrease in temperature and
nanofraction profile resulted from increase in soret number. They also added that increase
in thermal conductivity of the fluid due to larger values of prandtl number enable heat to
diffuse away from the heated surface more rapidly, this imply that there is decrease in

temperature due to reduction in prandtl number.

Khan and Khan (2015) studied the MHD boundary layer flow of a power-law nanofluid
with new mass flux condition. Among their findings, Temperature increases with increase
in thermophoresis and Brownian motion parameter, increase in stretching parameter values

result to decrease in both temperature and concentration profiles.

Three-Dimensional Flow of a Nanofluid Induced by an Exponentially Stretching Sheet was

investigate by (Khan et al. 2015). They derived the governing equations to be

13
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and applied the implicit finite difference scheme known as Keller-box method for local
similarity solution. They concluded that increase in thermophoresis and Brownian motion
parameter increase the temperature. This means that heat transfer rate from the sheet
reduces when the effects of Brownian motion and thermophoresis strengths are increased.
They added that increase in nanoparticle fraction and mass transfer rate of the sheet

decreases when thermophoresis parameter is increased.

Significant rise of attention by researchers in recent years is been given to coupled heat and
mass transfer problems in the presence of chemical reaction due to its importance in many
process. From the application point of view, the radiative transfer of heat in boundary layer
flow is very important, because the quality of the final product is very much dependent on

the rate of heat transfer of the ambient fluid particles (Nield and Bejan 2006).

14



Chemical reactions can occur in processes such as drying, distribution of temperature and
moisture over agricultural fields and groves of fruit trees, damage of crops due to freezing,
evaporation at the surface of the water body, energy transfer in wet cooling tower and flow
in a desert cooler. Analysis of the transport processes and their interaction with chemical
reactions is quiet difficult and closely related to fluid dynamics. Chemical reaction effects
on heat and mass transfer has been analyzed by many researchers over various geometries
with various boundary conditions in porous and nonporous media. Wahduzzaman et al.
(2015) considered MHD Flow of Fluid over a Rotating Inclined Permeable plate Variable
Reactive Index. They found out that increase in thermal conductivity and Eckert number

increases heat transfer rate and primary velocity.

Razman et al. (2017) explored Buoyancy Effects on the Radiative Magneto Micropolar
nanofluid flow with double stratification, Activation Energy and Binary Chemical
Reaction. Among the findings, Heat transfer rate improves for increasing thermal
stratification. Concentration profile ascents for increasing chemical reaction parameter and

diminish for enhancing solutal stratification parameter.

One of the important flows in fluid mechanics is the flow over a shrinking sheet. The flow
induced by an exponentially shrinking sheet is not studied much, though it is very
important and realistic flow that frequently appears in many engineering process and is a
new field of research at present and few literatures are available on this area of research
now. The study of boundary layer flow over a shrinking surface is an ideal concept in
several industrial processes, such situation take place in manufacturing of glass sheet,

polymer dispensation, paper manufacturing, in textile industries and many others. The most
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common applications of shrinking sheet problem in engineering and industries are

shrinking films. (Anuradha and Priyadharshini, 2016)

Wang (1990) was the first to apply a shrinking sheet problem. Recently, Miklavcic and
Wang (2006), Anuradha and priyadharshini (2016), Anuradha et al. (2017) have worked on

shrinking problems using different approaches

Anuradha and Priyadharshini (2016) studied MHD Convection Boundary Layer Flow of a
Nano Fluid over a Permeable Shrinking Sheet in the Presence of Thermal Radiation and
Chemical Reaction. They observed that increasing magnetic parameter values increases the
velocity and diminish concentration and temperature profiles. The temperature of the fluid

is decreased with increase in unsteadiness parameter and thus increase heat transfer rate.
They derived the governing equations to be

6_u+@_0 (2.6)
ox oy '

2 2
M M MOl B ey e -T))
ot ox oy or° k Py (2.7)

—(p; —pf,)a(C-C,)

or or oJr o0 ( aTj (GT ac] D, (6T ]2
—+U—+V—=—|a— |+7yDg| —— [+ —=| — | ¢+
ot oXx oy oI\ oz oz oz) T, \oz

(2.8)
Q 1 (mrj

= (T-T )=

o o),

4 C 2 £C D o 29

_+_
ot ox oy ooz T, 07°
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Anuradha and Yegammai (2017) worked MHD Free Convectional Boundary Layer Flow
over an Exponentially Permeable Stretching Sheet with Chemical Reaction and Activation
Energy. They realized that nanoparticle volume fraction escalates with increase in prandtl
number thermophoresis parameter, and non dimensional energy (E). Nano particle volume

fraction profile decreases with increase in Brownian motion parameter (Nb), increasing

value of temperature difference parameter(&)and increasing value of dimensionless

reaction rate (G) within the boundary layer region.

Zaib et al. (2019) revised the Impact of nonlinear radiative nanoparticles on an unsteady
flow of a Williamson fluid toward a permeable convective heated shrinking sheet. Their
results point out that multiple solutions are achieved for certain values of the suction
parameter and for decelerating flow, while for accelerating flow, the solution is unique.
Further, the non- Newtonian parameter reduces the fluid velocity and boost the temperature

distribution Razman et al. (2017)

Maleque (2013) investigated Exothermic/Endothermic Chemical Reaction with Arrehenius
Activation Energy on MHD Free Convection and Mass Transfer Flow in Presence of
Thermal Radiation. He observed that increase in chemical reaction rate lead to increase in
velocity and temperature profiles for exothermic reaction but opposite effects for
endothermic reaction. Velocity profile increase the value of activation energy for
endothermic chemical reaction but negligible effect is found for exothermic reaction.
Temperature reduces for increasing value of activation energy for exothermic reaction but

the reverse found for endothermic reaction.

2.2 Summary of Review and Gaps to fill
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In reviewing the above literatures, several works have been carried out on
magnetohydrodynamics boundary layer flow of nanofluid. Some authors worked on
shrinking sheet problem without considering unsteadiness, others concentrated on one
dimensional problem and ignoring magnetic, porosity, permeability and Arrhenius

chemical reaction.

However, this research work seeks to consider the magnetohydrodynamics boundary layer

flow of a nanofluid over permeable sheet by incorporating

(i) Unsteadiness

(i) Magnetic field effect
(iii)Porosity

(iv)Arrhenius chemical reaction

(v) 3 D problems
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CHAPTER THREE
3.0 MATERIALS AND METHODS
3.1 Mathematical Formulation

We consider the transient three dimensional incompressible boundary layer flow of

nanofluid over a permeable sheet shrank exponentially along X'y direction in the presence

of magnetic field of strength B, which is applied perpendicular to the flow direction in the

z-axis as shown Figure 3.1. Arrhenius chemical reaction with thermal radiation is
considered in the flow region, we suppose that the sheet was shrinking with velocities

Xy Xty
L L

Ve
(1-4t)

and V, =— along the Xy plane where Ujand V, are constants,

X+r

2
Ve

V,=-
(1=

Y ryY

L2

<=

o U,)(?T‘
(14

<2

A>0with At <1.

Figure 3.1: The diagram of the physical system
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Under the above assumptions, the boundary layer equations of the three dimensional
incompressible fluid governing the prevailing flow, thermal, concentration fields,
conservation of mass, momentum, energy and nanoparticles mass are as (Anuradha and

Priyadharshini 2016; Anuradha et al., 2017 and Khan et al., 2015)
Continuity equation:

o v ow_ -
ox oy oz '

Momentum equation:

ou éu ou ou  du v _o,B%

—+U—+V—+W—=0————U~-TU? +(@1-C -T
a Ve TV & o 1-C)p: 4r9,(T-T,) (3.2)

~(pe = p1)9,5.(C-C,)

2 2
@+u@+v@+w@: a__i v—=TvV 2 CTE—BV (33)
ot ox oy oz oz* k o}

el
Energy equation:
oT  aT oT ol ai 8Tj (aTacj D,(@sz
+U—+V—+W— +79Dg| —— |+ — | ¢+
OX oy 0z o0z\ oz ozoz) T, \oz
= ] o,By (u°+Vv?)

El

(3.4)

Species equation:

oc oC oC oC o°C D, oT
—tU—+V—+W—=Dy —+
ot OX oy oz o T, o7t

J(T-T.)(C-C,)"e {“Ea”J (3.5)
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Implementing Rosseland’s approximation, the radiative heat flux

__45,0(T")
3k, oz

(3.6)

where 0;and k1 are the Stefan-Boltzmann constant and mean absorption coefficient

respectively.

If we suppose that the temperature difference within the flow are small such that T*can be
expressed as a function of temperature linearly, then the expansion of T*about T_in taylor

form is written as

T =T, +4T *(T-T,)+6T *(T-T,) +.... (3.7)
Neglecting higher order terms after the first degree, we have

T*=47°T-31° (3.8)
Putting (3.8) into (3.6), gives

o(4T *T —3T.*
g =—2% (4. =) (3.9)
3k, oz

a0, _ 0 40, O(4TT-3L0)or ) 16T, 0T (3.10)
oz | 3k, aT oz 3k, oz |
oq, _ 16T°0, 0°T (3.11)
oz 3k, oz’ |

The initial and boundary conditions are stated as:
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u(z,t)=0,v(z,t)=0,T(z,t)=T,,C(z,t)=C_ fort <0 for all z

u=-,v=-V,,w=0T=T,C=C,atz=0 , (3.12)
u-»>0v->0T->T,,CHC_ atz—ow

3.2 Method of Solution

3.2.1 Similarity Transformation

Using the following similarity variables

y y o
Xy X+ 2L
u= Y, et fliv= Yo “g'n= Yo ¢ 1
(1-4t) (1-4t) VZUL (1-at)2
(3.13)
xty x+y xty
T,-T,)et C,-C,let K(T,-T,)et
T=Tw+—( wT.) (1+59),C=Cm+—( v=C.) P, &= (T, -T.)
(1-4t) (1-4t) E,(1-1t)

From equation (3.1)

v ow ">
ox oy oz '
u_of U, 4

ox  ox| (1-At)
S Uy Ve, Yy JPtron

LA-a) @) on ox

Xy

Yo Ty Yo g0 /i e .
L(l—it) (1—1’[) OX 2vL (l—ﬂt)%
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X+y

L
ou _UL(HQ f”j (3.15)

& LL-a)l 2
Similarly,
Xty
N Uget (, 7 j
N_Uget (.7 3.16
Y L(l—/it)(g 27 (319

Then, from 3.14

ow U, =

! 77 " ’ 77 ”n
——= e f'"+=f"+g9'+=
oz L(1-4t) ( 2 J Zg j

Xty
_a_W.a_nzﬁe L (f’+zf”+g'+2g"]
on oz L(1-A) 2 2

X+y

W /UO Al exty[f’ﬂfug'ﬂgﬂ)
1
on |Naok (g | LA-2) 2 2

ﬂ
@:_ ZUUO eZL [f""zf”‘i‘g,_"zg”J (3.17)
on L(1-4t) 2 2

Taking the integral of both side of (3.17), gives

20U Xy ’ 1 I’ ' 1 "
W=— L(T/O‘Lt)eZL U f d77+5f77f UTHIQ d77+§_[’79 d”j

200, y( 1,1 1,1 j
w=— [—2-e? | f+-pf'-=f+g+=ng'—=
\L(a=21) 1t T TR TRl
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we— |20 ex2+Ly(£f+l fralgel ')
CoL(-at) 2 TR 9T

1 Zl)UO % ’ ’
L1200 G0 p g
et (e

ZUUO % ’ ’

R TR (F+nt'+g+ng’)
we— |= Mo o2 (£ (n)rnt(n)+a(n)+na'(n))

2L(1- A1)

We set
n K, (1 it) B
Qe o(1-4t _ Pre®
RNCEpTY el P Ay
X+y
oy 2
g Bt Kol ket 1 (1o
N R E
e (1-2t) 2 ° et
_ xty - =
- K, T"’)e L, TW=TOO+(TW Tw)e b (L),
E, (1-At) (1-1t)
T =T (-I-W_-I-OO)eXLLy
T (1-at)

Xty
L

U, et o

U DEDA-M) et +mine " o

+
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Xty
UL U o] [Ug e
(1-4t) ot ZUL(

£/(7)Ug(-(=2)(1-4t) "€ z

1
1-At)2

a_of v, g
ox  ox| (1- )

= UO eil-yf’_kLeiLy af_,a_n
L(1—At) (1-At) on ox

Xy

T e%yf'+ie%yf”i o eZle
L(1-4t) (1-4t) ox| 2oL (1-at)>

Xty

L
Vs (r10)
ox L-a) 2

Similarly,

X+y

RN P
oy La-a)l 2

25

(3.20)

(3.21)
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X+y

@: U0eT ( '+Q nj
x La-al° 2°

X+y

@: UOeT ( '+Q nj
oy Ll "2°

3(x+y)
ou_ Uge \/UO o
- 1
% (1-at)z(1-at) V2O

Similarly,

3(x+Y)

@_ UOe 2t \/UO gn

oz : 2uL

(1-At)z (1-at)

2 _o(a
0z oz\ oz
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(3.25)

(3.26)

(3.27)



__ Y, 2 Yo Of"0n
1
(1—]1)5 (1—/1t) 2vL 877 0z
u v (7 of [0, en

= 2 I B e I e ¢ z

(1- 2t)z (1- At) 2ok ar Vavk (1 gy

, ) 2(x+y)

ou Uyje t

= f" 3.28

oz*  20L(1-at)’ (329
Similarly,

, , 2(x+y)

L
8_\2/:—er 79" (3.29)
o' 2uL(1- it)
Xy Xty
— L _ L

ﬁzﬁ T@4.M(1+gg) :2 M(l_,_&g)

0z oz (1-4t) oz|  (1-at)
_(T,-T.) 2 o(1+e0) oy

(1-At) on oz

ﬂ

_0LT) ) [U et

(1—/1'[) 0z 2vL (l—lt)%

3(x+y)
_ 2L

a_(-T.)e* Uy 4 (3.30)
oz 2vL

(1-at)z (1 it)
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ﬂ_iﬁﬂj
o0z° oz\ oz

T N 3(x+y)
:2[ ( WlTw) et | Jo g
(

%\ (1-at)z (1-at) 2ok

) [T 0o
1
X+y

T _T 3(x+y) oL
L) B[O 0] [0 e
2oL oz| \2uvL =

(1-4t)2 (1-4t) (1-4t)2
2Ax+y)
2 _ L
812- :(TW Too)UOe > 89”
oz 2vL(1-4t)
Similarly,
x*y Xty
— L _ L
ac_o Cw+(CW C,)e ’ _ 0 (C,—-C,)e ’
oz oz (1-4t) 0z (1-at)

_(C.=C.) o on
(1-at) = ona

Xty

:_(CW_C“’)EXLLYWE \/U_i0 et Z
1
(1—1’[) 0z 2vL (1_/“)5
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3(x+y)

_ 2L
€ _(C=Cle* [Uy, (3.32)
% (1-at)2(1-ar) V2oL
e _s i)
o> o\ oz

:z[ C-c) &W]

| (1- at)e (1- it) vl

__(©-c) B [U, og' on
1
(1-At)z (1- At) 2l on oz
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62C CW_Coo er - ”
= 3.33
oz’ 20L (1 At)’ (839
Xty Xty
_ L _ L
a_o Tw+w(l+59) _0 (T.-T.) (1+£0)
ot o (1-4t) (1-4t)
Xty
AT, T, )et _T,)
- ( w ”)e (1+g€)+(TW T‘”)e L 6‘%6—”
(1-1t) (1-at) ~ “on ot
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(1—/1 ) ( -1 ) ot| \2vL (1_/1,[)5
(T-T.)e "
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— = 1+£0)+ =6 3.34
(A (( ) .

29



X+y

_ lcoeT (Cw _Coo) iLy%a_n
T (1-a) P (1-at) ° et
Xty Xy
— L - Xy 2L
:ﬁ’(cw Coo)e ¢_|_(CW Cw)e L ¢'ﬁ & € z
(1-At) (1-41) N2k 4y

- . +=
ot (1-At) 2
X+y Xty
T,-T,)et T.-T.)et
a_o w+( « 1) (1+¢0) _ 0 (L -T.)e (1+¢0)
oX  OX (1- x| (1-at)

Xty
ot _ (Tw _Tw)e )

@ —((1+ ga)+%ge'j

ox  L(1-4t)
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X+y
ﬂ_(TW_Tw)e : Q rj
o _—L(l—/lt) [(1+ 89)+ 5 gl (3.37)

_ole (c-chet | af,-coer
ax_ax[c“’+ (1-2t) 4‘&[ (1-1t) ¢]

X+y

_(c,-C.)et " (C.=C.) 5 op on
L(1-At) (1-t) o ox

Xy Xty

c,-C et  (C,-C,)*¥ ol [U  ex
-! Ll—zt ¢+(1—/1t )eL¢&\]20L T’
(1-1t) (1-1t) oL (1= a2

X+y

C.-C et
8C_( ” w)e (¢+T7¢'j

o La-a) U2 (3.38)
Similarly,
(Co-C)e"
a (C,-Cle“( g,
y  L-i) (¢+ 2¢j (3.39)

Also, note that
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. e L
_ (3.40)

1 1(14—549—1]

g .p £\ el

Substituting equations (3.18), (3.19), (3.20), (3.22), (3.26), (3.28) with transformations in

(3.13) into (3.2), we have

Xty ) 2(x+y) , 2(x+y)
L L L
ﬂ“UOe Z[f!_i_ﬂfﬂ]_'_UOe Zfr(f!_i_zfnj_,’_uoe Zgr(fr+ﬂfrrj
(1-4t) 2 L(1-At) 2 L(1-At) 2
, 2(x+y) , 2(x+y) 2(x+y)
Use - U,e - we t
_ flr f+ fl+ + ’ — O W_ 0 fI
2L (1-at)’ (f+nf'+g+ng) 2L(1-2t) ko (1-at)
’ (3.41)
, O S . 18% (UO eHLyf’] |
( U J (1-At) (1-t)
-T —Oe L f'| —
(l—/lt) yor
, M 2(x+y)
T -T L 1-C c, -C - et
+pfwﬂTO ( w oo)e _ gv( oo)(l_l_ge)_( w oo)gv(pp zpf) ¢
(1-at) (1-4t)
o 2L(1-2t)
Multiplying (3.41) by T 2y gives
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24L (f'+Qf"]+2f’£f'+ﬂf"j+29'£f’+ﬁf”)
ey 2 2 2

Uet'
2
7 (fapteging)=tr-20 g 2B L (3.42)
200 iU,
2 L(T,-T,)(1-C 2/:49,L(C,,—C,)(p; —
N Pro9,P:. (UWZ oo)( oo)(1+€9)_ B0 ( — )(pf ,Ofw)¢
0 0

f"+G,,(1+60)-G ¢+ f"(f +77f’+g+77g’)—Ri(f’+ f”j

N3

(3.43)
—2f’(f’+g f”j-zg'(m% f”j—yf'—Qf’z—Mf’:O

2L 2 2 L(T,-T,)(1-C
where — = ——— M :%’Gm: Fro9.P (w2 ) oc)
© Ugel PiYo U,
G :Zﬂcong(Cw_Cw)(Pp—Pf) Q=2LT y= 2vL
v U, ’ kU,

Substituting equations (3.18), (3.19), (3.21), (3.24), (3.25), (3.27), (3.29) with

transformations in equation (3.13) into (3.3) results.
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x+y X+y

s 9
[ 9 +1 9 j
L(1- lt
3(x+y)

/uu Xey Ue 2 u, ,
g2t f+nf+g+7yg) & 20Lg
(1- /lt (1-At)z (1-at) ¥ <Y

X+y
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Uje - v u, u.
= — " e L 4 _l" 0 e L '
2u|_(1—,1t)2 ) Ko (1-4t) ((1—&) | ] ((1—;u) | j

X+y
e L
2
B, x+y U xy
o B ew [ : gj )
(1-4t)2 (1-2t)
Ps
Simplifying (3.44) gives
X+y , 2(x+y) , 2(x+y)
ﬂ"U e L [ 14 U e - ! ! 14 U e L 14
0 2(9 Ty j+—° - f (g +1g j+—29 (9 ’79+J
(1—ﬂt) 2 L(l—/it) 2 L(l /1t) 2
, 2(x+y) , 2(x+y) 2(x+y)
U e - 14 ! ’ U e - m w e L [
-———g"(f+nf'+g+79)=—2 e (3.45)
2L(1—/1t) 2L(1—/1t) kpo(l—ﬂt)
, 2(x+y)
L
_2L1—~gr2 _ GeBO er - '
pr (1-4t)
o 2L(1-At)"
Multiplying (3.45) by T 2y 9ives
Ule t
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m " ! ! a’ ! " ! ! " ! ! "
g"+g"(f+nf +g+ng)—R—(g +2 j—2f (g +29 j—Zg (g +29 ) o0

e

-79'-Qg"”* -Mg’=0

where

1 2AL 2

- = v ] i = 2/XJr)/ 1 }/ = 2UL ] M = _Zo-e BO L ] Q: 2Lr
R, LU, R T prUO piU,

Substituting equations (3.18), (3.19), (3.30), (3.32), (3.34), (3.36), (3.37),(3.40) with

transformations in equation (3.13) into (3.4), results

X+y

_ T Xty - L
AT, T°°)2e ((1+59)+236”j+ Yoo g M(l+g€)+236” -
(1-at) (1-At) L(1-At)
X+y
Xty _ L
Y et g’ (T -T.)e ((1+89)+280'j
(1-at) L(1-4t)
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1 [ou, X , A (W-T)e ™ |y,
- e (f+nf 0" |=
);VZL (F+nf'+g+ng) 20L°

1
(1- At (1-At)z (1-At)
Qe+ N Tet (1+£0)-T
(T,-T)U ez(*:w (1-at)| = (1-4t) ”
o A= /0 0" |+
20L (1-At)’ (pC),
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p| Te=T:)e Vs ) (Cu=Co)e U,
(1—at)z (1-at) V2Ll (- at)e (- ar) V2L
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1 [—16103} (T,-T.)Ue * 0"
(pC), | 3k 20L(1-At)°
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Simplifying (3.47) gives
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f+nf'+9+nq')el =
2L(1-At)’ (f4nf+g+ng)

2(x+y)

(T,-T,)e t
20z,L (1-t)’

£0'(Dg (C, —C,)Up'+(T,-T,)e0')
2(x+y) , , 2(x+y)
L
> +%(f'2+g'2)+
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(1-at)°

0

#(1+ 89)“’ g(+ed) (3.48)

20(1-2t)’
2(x+y)

(TW_TOO)UOZe -

Multiplying (3.48) by gives
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Uzt ? - 2
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2k,,2(C, —C,)(T,-T.) e ‘

0 #(L1+£6)" e

Simplifying (3.49), results
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Simplifying (3.50), gives
& (E+¢9j+29’ +2 (£+9]+Q¢9’ (f'+9")—(f+nf'+9'+n9')0 =
R.\\¢ 2 & 2
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4
5p(L+£6)” e
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1_o _ 2L 1 _Db d_(CW—Cw) 1 D &T,-T,)
R. LUo’ erxty, Pt LUo’ U, , Pemz_LUo’ B ToUozT ’
2 2 3
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Substituting equations (3.18), (3.19) (3.31), (3.32), (3.33), (3.35), (3.38), (3.39) with

transformations in equation (3.13) into (3.5) gives
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2(x+y) 3(x+y)

(C,—C,)Upe - Db (T, —T,)Upe 2

T

20L (1-At)’ T.| 20L(1-4t)’

ed"

X+ 2

2, Xy T 0
1-o — L - t -
atiady (leTfﬁj CozCoe® i) letem  (359)
(1-at)z -

Simplifying (3.52) results

X+y 2(x+y)

/I(CW—COO)eL( n j (C,—C,.)Uge * ( 7 j
+Lg |+— +2¢" |(f'+9')-
TR (A a9
(C-Cuie © (Co-C Ut
C,—-C,)Ue * D, (C,-C,)U,e *

W f + f'+ + ' r_ w ”+ (353)

2L(1-At)° (T+7t+g+19)¢ 20L (1~ At)’ ’

2(x+y) , ” 1 2(x+y) o
_ L _ _ & L

DT(TW TOO)UOe > geﬂ_kro (CW COO)(TW -IZ—OO) e ‘e ¢(1+€0)we(1+59)

20LT, (1-At) (1-4t)

. 2v(1-at)° _
Multiplying (3.53) by 2ay) » dives

(C,-C,)Ule -
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2A0L £¢+Q¢;j+2 L (¢+%¢;j(f/+gr)_l_6 (f+77f/+g+ng!)¢r:

LUOZeXLLy 2 LU, 0
1 (3.54)
T,-T 20k, * (T, ~T,) e ;
DB ¢n+ Dz' 8( w 00) "_ v ro (TW ZToo) € ¢(1+89)w e(l+50) -0
LU, LU, T, (CW —COO) U,

Simplifying (3.54), yeilds

Ri(¢+g¢'j+2(¢+g¢’j(f'+g’)—(f +nf'+9+n9')¢ =
: (3.55)

1 " Nt1 " @ (lfﬂ:b?)

c

where

1
_ 2Ukr02 (Tw -1, )w e’ h= S(Tw _Toc) Ny _ hR 1 R

7 Uz " "TT.(c,-c.) s, P

Considering the initial and boundary conditions (3.12)

u(z,t)=0,v(z,t)=0,T(z,t)=T,_,C(z,t)=C_ fort <0 for all z
u=-u,,v=-V,,w=0T=T,C=C, atz=0 (3.56)
u—->0v->0T->T,C>C_ atz—ow

X+y

u, X Uet'

u(z,t)=—"=2—et f'andu, =" — 3.57
9= Ny (357

Substituting (3.57) into (3.56), gives

, Xty

U s Uet
Ot)=—2—-et' f(0)=—""2>— 3.58
0=t 0= (3:58)
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Multiplying (3.58) through byw gives

+y !

Ue*
f'(0)=-1 (3.59)
Similarly,
U Y s
Xty Vel
0,t)=—H=2 tg'(0)=—"2—
Vo=t YO T (360)

Multiplying (3.60) by M gives

Xty

Uget

<

v(0,t)= g'(O):U—O:—V/

o (3.61)
similarly,

)=+ ) Uy r (e

T(0)=T, + ((lejtw) JeUo(0)=T, + ((le_—k) )

((T{v__k)) 6%9(0) i ((Tlv—_/thO;) ot (3.62)
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Multiplying (3.62) through by& , gives

(-I-w_-rw)e%y

0(0):1 (3.63)
Similarly

c,—C,) c,—C,)
C(zt) Cw+((f_/u‘;)e L ¢(n)= °°+((f—/1t;)e L

(CW_COO) %y _ (Cw_Cw) i|_y
c(ot)=C, + =) el ¢(0)=C,_+ A e
(Cw_Cw) &Ly _(Cw_Cw) %y
=) e 6(0)_—(1_/“) e (3.64)

Multiplying (3.64) through by&, gives

X+Yy

(C,-C.)e*-

$(0)=1 (3.65)
Similarly, when

z—>o and u—0,then

§] Xty
*_el f'(7-0) (3.66)

This implies that

f’—>0asr7—>oo (367)
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Similarly when

z —> o andv — 0, then

TR A (7=>0) s = (369
This implies

g’ —>0asn—>x (3.69)
When

T >T, at z >, We have

T=T +(TW_T°°)eiLy<9( )T, as
= - —>» 00
T(1-at) 7 e
Then
T-T,
0(n — ©)—> (_I_W_Tw)e%y asn — oo
(1-A4t)
(3.74)
This gives
6 —>0asn—> o (3.70)
Similarly

C —>C, at z—> o, We have
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(C.—C.)

C=C,+ et ¢g(n—>0)>C, asn—>wx

T (1-a)
This implies

(CW_COO) XL|_y

w+me ¢(77—)00)—)C00a577—>00
c-C
¢(7]—)oo)—)(c = ;ﬂ asn — oo
1-at)

This gives
¢—>0asn —>wo (3.71)

, vU, =2 , ,
w(n,t)=w, =0
w(0,t)=w, =0

/ Wy, 50 _
w(0,t) =~ me (f(0)+0+g(0)+0)=0
W e%(f(0)+0+g(0)+0)=0
2L (1 At)

£(0)+g(0)=0=> f(0)=0 and g(0)=0 672)

Therefore, the similarity equations together with the corresponding boundary conditions

are:
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7 t(f +nf’+g+ng’)—§(f’+g f”j—Zf'(f’+gf”j

: (3.73)
_Zg’(f’+gf”)—9f’2—(M +7)f'+G,, (1+£0)+G,$=0
m n ! ! a‘ ! 14 ! ! n
9"+9"(f+nf'+g+ng )—R—(g +%g j—Zf (g +%g )
: (3.74)
_2g!(g¢+%gnj_ggr2_(M +]/)g’=0
a (£+9j+ﬁ "1+2 (14-(9]4-29’ (f'+9")-(f+nf'+9+n9")0'=
R.\\¢ 2 & 2
N,0'¢' + N,&° +Q, (1+£0)+ EM, (7 +9?)+R0"+ (3.75)
4
5p(1+£0)" ™)
(¢+%¢'j+2(¢+%¢’j(f’+g’)—(f+77f’+g+7yg’)¢'=
(3.76)

[

a

Re

Si¢"+%0”—0'¢(1+ £6)” e
C

c

1

f(0)=0,9(0)=0, f'(0)=-1, g'(0)=-w, 6(0)=1, ¢(0)
f'">0asn—>w, g >0asn—>x (3.77)
0—>0asn—>w,pg—>0asn—>w

Next, we shall establish the conditions for the existence of unique solution of the model

equations.
3.2.3 Existence and uniqueness of solution

First, we consider the dimensional equations (3.1) — (3.11) satisfying (3.12) when «, U, V
and g are constants, @ =Dy and 0, >0, Q—=>0, 70, D, -0, Then equations

(3.1) — (3.11) reduces to

E

2 —___—a
or  ,or ot aor_ o7 +BKA(T-T, ) (C-C_ ) ™) (3.78)

W— =
ot ox oy oz oz°
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ES

2 ____—a
W% W, CZ: —k2(T-T,)°(C-C, ) ™)
ot OX oy oz oz

Multiplying (3.79) by g gives

SR u () v (RO ()= T

T -T,)(C-C, )
Adding (3.78) and (3.80), result to

d d 0 d 0°
&ﬁ+a»w—n+m»w5ﬁ+mﬁw—ﬁﬂb)%?ﬁ+m)

Introducing a new space variable (Olayiwola et al., 2014) as:

9:x+y+zJ5

Then equation (3.81) becomes

(T +AC)+U i(T +C)= a%(T +/C)

where

U:u+v+wJ5

Let
=T+ pC

Then (3.83) becomes

Jdp op Ozgo
U 2
ot 09 63

We make the variable dimensionless by introducing (Olayiwola, 2011)
5 O\t s
n=(p?a)?| pds
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(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)



Then the coordinate transformation becomes:

2.l ul 387
ot ot on (3.87)
o_9 (3.88)
08 0n '
Using (3.87) and (3.89), then equation (3.85) in terms of 7 and T becomes

2
% 9 _j (3.89)
ot 0On
With the initial and boundary conditions:
o(n0)=T,+pC,, p(0,t)=T,+C,, olot)>T, +4C, (3.90)

Theorem 3.1: There exists a unique solution of equations (3.78) and (3.79) satisfying
(3.12).

Proof: We multiply (3.79) by £ and obtain (3.80) satisfying (3.12) as earlier done.

Using the Fourier sine transform (see Myint-U and Debnath (1987), p. 333 - 335), we

obtain the solution of the problem (3.89) in compact form as:

o(n,t)= %(TW + ,BCW).[:ssin snj;e’sz(”)dr ds (3.91)

That is

o(9,t)= g(T +fiC )rssinis jte’sz(”)drds (3.92)
T w w o \/E o .

Then, we obtain

T(9,t)= %(TW + ﬂCW)I:ssin%sj';e‘sz(“f)drds - C(9,1) (3.93)
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C(gt)= E(E(TW + ﬁcw)rssinis jte‘sz(”)drds ~T(9,t) (3.94)
B\ = N

Hence, there exists a unique solution of problem (3.78) and (3.79). This completes the

proof.

We shall now consider an alternative method for the existence of unique solution of the

model equations.

Next, we consider the similarity transformed equations (3.73) — (3.76) satisfying (3.77) and

establish the conditions for the existence of unique solution.

Theorem 3.2 Let
£ () <bu| £ ()] <b,.[g" ()] <Dy 9" (m)| <b, & ()] <bs. |¢ ()] <D,
0 (0)<c, |#(0) <c,, |F7(0)| <c,. |97(0)| <, whereM,G,,,8,a,P,, 7,7, Ny, N;,

N, S..B, 1=1,2,..,6, ¢;,j=1,2...,4 are real constants and 0<py<eo and 0<e<l.

Then the problem (3.73) — (3.76) satisfies (3.77) have a unique solution.
In the proof we shall need the following theorem 3.3.
Theorem 3.3 (Derrick and Grossman (1976)):

Let
Y, = f (Vo Yoren Yo t)  Va(to) =Yg

Yo =T, (Vo YoreYot) Yo (to) = Yoo
Yo = Fo (Vo Yoren Yo t)  Ya(to) = Yao
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of .
If the partial derivatives —,i=1,2,...n are continuous in the region D of the definition

then the problem has a unique solution.

All we are left to do is to show that our problems satisfy the hypothesis of Theorem 3.3.

Proof of Theorem 3.2: We now return to our problem (3.73) to (3.77) and transform it to

meet the requirement of Theorem 3.3 as follows.

Let
Yi=n, Y,=1f, Y,=0, Y,=6, Ys=¢, Ys=f' Y,=0' } (3.95)
Y = o', Yo =¢,1Y10 =17 Y = 9"
Then equations (3.73)-(3.76) becomes
f"=d =2y, (Yﬁ +%J+ZY7 (YG +mj+(M +7)Ys +1(Y6 +Mj
2 2 R, 2 (3.96)
+ QY =Y, (Y, + Y, +Y, +Y1Y7)—(Gm (1+eY,)+G, ¢Y5)
9" =d, =2, (Y7 +Y1Yﬂj+2\/6 (Y7 +Y1Y11j+i(v7 +Y1Yllj+gv72
2 2 ) R, 2 (3.97)
+(M+7)Y, =Y, (Y, +Y,Y, +Y, +YY,)
1 Y., a((l Y.Y,
21| =+Y, [+ 22 (Y +Y, )+ —| | =+Y, [+
((e “j 2 j( +Y0) Re((g “j 2 ]
o =d, =+ (Y, +Y,Yg Y +Y.Y, )Y, = NYg2 = NLY,Y, — (3.98)

Ya

Y, (1+2Y,) e —EM (Y +Y,°)-Q, (1+£Y,)
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Yy
a,Y, (1+eY,)" e 42 Y5+ﬁ (Y6+Y7)+i Y5+ﬁ
2 R, 2
1 \A¢ 1 \A?
¢"=d, =S, |~ ((?LY“ +%)(Y€ +Y7)—a3((E+Y4)+%) (3.99)
+(2,Ys =Y ) (Y, + VY, + Y, +Y.Y, )+ Ay’ +a.Y,Y, +
a, (Y2 +Y,*)+ 3, (1+2Y,)
where
SN, 2N, aN, N, NN, N, N,
— + 1 , 1 , — 1 , a — 1 , — 1 , a — 1 ,
al ° Rlsc ? Rlsc a3 Re RlSc ! Rlsc a5 RlSc ° RlSc
. _EMN, _QN,
" RS, RS,

The system (3.95) can be written in vector form using

Yl n
Y, f
Y, g
Y, 0
Ys ¢
Y, |=| f' (3.100)
Y, g’
Y, o'
Y, ¢
YlO f"
Yll g"

and the derivative of (3.100) results

50



Y,
Y2' 1
' Ye
Y, Y,
Yoy,
Yy Y,
YB, = YlO (3 . l 0 1)
Y7' Y11
v, | | %
' d 4
Y, q
1
Yo d,
Yl 1,
where

2
+ QY =Yy (Y, +Y Y, +Y, +Y,Y, ) =(G,, (1+6Y,) +G,,Y; )

d, =2Y, (Ye + lelo ]+ 2Y, (Ys +%j +(M + 7/)Y6 + Ri(yﬁ n YYio j

e

d, =2, (Y7 A j 12, (Y7 A j 2 (\@ A j LQY?
2 2 )'R 2

e

+H(M+7)Y, =Y, (Y, +Y Y + Y, +Y.Y,)

1 Y)Y, a((1 Y.,
21| =+Y, [+ 22 (Y, +Y, )+ —| | =+Y, [+ 2
((5 “j 2 j( +Y) Re((g “) 2 j

d, =— _(Yz +YYs +Ys +Y1Y7)Y8 = NYg* = N,YY, —
Ys

Y, (L+2Y,)" e —EM (Y, +Y,7)-Q, (1+&Y,)
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Yy
aY; (1+eY,)" e 42 (YS R

3

(Ys+Y;)+—

R (Y5+

1 Y.Y, 1
d, =S| & ((EJFY“}F%J(Y%S +Y7)—a3([E+Y4

a

e

5
2

+(a,Ys =Y ) (Y, +Y,Ys + Y, +Y,Y, ) +aY,? +a.Y,Y, +

Y1Y9

2

)

a, (Y2 +Y,7)+ag (1+£Y,)

Satisfying

Y,(0)) (0

Y,(0)| | 0

Y;(0) | | O

v,(0)| | 1

Ys(0) | | 1

Y,(0) |=| -1 (3.102)

Y, (O) 4

Y:(0) s,

Y, (0) S,

Y0 (0) S,

Y., (0) S,
0<Y; <o, where ss,,s, and s, are guessed values such thatY; () >0, i=4,5,6,7.
We define
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...,Yll):l
..... ,Y11)=Y6
..... o)=Y,
..... ,Y11)=Y8
..... ,Yll):Y9

Yll):Ylo
..... ,Y11)=Y11
..... Y,,)=d,
..... Y,)=d,

..... Y,)=d,
..... Y,)=d,

i=12,..11

i=12,..57.11

i=12,..68..11

i=12,..7)9,..11
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(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)



=0, i

=12,...810,11
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(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)



Ya
2(Yy +Y, )+ — — SweY, (1+ &Y, )" e
R
G| |1 R
v, |R . } e(h;‘m
~5Y,(1+eY,) ——— Q.
s(1+eX,) (1+sY,) &

a 0 =
1 2(b2+b4)+R——5a)gY5(l+gY4) CE
SE e :§3<OO,—1SC()S1
1

1
~5Y, (1+¢Y,)" e Qe

Y4

Kol l[—5(1+ &Y,)” e(l”Y“)]
Rl

1
< i(&(u &Y,)” eej =&, <o

Py

%:i 2(1+Y4j—2ECMY6 si 2(1+Y4j—2ECMb2 =& <o
oYs| R € R, £

Aol _| L 2(£+Y4)—2ECMY7 si 2(1+Y4j—2ECMb4 =& <o
oY;| |R £ R, £

of 1 ay,

8_Y88 =‘€(Y1(Y6 +Y7)+2_Rle_(Y2 +Y,Y, +Y3+Y1Y7)—2NtY8—NbY9]

< é[Yl(bz +b4)+ 2aFY21 _(Y2 +Y1b2 +Y3 +Y1b4)_2Ntb5 - NbbGJ = 57 <®©

e

% :‘_ N, Y < N,Ds =& <o
oY, R, R,

ofg | _| Ofs | _

Ny oYy,
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(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)



. (3.127)
of
‘ﬁ =S (a4Y8 —Yo )| <S, (aubs _b6) =10 <®
5 (3.128)
of
ﬁ ~ % (a4Y8 _Y9)| <3 (a4b5 _b6) =Gl <®
5 (3.129)
Y "
f (1+£Y,)
| _ s | aweY, (1+eY,)" e ray, (1+eY,) ——
. ) (1+e&Y,)
-a,(Ys+Y;)—a,+a, €
L :
Ss{alwevswm o nye |
~a, (b, +b,)-a,+3, € (3.130)
of : a
a—YZ _ Sc [a1(1+£Y4 )(u e(1+gY4) + 2(Y6 +Y7)+R_e]
1 a
< Sc(a1(1+3Y4)wef +2(b, +b4)+R—J: S1p <0
e (3.131)
szg =S, [2(Y5 +%j—az [(%"‘n)""%j"'(aﬂs _YQ)Yl + 2a7Y6)
6
<S, (Z(Ys +%j—az ((%+Y4J+Yl—25j+(a4b5 —b;)Y, + 2a7b2j = Gj3 <0
(3.132)
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S, (Z(YS +%j—a2 ((%+Y4]+%j+(aﬂ8 -Y, )Y, + 2a7Y7]

< SC[Z(YS +%)—a2 ((1+Y4j+%j+(a4b5 —bG)Y1+2a7b4j=§14 <o

(3.133)
afg Yl Yl
—2=1S| —a, 2(Y; +Y;)—a, 2 +a, (Y, +YYs +Y; +YY; )+ 2a,Y, +aY,
oY, 2 2
Yl Yl
<S,|-a, E(b2 +b,)-a, >t (Y, +Yb, +Y; +Yb, )+ 2ah, +agh; | =&, <o
(3.134)
of ay,
a_YE; =|S, [Yl (Vs +Y7)+R_951_(Y2 +Y,Y, +Y, +Y1Y7)+a6Y8]
ay,
<S,| Y, (b, +b4)+R_E_(Y2 +Yh, +Y; +Yb, ) +agh, |=&, <o
‘ (3.135)
o, _‘ o, |
M| Oy (3.136)
% — iYﬂ <£:§17 < 00
oY,| |R, 2| 2R, (3.137)
Tl [y <y <oo
av, (3.138)
Tl [y <y <oo
o, (3.139)
af—Ylo =|-(G,&)| < G,pe <o
s (3.140)
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2

10

= |_Gr¢

SGm<w

=[2Y, +2Y, +(M +7/)+Ri+ZQY6

e

< 2b, +2b, +(M +y)+Ri+2Qb2 =&y <

e

of

aflo :|8f10|:|af10|:0
AREAREA

6f10 a Y1 aYl

o) |2 (Y, 4Y) = = — (Y, 4,
Yo R, 2 (2+ 3) R, (2+ 3)
of,| _|a Yyl _ ab,

v, |R, 2 ‘2Re_§2°<oO

of

8Y121 :|— 11|Sb3<oo

of

8Y131 =|—Y11|Sb3<oo

Ofyy| _ 0| _ |0 | {0 | _|Of | _

oY,| |0Ys| |0Ys| |OYs| |OYy

a1:11

6

v =2Y,|< 2b, <0
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(3.141)

(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)



oty

:‘2Y7+2Y6+Ri+ZQY7+(M +7)

e

7

<2b, +2h, +i+ng4 +(M+y)=¢&, <o
R. (3.151)

aYy,
R_El_(YZ +Y,)

e

‘afll =&y <©

oY,

a
HYl —(Y,+Y;)

(3.152)

Let K =max{0,1,b,,2b,,b,,20,,G,,6,G,, 6,&} <0, 1=12,..,22

of.
Therefore the partial derivatives ﬁ I,]=12,...,11 are continuous and bounded.
Hence by Theorem (3.3), equations (3.73) — (3.76) satisfying (3.77) has a unique solution.
Next, we shall examine the properties of solution of the dimensionless equations (3.29) -

(3.33).

3.2.4 Properties of solution
Here, we show that f(7),9(77),0(n7) and ¢(7) are bounded. If we consider equations

(3.73) — (3.77) when a — 0, then equations (3.73) — (3.77) reduces to :

(f+g)f"—(M +7/)f’=2(f’+g’)f'+Qf’2—f"’—Gr9(1+8¢9)—Gr¢¢ (3.159)
f(0)=0, f'(0)=-1 f'(:0) >0 '
f+ ”—M+ r=2 f’—}- ' ,—i-Q !2_ m
(f+9)g '( 7)g ' (f'+9')0'+Qg” -9 } 6,150
9(0)=0, g'(0)=-y, g'(x) >0
R19"+(f+g)6”+th6’:2(f'+g’)(1+9j—Qh
&

o

—N,0'¢'~N,0"” —EM (2 +9"”)-5p(1+£0)" et (3.155)

0(0)=16()—>0
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0

i " - _m " ® _(1+£0)
Sc¢ +(f+9)p'=2(f+9)¢ S 0" +o¢(1+0) e (3.156)

#(0)=1, ¢(x0) >0 C

Theorem 3.6: Let &£ >0, w > 0. Then the equations (3.153) — (3.156) have solution.

Proof:

Equations (153) — (156) can be written respectively as:

Lf =F (5, f),Lg=F(7.9),L0=F(7,60) and Lg="F(1,9) (3.157)
where

Lf =(f+g)f"=(M+y)f’

F(n,f)=2(f'+q") f'+Qf *— "G, (1+£0)-G, ¢

Lg=(f+9)g"-(M+7)g’

F(n.9)=2(f"+9)g'+Qg"* - g"

LO=RO"+(f+9)8' +Q,e0

F(n,0)=2(f"+ g’)(%+9j—Qh ~N,0'¢'~N,0° ~EM (£ +g"?)
[

~5¢(1+£0)” e

L¢=§¢"+(f +9)¢'
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Ntl

F(7.¢)=2(f+9)¢——20"+0p(1+c0)" ™

Se
Consider
f(m)=(e"-1)
g(m) =y (-1
0(n)=-=
¢(n)=0
We shall show that (3.158) are the lower solutions
Clearly,
£(0)=0, £/(0) =1, f(7>) >0
9(0)=0. g'(0)=-v, g'( —0
0(0)=-—.0(n—>w)=-
$(0)=0, ¢(17 > ) =0
Now

0
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(3.158)

(3.159)

(3.160)

(3.161)



F(n.f)=(2(y +1)+Q)e™ +e

F(n,g) (2(1//+1)+Q(//) e ye7"
F(17,0)=—(Q,+EM (y*+1)+e™)

F(mg)=0

Hence,

Lf>F 771) provided (M+y)= (2w +Q+3)
ngF(n,g), provided (M +y)>((2+Q)y +3)
LO>F (1,0)

Lg2F(n.9)

By definition 3, equations (3.158) are the lower solutions.

Also consider

fn)=(1-¢7)
a(n)=y(1-e")
0(n)-<(2-¢")
$(n)=(2-¢")

We shall show that (3.164) are the upper solutions.

Clearly,

(0)=0, f'(0)=1f'(7—>0)=0

g(0)=0, g'(0)=1,9'(7—>x)=0
1

5(0)——>1 6(77—>oo)_—

¢(0)=1,¢(77—>oo):2>0

Now
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(3.162)

(3.163)

(3.164)

(3.165)



—
Il
|
—
—_
<
+
H
N
—_—
i
D
3
N—
¥
<
+
<
N —
D
3

-2(R-2(y s (1-e e, (2-¢7)
Lg =((w +1)(1—e")—si]e"

c

and

) G,, (1+ 35)+Gr¢é+e"7 +(2(w+1)+Q)e™

f
§) (2+Q)y +2)e? e

(n,@):Qh +5g75(1+g§)w plre0 +[%+%+ E.M (wz +1)+§(y/+1)je2’7

T

&
F(n &) O'¢(1+gt9) el+99+[4(1//+1)+£|?“Je”—2(1//+1)e2’7

C

Hence,

63

(3.166)

(3.167)

(3.168)



Lf<F (n,?),provided (2G,,+G,, +1)=(M +7)
Lg < F(n,a),provided (M+y)<1
LO<F n,é),provided g(l// +1)>Q, and (3.169)
[Qh + ﬁ+N—2tj+ EM (v +1)+52”e1+i‘9J >R
& & &
L¢<F(n.9)

By definition 4, equations (3.164) are the upper solutions.

Thus, there exist a solution of problem (3.153) — (3.156). This completes the proof.

Next, we shall consider the fitted rate constant to be zero, that is, we set #=0 and the

above equations (3.73) - (3.76) satisfying (3.77) will be considered in four forms:

Case 1: When the reaction is unsteady with Arrhenius chemical reaction.

Case 2: When the reaction is steady with Arrhenius chemical reaction.

Case 3: When the reaction is unsteady with chemical reaction of constant reaction rate.

Case 4: When the reaction is steady with chemical reaction of constant reaction rate.

3.2.4 Case 1: When the reaction is unsteady with Arrhenius chemical reaction: a =0

3.2.4.1 Solution of Case 1

Here, as in Mohammed et al. (2015) and Olayiwola (2016), equations (3.73) — (3.76) was

solved satisfying (3.77) using Iteration Perturbation technique.

Note that
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4 2
ete? =1+ 0 +1[ 0 j +.
1+e0 2\1+&0

0 1 6 Y
~1+ +—
1+¢0 2\1+¢0

=1+6(1+ 56)7l +%6’2 ((1+ 56’)71)2

=1+0(1-£0+ %67 +...)+192 (1-e0+%6% +..)
2
In the limit of £ —0,
= 1
gl 5 @’ z1+¢9+§92 (3.170)
Ayeni (1978) has shown that exp(¢) can be approximated as
1+(e-2)9+6? (3.171)

We start with the initial approximate solutions:

fo ()= (e 1) (3.172)

9 (17) = %(e*b" 1) (3.173)

where bis an unknown constant

Substituting (3.171), (3.172) and (3.173) into (3.94) — (3.97) and hence the following

approximated equations was obtained:

65



f’”+%(e‘b” -1) f”+%(e‘b” ~1) 4 p(f'+g) f”—Ri[f#g f”j—

€

2f’(f’+g f”]—Zg’[f’+Q f”j—Qf 2 (M+7)f'+G,, (1+£0)+G, =0

N

[

g’”+%(e‘b” —1)g”+%(e‘b” —1)g"+77(f’+g’)g”—i(g'+zg”j—
0

2f!(g!+ggr/)_zg!(g!+gg!rj_9912_(M +7/)gr:

" 1 —Dr, ! l)” - ! ! ! 1 a‘ l 77 !
RO +B<e " -1)0 +F(e " -1)0'+n(f'+9')0 —R—e[(zw}gej—

2((£+9j+%9’j(f’+ 9')+EM (f’2 + g’2)+ N,0'¢'+ N0 +Q, (1+ £0) +
&

5p(1+(e—2)0+6%)=0

" Sc —-bn ’ Sc —-bn ’ 2 ’ ' i
§ (e 1) +T‘/’(e ~1)¢+S(f'+9') —Risc(¢+%¢j—

e

25, (¢+g¢'j( f'+ g’)+ Ntﬂ”—SCa¢(l+(e—2)¢9+92):O
We rewrite equations (3.174) — (3.177) in the form:

£ 4 bf u((—i?”j(ebv —1)—b] e (f'+g) f"—Rie(mg f”j—

NI

2f'(f'+

" 14 1+W = 14 ! ! n a ! 77 n
9" +bg +((Tj(e b’7—1)—bjg +n(f'+9')9 —E(g +59 j—

21:!(gr_'_ggr/j_zg!(gr_'_%gﬂj_ggﬂ_(M +7/)gr:o
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f"j—Zg'[f’+% f"j—Qf 7 (M+y)f'+G,, (1+£0)+G, 4=0

(3.174)

(3.175)

(3.176)

(3.177)

(3.178)

(3.179)



R16?”+¢9'+([—1J;//j(e‘b” —1)—1)49’“7( f'+ g')@'—%[(%+9j+%9’j—
2 (2eo)elo)(r gy Em (17 g) e Nag NGO o) (180
&

5p(1+(e-2)0+6*)=0

§ S g +S, ([“T'”j(e-b"—1)—1j¢'+scn(f'+g')¢'—Risc (#+20)-

¢ (3.181)
28, (¢+%¢'j(f’+g')+ Ny0" - S.06(1+(e-2)0+6%)=0
Introducing an artificial parameter < into equations (3.178) — (3.181) gives
1+l// —bn " ' ' " a( ’ 77 I/j
— (e -1)-b |f f fr—— f'+=f" |-
([bj( ) j () R, 2
f"+bf"+e ( ’+%f”j ( ]—Qf’z—(M +y) '+ =0 (3.182)
G,y (1+£0)+G,,
((1_;!//)(84)77 _1)_ngrr+n( T gr)gn_Ri[gr_’_%gnj_
gm+bg”+€ e :O (3183)

21:!(gl+%g"j_zgl(gr_i_%gﬂj_gg&_(M +7/)g!

(oo (o)20)

RO"+0'+e ((l j jf+g)+EM(f’2+g’2)+N 0'¢' +N.6”%+|=0 (3.184)
&

U ‘

Q, (1+2£0)+5p(1+(e-2)0+6%)
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N
e =0 (3185)

¢"+S 9+ €
25, (¢+%¢'j( f'4+9)+ N8 ~S.0p(1+(e~2)0+6?)

We suppose the solution of equations (3.182) — (3.185) can be expressed as:

)+< fi(n)
)+e0,(n)+... (3.186)

Substituting (3.186) into (3.182) — (3.185) and processing and collecting the like powers

ofe, we have for

(S

7bi=0 3.187)
go +bgy =0 (3.188)

" 1 !
g +—=0, =0 (3.189)

Rl

h+ S =0 (3.190)

El :
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m " 1+ — n ! ! 14 a 1 14
f1+bf1+[(T‘/’)(e bn—l)—bj f, +77(f0 +g(,)1=O —E(fo +ng j_
2fo'(f +Zf"j 2go'(fo'+gfo"J—Qfo'2—(M )ty + (2.191)

G, (L+£6,)+ G, =0

nm n 1 — 14 ! ’ 14 a‘ ! 14
g, +bg, + (( )(e brz_l)—bjg0+77(f0+g0)go—E(gO+ggoj_
¢ (3.192)

b
(go+ go] gg(gﬁgg{;j—ﬂgaz—(l\ﬂ +7)00 =

(& j 116+ n(1/+6:)0i-
a 1 1 n ’ '
91"+Ri91'+i —( ; J 2[(;+90j+§‘90j(f0+90)+ ) (3.193)
1
f'2+go )+N Oy + NG> +Q, (1+ 6, )+
5¢0( e-2)6,+6,’)

1 —b77 ] [ ’ ' ’
o T e

e (3.194)
28, ((éo +g¢g)( fy+0)+Nyb; —S.o, (1+(e—2)6,+6,°) =0
Recall from (3.186) that
f(7)= fo(n)+ e f.(n)+---
Then
(3.195)

f(0)= f,(O+ < f,(0)=0+c-0+---
This implies that
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f,(0)=0 and f (0)=0 (3.196)

Similarly,

f'07)= T < 1/(7)+-- (3.197)
Then

f'(0)= f/(0O)+ < f/(0)=—-1+<c-0+--- (3.198)

This implies that

f/(0)=—1 and f/(0)=0 (3.199)
Similarly,
f '(oo) = fo’(oo)—o— IS fl’(oo) =0+e€-0+--- (3.200)

This implies that

/() =0 and f/(c0)=0 (3.201)
Likewise, from (3.186)

9(7)= 9o+ e 9,(17) +---

Then

9(0)=g,(0)}+ < 9,(0)=0+<c-0+--- (3.202)
This implies that

9,(0)=0 and g,(0)=0 (3.203)
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Similarly,

6'(0)= 95(0)+ < g}(0) = —y+ = 0+ (3.204)

This implies that

9,(0) =—y and g;(0)=0 (3.205)
Likewise,
9'(0) =g (o) € gi(0) =0+ -0+ (3.206)

This implies that

g4(0) =0 and g;(«)=0 (3.207)
Similarly,

O(17) = 0, (17)+ € G, () + - - (3.208)
Then

0(0)=60,(0)+ < 0,(0)=1+<c-0+--- (3.209)

This implies that

6,(0)=1 and ¢,(0)=0 (3.210)
Likewise,
O(0)=6,(o)+ € 8,(0)=0+c-0+--- (3.211)

This implies that
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0,(0) =0 and g,(«0)=0 (3.212)

Similarly,
(7)) = ¢ ()+ € $,(17) +--- (3.213)
Then

#(0) = ¢, (0}+ € $,(0) =1+ -0 +--- (3.214)

This implies that

#,(0) =1 and 4,(0)=0 (3.215)
Likewise,
P(0) = (o1 € ¢hy(0) =0+ -0+ --- (3.216)

This implies that
#o() =0 and @ (0)=0 (3.217)

The order zero and one equations with their respective boundary conditions are given

below

e’

febfy=0 6.218)
£,(0)=0, £/(0)=-1, f/(n—>)—0

9+ 9z =0 (3.219)

9,(0)=0, gg(0)=—y, gg(n—>0)—>0
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0+—6,=0

6,(0)=1, 6,(n—>»)—>0

405 =
#(0)=1, ¢ (n—>0)—>0

" bf, "+ ((“T‘/’j(ebﬂ —1)—bj f,’ +n( £+ go') fy' —Rie[ f, +g fo”j—

2f0(f +’7f”J 2g0(f +77f"j Qf2—(M +7) f) +

G,y (1+56,)+G, ¢, =0

£,(0)=0, £/(0)=0, f/(7—>)—>0

m 1+ " ’ ! " a ’ n
g1+bg ( b j( o 1) bjgo+n(fo+go)go_ﬁ(go+ggoj_

(nggoJ 29 (95%93]—9952—('\4 +7)g,=0

gl() 0, 9, 0) 0, 91'(77_)00)_)0
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(3.220)

(3.221)

(3.222)

(3.223)



0+ 1 o) + 1
Rl

6,(0)=0,

4 ! 1 - ! !/ !
¢1 + Sc¢l + Sc ((%](e & _1)_1J¢o + Sc77( f0 + go)

( 1+—j(e‘b’7—1)—1J9(;+77(f0'+ 9o) 05 —

b
a 1 , 1 ’ ’ '
E((;+90j+%00j—2((;+90j+%00j( fo+ 0 )+

EM (£, +90° )+ NGyl + NG +Q, (1+ 26, ) +
Sty (1+(e—2)6,+6,)
6, (n—>x)—>0

Ay 4]
-+ 24

(3.224) 28, (% +g¢(;j( f5+05)+ Nuby —S.oty (L+(e~2) 6, + 6,2 ) =0

$(0)=0, ¢(7—>o)>0

(3.225)

Consider (3.218)

Let

p(n)=1(n)

Then (3.218) becomes

p'(n7)+bp(n)=0

Integrating both sides of (3.228) gives

In P(n):—b77+c
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p(n7)=ce™ (3.229)
But p(n7)= ;" (7)

then

fo (17)=ce™ (3.230)
Integrating (3.230) with respect toz gives

) (n)=—Le" +c, (3.231)

Integrating (3.231) we have

C, _
fo(nn)=1ze™ +ea+e (3.232)
Applying the boundary conditions

fol(oo):—O+C2 =0

(3.233)
C2 =0 (3234)
f, (0) = —%+o -1 (3.235)
¢, =b (3.236)

b
fo(0)=1z+0+¢, =0 (3.237)
1

C=—1 (3.238)
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Putting back equations (3.234), (3.236) and (3.238) into (3.232) gives

fo ()= %(ebn 1) (3.239)
Consider (3.219)

Let

p.(n)=95(n) (3.240)

Then (3.219) becomes

p;(77)+bp,(17)=0 (3.241)
bilr) _ —b (3.242)
p(77)

Integrating both sides of (3.242) gives

InR(17)=-bn+c,

p(7)=ce™ (3.243)
But p,(7)=9," (17)

Then (3.243) becomes

g, (7)=ce™ (3.244)

Integrating (3.244) gives
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g0 (17)= —%e‘b” e, (3.245)

Integrating (3.245) we have

Cs b
Oy () =38 +Ca+C (3.246)

Applying the boundary conditions

Jg()=-0+¢, =0 (3.247)
¢, —0 (3.248)
6 (0) -~ 40—y (3.249)
¢, —by (3.250)
9y(0) =" +¢, =0 (3.251)
¢ ==t (3.252)

Putting back equations (3.248), (3.250) and (3.252) into (3.246) gives

9o (7)="-(e™" -1) (3.253)

Consider (3.220)

Let
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d(n)=6(n)
Then (3.220) becomes

() +=a(n) =0

Integrating both sides of (3.256) gives

Inq(n):—%n+08

—7
R

Q(ﬂ) = Cgei

q (77) =Ce ™

1
Where ¢~ El

Butq(n)=6, (n)
then

Gy (17)=coe™™

Integrating (3.259) gives
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(3.254)

(3.255)

(3.256)

(3.257)

(3.258)

(3.259)



Applying the boundary conditions

(90(00):—0+C10 =0

Substituting back equations (3.262) and (3.264) into (3.260) gives

Oy (n)=e""

Similarly considering (3.221)

Let

q1(77) = ¢(; (77)

Then (3.221) becomes

q1' (77) +3.0, (77) =0

%)
a(7) R

Integrating both sides of (3.268) gives
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(3.260)

(3.261)

(3.262)

(3.263)

(3.264)

(3.265)

(3.266)

(3.267)

(3.268)



Ing, (7)=-Sn+cy,
0, (17) =™
Butg, () =¢, (1)
Then (3.269) becomes
@ (1) =ce™"

Integrating (3.270) gives

C, _
%, (77) = _SLZQ ! +Cy3

[+

Applying the boundary conditions

¢o(°o):_0+cls =0

=0
¢o(o)_—‘;£+0=1
C12:_Sc

Substituting back equations (3.273) and (3.275) into (3.271) gives

&, (77) =e

(3.269)

(3.270)

(3.271)

(3.272)

(3.273)

(3.274)

(3.275)

(3.276)



do (17)="bye™
6 (n)=—ae™
0(;'(77) =a’e ™™
Consider (3.222)
Let r=f"

Then (3.222) reduces to

r'+br=— 2f0'(f0’+%fo")—Zgo'(fo#%fO"

G, (l+e6,)+ G4,

Substituting (3.265), (3.276), (3.278), (3.279), and (3.253) into (3.285) results
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e

1+ _ " ’ ’ " a ’ "
((T‘/’j(e b”—l)—b] f, +77(f0 +g0)f0 —R—(fo +ng

)—Qfo'z—(M +y)f, +

j_

(3.277)

(3.278)

(3.279)

(3.280)

(3.281)

(3.282)

(3.283)

(3.284)

(3.285)



r'+br=- _%(_ebﬂ +%(beibﬂ )j_ 2(_6% +g(beibﬂ )j(—eb”)

(3.286)
z[ e +g(bebv)j(bebv)_g(ezw)_(m tr)(-e™)

+G,,(e)+G,,(e*")

Simplifying (3.286) gives
(l1+y-2-2py—Q)e? +(M +y—(1+y)-b’ +R1Je'b”

r'+br=— . e (3287)

—2br, a - —ar =S¢

(bw+b—(1+w)b)ne 2t —Z—Rene " +G,, (1+ ce 7)+Gr¢e Ser

Further simplification of (3.287) gives

r'+br = —(Zle‘b’7 +2Z,67" —Ze ™ +G,, (1+ e e‘“”)+Gr¢e*5°”)

r'+br=2Zmne™ -2, -2, -G, (l+ee™™)-G, e (3.288)
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Consider Z—¥+ p(t)y=q(t)
By the integrating factor method the solution for (3.289) is given by

t
y(t)=e " e P q(x)+ce 17

0

Similarly, the solution for (3.288) is given by

r (77) _ e—IbdzyJ"l ejbdx '

0

—bx —bx —2bx
[ste —-Ze 7" -7,

dx+c e 3%
G,y (1+ee ™)~ Gr¢eSCXJ w

—bx bx
()= ean,7£zgx—zl ~Z,e™ -G, 6™ -

dx +c,e™
0 Gm c e(b*O{)X _Gr¢e(b—SC)x J 13

Simplifying (3.292) gives

n

r (77) = e_bﬂ Z3X2 _ le n ée—bx _%ebx _Ee(b—a)x _ Gr€ e(b—Sc)X
2 b b b-a b-S,

Zg1" 2+ Za(e 1) S (e 1)
+Ce
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(3.289)

(3.290)

(3.291)

(3.292)



2
r (77) — 23—77 e_bn _ Zlne_b” _ é(e_Zb’] _ e_b’] ) _%(1_ e_bn ) _ %(e_aﬂ _ e_bﬂ )
2 b b b-—«
G (3.293)
rg -Sen —bn —bn
——(e " —e™" )+ e
b, | o
Rearranging (3.293) in terms of similar power provides
r(n)= Zar e —Zne ™ + Guwe,CBuw, 22, S e _ L2 g2
2 ' b-a b b b-S, b
_ Gra € e _ Gr¢ e—SCn _%4_ c e—bq
b—a b-S, b
2
r (77) — 2377 e—br] _ Zlne—bn + Z4e—bf7 _ée—Zbr] _ Gr& < e _
2 b b—«a
G (3.294)
r¢ e’scﬂ _%4_(:1 e—b77
b-S, b ®
_[Gwe Gy, Z, re
Where _[b—a " " Tbos,
Recalling that "~ fy
Then equation (3.294) becomes
2
" (n)= —23’277 e ~Z e + 7, —%e‘“’" - —(b3“9 e -
¢ (3.295)

G G
A N -
b-S b

c

Integrating both sides of (3.295) gives
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/ Z,( ne™ 2( g _, e N oy €
f =8| A= A _Upgm_= ||z |_Lem_=
() 2( b +b( S B

(3.296)
_Za gt +Z—22e’2b’7 + Gy € e Crs e S —%77 _Gis g Cue
b 2b a(b-a) S, (b-5,) b b
Simplifying (3.296) in terms of similar power gives
f, n)= i e—b?] +Z e—2b17 +Z ne—bry -7 nze—bﬂ +Z e 47 efscn _
1( ) GS Cl 6 7 8 9 10 (3297)
B

So a solution is possible if G, = 0.

Where
Z Z Z
Z
Zs = oy
Z y4
= J Bg
Z
Z, ===
® 2b
7 = Gree
? a(b-a)

Z ¢
? s, (b-5,)

Integrating both sides of (3.297) provides

85



ZS

—byy
fl (77) = _Fe_bn _ﬁe—zm n Z7 [_Qe_b,, _e_

2b b b2

2 -bn by
—Zy 7° +g —Qe_b”—e—2 _ﬁe—an_
b bl b b a

Ly sy C
= 13 —b?]
S e + F e " +C,n+Cp

c

Simplifying (3.298) gives

~8 2

fl (77) = lee*bﬂ - leeizb” + leneib” - 214772e7bn — leeian - lee_scﬂ —

+%eb’7 07+ G5
Where
27 Z Z
le— b38 _Fs_b_z
4
Z =6
12 = 5
22, Z,
13 = b2 ?
Z
Z =8
14 b
y4
le =—3
o
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& e*aﬂ

(24

(3.298)

(3.299)



Introducing the boundary conditions gives

f, (0)=0+0+c, =0

Co=b(I+Z;+Z,+Z,+Z,)

Cizs = bzl?

Where

Z,=1+Z2+2,+245+2Z,,

Z
fl(o)zzll_zlz _215_Zl6+f+C15 =0

Cis = le

Where

Z
le = le + Z15 - le + ZlG _ﬁ
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(3.301)

(3.302)



fl (77) = 2116711”7 - leeizbn + 21377843” - 21477267

~Z,e7 %" + % e +Z,
Similarly, consider (3.223)

Let =g,

Then (3.223) reduces to

b. —
n lee an

1+ - " ! ! 14 a ’ 14
((ij(e o7 _1)_bjgo +77( fo +go)go _R_e[go +gg0j

! p—
r'+br, =—-

—2(96 +gg£{j fo’—2[gé +%g£{jgé ~Qg7—(M +7)g;

Substituting (3.278), (3.280) and (3.281), into (3.305) results

Re

Simplifying (3.306) gives

1//(1+ (//)(e*2

r+br, =—| ——ne™
1 1 2R, n

by efbry ) _ bZV/ef

[(“T‘Vj(ebv ) bj(bz//eb” V(e

R+br =~ —i( —ye+ 1 (by/e )j—Z( e+ 1 (by/e )J(—e‘b”)

" 2we ™ +hyne”

+(M +y)ye™

_2( we 1 (bwe b”)](—t//e‘b”)_g( an) (M‘l‘}/)(—l//e‘b”)

1 _ 2u%e ™ + by ine ™
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we ™ ) bye ™

bn _(bl//+bl//2)ne—2b7] +a'R_v/eb77

(]

Q‘//Z —2by

(3.303)

(3.304)

(3.305)

(3.306)

(3.307)



Further simplification of (3.307) gives

[aRl// —(w +y?)-biy +(M +y)l//]e‘b” H((w+w?)-2(y+p?)-Qp?)e™
r'+br, =

e

(b(w +v?)=b(w+y?))e™ —azb—RVe’ne‘b"

rl"" brl = _(Zlgeibn - Zzoeizb'] - 22177e7b77 )

' _ -2bn —bn -bn
K+br=2,""+2,me"" -7

(3.308)
where
a
Zlgz%—(vjﬂ//z)—bszr(M +7 )y
Zy =(V/+V/2)_QV/2
aby
Z, =——
21 2Re
Similarly, the solution for (3.308) is given by
r(n):e_Im”Inejmx-(Z e 47 ne™ -7 e‘bx)dx+c Nk
1 0 20 21 19 16 (3309)
_ by [ abx —2bx -bx —bx —bp
n(n)=e jo e (Z ™ +Z,xe " —Z,e ™ X +Cyge (3310)

Simplifying (3.310) gives
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n

2
n (77) =e™ [_%e_bx +Zy X? - ZlQXj + Clse_bq

0

2

n (77) =e™" [22;77 =Ly — % (e_bi7 _1)J + C16e_b’7

14

Recalling that = %

Then equation (3.312) becomes

v ? Z Z
9 (77) = Zall e ~Zgne" ~ %eizbn + %equ +Cee

2

Integrating both sides of (3.313) gives

4 Z 2e7b’7 2 _ e7b77 ~ —
o5 g )

Z,, _ Z, _
+ 520 o-20p _ zoebn_ﬁebn+cl7

2b° b? b

Simplifying (3.314) in terms of similar power provides

C
4 _ —b —bn 2 by —2bn 16 ~—bn
0, (77) =2y "+ Zyne " —Zyme ! + Z e _Fe +Cy

Where
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(3.312)

(3.313)

(3.314)

(3.315)



7 _Zu_ 27y Zn
2 p2  2p® p?
Ziy 22y
2 p  2p?
Z

Z =21
24 2b
z

Z _ 20

- 2p?

Integrating both sides of (3.315) gives

Z, _ L, e e 2 Loe™
R e e e )
(3.316)

Zys ooy , Cig ot
—2—2bse ’7+b—§e "4+C,m+Cy

Simplifying (3.316) in terms of similar power gives

9 (77) = Zzee_m7 + 22777e_m7 + Zzsnze_b” - Zzge_Zb77 + E%e_b" +Cg (3.317)
Where
7. = 2224 . Zzz . Z23
® pt b b?
27 Z
Z 24 23
7 p? b
Z
7. L
28 b
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Z
Zy =2

~2b
Inserting the boundary conditions gives

9, (©)=0+0+c, =0

Where

k1 = Zzz +Zzs

k
gl(o) 226_229+Fl+018 =0

C18:k2
Where

k
K, =2, —Z,s ——~
2 29 26 b

Substituting back (3.318) (3.319) and (3.320) into (3.317) gives
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(3.318)

(3.319)

(3.320)



0,(17) =2, + Z,me™ + Zgn’e ™ —Z e + l; 74k, (3.321)

Similarly Consider (3.224)
Let
r,=6 (3.322)

Then (3.224) reduces to

[(H%j(eb"—l)—lj9(§+n(fo'+ 9g) 05 —
a 1 n 1 U ' '
r2r+ar2 :_% R—((;+90]+590]—2([E+QOJ+EQOJ(f0+go)+ (3323)

e

M ( 7+ g(’)z)+ NoGsds + N6 +Q, (1+ € 6, ) +
5y (1+(e=2)6, +6,7)

Substituting (3.265), (3.276), (3.278), (3.280),(3.277) and (3.282) into (3.323) provides

[5Jie)-1) coerynloe e ) e

R((“eﬂ )

r2’+ar2:—% ( +e‘“” ~ae “”)j( e —ye™) (3.324)

)
+Qh( ) ( -S.e” °'7)(—ae’“”)

(—ae an) ( SC”)(1+(e—2)e""’7 +e—2a77)

Simplifying (3.324) gives
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r,+ar, = L
2 2 — T
R

_“Tl// ae " 4 HTW ae™ +ae ™ +(1+y )ane”

a a _(1+'//)1€_b’7—(1+z//)e’(“*b)’7+
— e Y 4 ane—m] ) c
R 2R,

(]

(1+ 1//) a g g (a+b)n

+ECM (1+l//2)672bn +Qh +Qh ce 4 Nbscae—(oﬁ—sc)q

+Nta2e—2m7 + 5e—8017 + 5(9 i 2)e—(a+5c )17 4 5e—(2a+sc);7

Further simplification of (3.325) gives

r,+ar, =

- ~(a+b)n ~2b _ (@S, )n
Zoo® 1+ 258 + 2y + Zygne " + e +Z+

- - - ~(2a+8
2369 2an +Z37e by +0e Sent L oe ( a+ C)77

where

1 1
Zy z—a[Qh €+—Wa+a——ej
231___(2(1"‘!”)—1-'_—[//0!)
z ——iEM(lwz)
3 ¢
© R
1 a
TR R
1
Zy _—E(5(€—2)+ NbSca)
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(3.325)
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1 1
Z37 :—2€(1+l//);

Similarly, the solution for (3.326) is given by

2,8 +Z,e L7 e 7 e
—|ad 7 | adx —(a+S |x _2ax —bx _S.x —|ad
r2(77)=e J. UJ.O ej | Ly® fers.) + 2y + 260 ? +Zye ¥4 5e dx +cyee Je (3.327)
+5e—(2a+sc )x
Simplifying (3.327) gives
2 n
Zsox—ﬁe_bxﬁL—ZSZ gle2iny ZaoX Lo s
b (a—2b) 2 s,
r, (77) —@ +ﬁeax _ﬁeﬂzx + Z37 e(a—b)x + o e(afsc)x + Clgefary
a a (a—b) (a-S,) (3.328)
_ 5 e—(zx+8c)x
(a+S,) .
i.e.
A z ) Z.1
Zon — =2 (e <)+ ——2(el* Pl 1)y TT__
o1 = (e ) (a—Zb)( )5
r(n)=e ﬁ(e*SC” —1)+ﬁ(ea’7 —1)—ﬁ(e‘“” 1)+ +C e

a a




L. ( Z
—an _ 231 (q-(atb)y _ q-an 32 =2by _ n-an
Z.,1e . (e e )+ (a—2b)(e &)+
—233772e_m7 — @(e(‘”sc)” —e™ ) + ﬁ(l— e ) _
2 S, a >
r,(n)= + g™ (3.329)
ﬁ(e—zaﬂ —en ) 4 Z37 (e—bn _en ) n
a (a—b)
5 (e_scn _efa” ) _ 5 <e7(2a+SC)77 _ e’aﬂ)
(a-S,) (a+S,)
Simplifying (3.329) in terms of similar power gives
Z Z Z
(1) =Zyne " — =3 *OW L 7 g7 4 T2 o720y T38 p2gman
2(77) 3077 b 0 (0{—2b) 5 n
ﬂe*(“*sc)” +ﬁ_ﬁe*2m? + ZS? e by e—Scﬂ (3330)
S, a « a—b) a-S,)
_ o e—(2a+5c)77 i Clgefaq
(a+S,)
Where
y (Za Ze Zu Zw Ze 2, 5 S
° b (a-2b) S, a a (a-b) (a-S,) (a+S,)
Recalling that 2 = G

Then equation (3.330) becomes
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(s - 7 ) B
91’('7) = 230778_0”7 ——3e (ab)r + Zoe 1+ (a —322b) e w 233 7726‘ n
Lol Lo Lo gy Lo _gqwn, O g (3.331)
S, a « (a—h) (a-S,)
— J e—(2a+5c)77 +Clge—a77
(a+S,)

Integrating both sides of (3.331) gives

—an 7 7 s 7 i
91 (77) = ZSO (—lne_a” _e_j _ 0 g 31 e (a+b)y _ 32 e 2by

b b? a b(a+b) 2b(a —2b)
_ﬁ nze—a’l +£ Ee*‘m + e_0;77 N 234 e—(a+3c)77 +ﬁ77+z_362e—2m] (3332)
2 a ala a S, (a+S,) a ' 2a
_ Z37 /. =S¢ g ~(2a+Sc)n _ 19 N-an
b(a-b)°  (a-S) (a+S.)(2a+S,) a-

Simplifying (3.332) in terms of similar power gives

e (77) =—Zgne " — Ly + Zagei(am)n ~Z,e7

_Z46172e70ﬂz n Z4le*(a+3c)f7 4 24077 " Z43e720ﬂz _ Z44e*bf7 (3333)

20{+SC)77 _Cﬂe—aq +c
20
(94

+ZOle‘(

where

Z Z Z
7 _|fxn fu_ Lo
% ( b? & «a ]

Z
Z _ 31

® b(a+h)
z, =%
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Z
Z — 32
“ 2b(a-2b)
Z
“e = 2at
Z
Z _ 37
“ b(a-b)
Z45_(%+2323j
Z
Z46_2_2
; _ 5
“(a+S,)(2a+S,)

So a solution is possible if Z,, = 0.
Inserting the boundary conditions gives

6,()=0+0+c, =0 (3.334)

Cz0 =0 (3.335)

0, (O) = a(zm Lo+ Lo+ Ly~ Lyp+Ly- Z44) =Gy (3.336)
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C, =ak,

(3.337)
where
Ky = Zoy — Zag + Zao +Zas + Zoy — Zap + Zas — Zas
0,(n)=—Zyne ™" —Zye ™" + Z e 7, e (3338
—Z e +27,e N 7, et 7, e 47, e P ke '
Similarly Consider (3.225)
Letr,=¢ (3.340)
Then (3.225) reduces to

(sc (“T‘”j(eb’f -1) —1j¢(; +Sa7( T3 +95) 4 —Risc [¢0 + g%j

r,+S.h,=— ¢ (3.341)

~28, [¢0 +%¢gj( f5+06)+ Nuby,' — S0, (L+(e~2)6, +6,°)

Substituting (3.265), (3.276), (3.277), (3.278),(3.280) and (3.283) into (3.341) provides

HETT B
+S,7(-e —ye)(-s,e%)

' _ a s, M ( o oS
r+S,r, =— —R—sc(e "+2( S.e ”)j (3.342)

28, (e‘sﬂ +%(—Sce‘s“’ )j(—eb” —ye™)

+N, (a”e")-S.o (e )(1+(e—2)e ™ +e7)

Simplifying (3.342) gives
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(st espses) e

_ & g s .a802 =S¢ ~(Sc+b)r @ 2 ~(Sc+b)n
£+S.r=— R S8 +2Re ne +(280e S, me )

e

+ (zl//Sce—(ScH})ﬂ _ SCZI//ne—(SC+b)77 )

_l_NtlaZe—w] _ SCO_(E—SCU + (e _ Z)e—(scﬂz)n n e—(2a+5c)n)

(_SCZ (“TI//J(e_(SC+b)” _ e’scﬂ ) + Scescqj

+S.7 (1+ y/)rye_(s°+b)’7
2 25 e—(Sc+b);7
I+ S0 =— —isce_sm + as,” ne ¥ 4| -
R, 2R, —Scznef( o+b)n

+ (zl/jsce—(ScHJ)n _ SCZV/nef(SCer)n )

+N, %™ - ch(e*Scﬂ t(e—2)e S grlzass )

Further simplification of (3.343) gives

2
r+S.0=| (S (1+y)-S.? (1+,//))ne—(b+5c)ﬂ _ % e — N e

e

+SCO' (e _ 2)e—(5c+a)7] n Sco_e—(2a+sc)n

(b+Sc)’7 _(Sc+a) —(ZOH'SC)T]

) +S .1, =2, +Z,.e ~Z,me > 7, e + 7,67 1+ oe

where

Z47 = aSc + Sco- - Sc2 (1—’_—1//) - Sc
R b

[
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(a:c +SCO__SC2 (1LWJ_SCJe—SCW +(SC2{1'LWJ_ZSC (1+l//)je(b+sc)r]

(3.343)

(3.344)



Z,=S. (“T‘”j—zsc (1+y)

as,’
Z49 =

2R,

2
Lsy=a"Ny

Z,=S.0(e-2)

Similarly, the solution for (3.344) is given by

—S.X —(b+S; )x -Scx
_ —ISCd77 n _[Scdx Z47e +Z4ge _Z4gxe —J-Scdn
(m)=e " e R Lo (3.345)
—Z e+ Z e +S.0€
Simplifying (3.345) gives
z z ZoX saw Z S0 !
(n)=e S|z, x—"8e ™ Tt y2  Z507 oSl Tl gmax  Sc g2ax | 4o oS
3(77) o b 2 S.—a a 2a 2
24777—@(6”’ —1)—@772 —i(e“c“)” —1)
-Sa b 2 Sc_a ~S.
r3(77) e 7 S +Cpe (3.346)
St 1) 2T (g2 g
(e -1)=5 (e 1)

Simplifying (3.346) in terms of similar power gives

L, _(bs Z _ Z _ Zoi (s ia
(1) =2 ne " - =8 g Ol T p2g-s 50 gan Tt g (Sera)y

2 S, —«a a

Z Z Z _ _ _
I B R R +Z, |e Sen ~Z,e (2a+8)n +C,e Se
b S -a «a

c
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@ef(l”sc)n _@77 e an
b 2 S, —«a a

C
-S¢n —(2a+S,)n -S.77
Z,e " —7.e +C,,e

I3 (77) = Z4777e_scn -

Where Z, =Z,, +% ﬂJrﬁ

Sc—a  «

_l_

’

Recalling that = = %

Then equation (3.347) becomes

Zig o A Z Zg, -
"= 7 pe S _Z48ga (b+S)n _ La9 20757 _ 50 g-an _ 51 g (Se+a)n
) a7 b ) n s . .

C

(2a+S; )1

+Z,8%" ~Z e +C,,e"

Integrating both sides of (3.348) gives

m .-s e > Ly ~(b+S¢)n
— Z __r ol
#(7) ‘”( X j+b(b+SC)e

c c

_ﬂ _ 77_2 e’sc’7 + 3 _i e*Sc’? _ e_S:7 + ZSO g
2 | s, s.\ s s? )| a(s.-a)

c

Z51 e_(sc +a)n + ZOZ e—(ZaJrSC )\ YA

_ C _
_ 5Zesc’7_£e Sc'I+CZS

4+
a(a+S,) 200+, S, S,

Simplifying (3.349) in terms of similar power gives
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_ VA _ Z., _
Ze Sen 50 —ie (Sc+a)n

(3.347)

(3.348)

(3.349)



Z48 e—(b+8c)n + Zso

+b(b+Sc) a(a-S,) a(a-S,)
Zoz —(2a+S,)n _ Cﬁ e*Sc’? +C
20+, S, z

b+S.)n

) (77) = Zs3eiscn + 2547797%’7 + 25577297%'7 + Zsee_( +Z5e"

(Sc+a)

) ) C,
+Z8 T Z e B —?e 7 4Gy

c

Inserting the boundary conditions gives
¢ (0)=0+0+Cy =0
C,, =0

C
¢1(0) = (Zss +Zse +Z57 +Zss)_§

C

=0

szzsck4

where

7 L Ly Iy

¥ g% g2 3
C C C
C C
z

7. =4

55 2
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(3.351)

(3.352)

(3.350)



* b(b+S,)
Z
Z — 50
> a(a-S,)
Z
Z — 51
*8 a(a-S,)

k4 =2+ L+ 2L+ Loy

Z
Z — 02
® 2a+S,

=78 +Z e +Z_nPe S +Z e S 47 e
) (77) 53 5477 5577 56 57 (3.353)

—(S.+a)n —(2a+S,)n ~S.77
+Z48 +Z,€ -k,e

Substituting (3.239), (3.253), (3.265), (3.276), (3.303), (3.321), (3.338), and (3.353) into

(3.186) results

b —2b -b 2,-b -
Ze" =2, +Zgne =2 e =2, e

_ Z, _
42,8+ ey 7
16 b 18

g(n) =% (€ —1)+ €| Zye ™ +Zyme ™ + Zygn’e ™ —Z,e > + % e + kzj

19(77) —e ¢ —Z,ne " =Ly + nge_(wb)?7 - Z4zeizb77
—246772e7m] n Z4le—(a+sc)r7 n Z43e—2an _ Z44efbr7 + Zme—(2a+sc)r] _ k3e70ﬂ7

2,05 47 e + Z e 4 Z e T 4 Z57e"”7]

~(Sc+a)n —(2a+S,)n -S.7
+Z48 +Z,e -k,e

¢(77) =g >4 e[

(3.354)
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3.25 Case 2: When the reaction is steady with Arrhenius chemical reaction: a=0

3.2.5.1 Solution for case 2

In this case, equations (3.73) — (3.77) reduces to

m 1 - n " " ! ! "
(e )f+l’g( )f+77(f+g)f—2f(f+%fj

—2g'(f’+% f"]—Qf ?—(M+y)f'+G,(1+0)+G, ¢=0

g"+=(e™ —1)g"+%(e‘b'7 —1)g”+77(f’+g')g”—2f’(g’+%g”j

_Zg'[g’+%g"j—Qg'2 -(M+y)g'=0

1

RO+ (e —1)6”+%(e‘b’7 1)@ +n(t'+g')@

l 17 ! ! ! ! ! ! !
—2((;+9j+59j(f +9')+ ECM(f ‘+g 2)+ N,0'¢

+N,0” +Q, (1+ € 0)+5p(1+(e-2)0+06°) =0

§ (e -1) g+ (e 1) e s (£ 9) g

—ZSC(¢+g¢’)(f’+g')+NtlH"—Sca¢(1+(e—2)9+92):0
Similarly, rewriting equations (3.355) — (3.358) in the form:
1+y n
f"+bf"+ T-1)-b |[f"+n(f'+g")f"=2F" T+ "
(( b j( ) j 7(7'+9) ( 2 j

o[ e e
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(3.355)

(3.356)

(3.357)

(3.358)

(3.359)



gm+bg"+((1+l//j(e—bﬂ _1)_bjg!r+n(f¢+gI)gﬂ

b (3.360)
_21:r(g!_i_%g”]_zgl(gr_i_gg”j_ggrz_(M +]/)g'=0
Rﬂ”+0’+((l+TV/)(e‘b’7 —1)—1}9’“7( f'+qg')¢
1 n 2 2
2| | =+0 |[+=6" |(f'+g')+EM (' 3.361
(T o
+Ny0'¢ + N,O” +Q, (1+ € 0) + 5p(1+(e—2) 0+ 6% ) =0
¢"+S. 4 +S, ((“T‘/’j(e-b" —1)—1j¢'+ Sn(f'+9')¢
(3.362)
—ZSC(¢+g¢’j(f’+g')+ N,0"—S.06(1+(e-2)0+6*)=0
Introducing an artificial parameter < in equations (3.359) — (3.362) gives
((1‘Ll//j(e—bl7 _1)_bJ f/r_'_n(fr_'_gr) fr/_zfr(fr_i_g f”j
7 bf e -0 (3.363)
—Zg'(f’+%f"j—9f'2—(M +7) 4G, (1+c6)+G, ¢
((“"”j(e‘b" 1)—bjg”+n(f’+g')g"—2f'[g’+%g”j
gr!/+bg!r+€ :O (3364)

(—1“”)@b”—l)—1j9'+n(f'+g')9'—
RO"+0'+ ¢ 2(( +9j+%¢9’j(f'+g’)+EcM(f'2+g'2)+Nb6”¢’+Nt6"2+ =0 (3.365)
(

Q, (1+0)+5p(1+(e—-2)0+0°)
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S, ((“T‘”j(e-bﬂ —1)—1J¢'+ S (f'+g)¢

~2S, (¢+%¢'j(f’+ 9')+ Ntle"—sca¢(1+(e—2)9+92)

F S e 0 (3.366)

Similarly, Simplifying and processing interms like powers of < gives the order zero and one

equations with their respective boundary conditions given below

(S
f+bf/=0 (3.368)
f,(0)=0, f;(0)=-1, fJ(n—>x)—>0 '
9o +bgy =0 (3.369)
9,(0)=0, g;(0)=-v, g5(n—>x)—>0
eg+i9(; =0

R, (3.370)
6,(0)=1, 6,(n—>»)—>0
¢ +S. =0 (3.371)
¢O(O)=1, ¢0(77—>oo)—)0
e1
flnq_ bfln+ ((]%j(eb” _1)_bj folr +77( for n gor) fo” _
21, [ f/ +% fo”]- 29, ( f/ +% fo”j—ngo’2 ~(M+7)f, (3.372)

+G,y (1+€6,)+ G, ¢, =0
£(0)=0, £/(0)=0, f/(n—>%)—>0
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n 14 1 - n ! ! n
9, +bg1 +([%j(e o7 _1)_b] 9 +77( 1:o + go)go

-2 fo’(gé +%98]—295[95 +%gé’j—ﬂgéz ~(M+7)gy=0 (3.373)

9,(0)=0, 9;(0)=0, g;(7—>0)—>0

1 - ! ! ’ !
((%)(e by —1)—1}90 +n(f+9;)6; -

" 1 ’ 1 1 4 ! ! ¢ !
Gty —2((‘+90j+%90j(fo+go)+EcM(foz+goz) =0

S

+N, G5y + N6 +Q, (1+ € 6,) + ¢ (1+(e - 2) 6, + 6,°)

6,(0)=0, 6,(7—>»)—>0

@'+ S 4 +S, ((“ij(e—bv _1) —1) ¢ +S.n(fy+95)d -

(3.374) 2S, (¢0 +%¢O'J( fo+ o)+ Nu6y —S.0¢, (1+ (e-2)6,+ 902) -0
(151(0):01 ¢1(77 —>oo)—)0

(3.375)

Similarly, following the same processes of case one above gives

—by ~2bn —bn —an
Lo " —ZLy® T+ Zyne T = L8

- Z, _
47,7 e 7
73 b 75

g (77) :%(e—bn _1)+ c (Zgle—bn + Zgzﬂe—bnzsge—qu +%e‘b’7 + ZBS)

—an —an ~(a+b)n
=Ly 1€ T =L + Ly,

_ Zg7e—2b77
+Zg T 47 e 7 e 7, e
=S =S¢ ~(b+S; )7 —an
Ly "+ Zygghe " + 28 +2Z,4€ ]

—(S.+a)n -8
+lele - leze

O(n)=e""+ e(

(é(n) =e >y e[

(3.376)
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G, G
Zas_(b_ga
Lo Zg
64 bz b
Z
Z. =5
% 2p?
Z
7 =61
66 b
7 G, e
o a(b-a)
268: Gr¢
Sc(b—Sc)
Z Z
0= T
Z
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Sy
Z, = Loz
o
, s
73 S

Zy, = 264 + Zes + Ze7 + Zes

Z
Z75 = Z70 +Z72 _Zeg +Z73 - b

7 W

o= (v +y?) -y +(M+y)y

R

e

Zy =(‘//+V/2)_QV/

zﬁ_l
78 b2
Z
Z,. =<1
79 b
Z
Z _ 77
80 2b2
__Zw Zn
81 — b
Z
S
Z
Z =8
83 2b

b2
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Zg =—i(Qh € +1+Tl//a+a
7, —__(z(lw)_l*T‘”a
Zyy=——EM (1+y7)

Zo ———1(5(e—2)+ N,S.)
Ly :_Ril(Qh)

Z,, ——RithaZ

Z, :—Zﬁl(lﬂy)é

Lgs éj
b «
287

(a+h)
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Z95_7
Z
Z — 89
* S (a+S,)
— Zgg
7 2b(a-2b)
Z
“ " 20t
Z
Z _ 92
® b(a-b)

ZlOl = _293 + 294 + 296 - Z97 + ng - Z99

1+y

Z,.,=S0-S°%—=|-S
102 c c( b] c

Loy = Sc2 (HTWJ -25, (1+ ‘//)

Zyy, = athl
2= Sca(e— 2)

Z z

2106 — 103 + 104 + 105

b S -a «a
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VA

7 __ZlOZ_ 106
w0 =752
C

Z _ ZlOS
111 —
a(a-S,)
Z112 = Z1o7 + 2109 + Zuo + lel

3.2.6 Case 3: When the reaction is unsteady with chemical reaction of Constant rate

0
5'( )#0

3.2.6.1 Solution for case 3

In this case, equations (3.73) — (3.77) reduces to

f”’+%(eb’7 -1) f”+%(eb’7 1) "4 (f'+q") f"—Ri(mg f")—

g (3.377)
() an{ ) v e

NS
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g’”+%(e‘b” —1)g”+£(e‘b” —1)g"+77(f’+g’)g”—i(g'+ﬂg”j—
0

b R,

2f!(g!+ggr/)_zg!(g!+%g!rj_9912_(M +7/)gr:

R16?”+%(eb” ~1)0'+ ¥ (e -1)0"+n(f'+ g')e'—i((é+9j+ge'j—

S

5p=0

b R,

2((£+6’j+%0’j(f’+g’)+ EM(f?+ g’2)+ N,0'¢'+NO”? +Q, (1+ < 0)+

y  Se (by v SW (o ' L :
#(e —1)¢+T"”(e —1)¢+Scn(f+g)¢—§sc(¢+g¢j—

[

28, (¢+g¢'j( f'49')+ Ny —S,04=0

Again, Re

writing equations (3.377) — (3.380) in the form:

4 n 1+!// - 14 ! ’ " a ’ 77 14
f " +bf +([Tj(e b”—l)—b}f +n(f'+g')f —E(f 1 j—

2f’[f’+g f”j—Zg'[f’+g f”j—Qf ?_(M+y)f'+G,(1+c6)+G $=0

m 14 1 —| " ! ! 14 a ! 14
oo 3{o-de)

2f!(gr+%grrj_zg!(gr+%grrj_gg!2_(M +}/)g,=0

R16?”+¢9’+((1+ij(eb” —1)—1).9’+;7(f’+g’)9’—§[(é+6’j+%9’j—

(&

5p=0

e

j+%9’j(f’+g’)+ EM(f2+97)+N,09 +N&?*+Q, (1+c6)+
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4 ! 1+ — ! 1 ! ’ a ’
@' +S.0 +sc([T””j(e b”—l)—l)(/ﬁ +S(f'+9')¢ - =S, (¢+g¢j—
® (3.384)
28{¢+%¢’}(f’+g’)+ N,0"—S.0% =0
Introducing an artificial parameter < in equations (3.381) — (3.384) gives
1+l// —bn " ' ' " a ( ! 77 I/j
— (e -1)-b [f"+np(f'+g" ) f"——| '+ " |-
((bj( )J )R 113
f" 1 bf"+ e 2f’(f’+%f”j—Zg'(f’+%f”]—Qf’z—(M +r)f+ 0  (3.385)
G,y (1+€0)+G, ¢
1+ — 14 ’ 1 ” a ’ 14
(e )3 i)
0" + by . -0 (3.386)

21:!(gl+%g"j_zgl(gr_i_%gﬂj_gg&_(M +7/)g!

((“—’/’j(eb’? —1)—1Je'+n(f'+ g')@'—%[(éw}r%e’j—

RO"+0'+ ¢ 2(( +9j+g€’j(f’+g’)+EcM(f'2+g’2)+Nb6”¢’+N16"2+ =0 (3.387)

oC/)
N
VR
[EY
o|t
<

(]

)(e‘b” —1)—1]¢'+sc77( fr+ g')¢5'—Risc (¢+%¢'j—
5S4+ e —0 (3.388)

25, (¢+%¢'j( f'+9')+N,0" - S.of

Similarly, Simplifying and processing interms of like powers of cgives the order zero and

one equations with their respective boundary conditions given below
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f+bfy =0
f,(0)=0, f;(0)=-1, fj(7—>0)—>0

m

9
9,(0)=0, 95(0)=—y, gg(7—>x)—>0

+bgy =0

" 1 '
00 +EQO :0

1

6,(0)=1, G,(n—>0)—>0

#y+ Sy =0
#(0)=1 ¢ (n—>x)—>0

flﬂq_ bflrr+ ((1—::)(//)(6[)77 _1)_bj f0" +77( fO’ + gol) fO" —Ri( fol +g foﬂj_

€

2f0'(fo' +% fo”J-zgo'(fo#% fo"j—QfO'z—(M )t +

G,y (1+€6,)+G,4,=0
£,(0)=0, £/(0)=0, f/(7—>0)—>0

m n 1+ —| 14 ’ ’ 14 a ! 14
g1+bg1+((—l//j(e o _1)_bj 9o +77( fo+ go)go _E(go +ggoj_

e

b
2fo’(ga+%g£{]—2%(gé +%93j—ﬂgéz—(M +7)g,=0

9,(0)=0, 9{(0)=0, g/(7—>x)—>0
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(3.389)

(3.390)

(3.391)

(3.392)

(3.393)

(3.394)



(g e

a 1 ' ' '
91"+i91'+i — -2 (—+00j+290 (fo+95)+|=0
R, |:\>1 € 2

f'2+go )+N O + NG +Q, (1+ <6, +

5¢o
6,(0)=0, 6(n—>»)—>0

e

1 7b77 ’ [ ! ! 4
{+S4+S, (( ;‘”j( —1)—1j¢0+scn(fo+go)¢o—§sc(¢o+g¢o]—

(3.395) 25, (gﬁo +g¢gj( f/+ 05 )+ Nyl —S,o =0
4.(0)=0, ¢(n—>x)—>0

(3.396)

Similarly, following the same processes of case one above gives
—b. —2b - 2,4-b
Ly =L + 2125776 —Zne"

Z
—an -Scn 129 ~—bn
AT I N _b e+ 2,

b b 2 b —2b
Ly + Ly + 2y € =287 +

Z,, _
142 o-by | 21

—an -an ~(ar+b)n -2bn
—Lgole " — L5 " + Ly5,8 —Z,58

~(a+Sc)n ~2an —bn
+ leae - lege

O(n)=e“"+e| -Zune ™ +Ze
—an
ZlGZe

—(b+S. )n

s, s, 2.5,
Zygg® "+ Zggne " + L€ + 28 +

—an _SCU
Zme - Zme

d(n)=e""+ e[

where
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Zys _ Zys _ Zy6

Z117 =

b? b® b
=
Zy= Bip <
a(b-a)
Gy

— 22120 _ le7 _ leQ

Z —
123 b3 b b 2
Z
Z _ 118
124 2 b
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7  —f%10 ‘o
125 bz b
Z
Z — ~120
126 b
Y4
Z,; =—4
o
Z — ZlZZ
128 — S

Z129 = le7 + leS + ZlZl + ZlZZ

Z
Z130 = Z124 + Z127 _2123 + Z128 - t1329
a
Z131:?l//_(‘//+‘//2)_b21//+('v| +7’)‘//
e

2

Zis =(V/+W2)_Q‘//

aby
Z133 =
2R,
Z — Z131 _ 22133 _ Z132
B p2 20 b?
Z 27
Z . -1 “uss
B h 2p?
Z
Z136 = 2183
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Z132

Z —
137 2h?

2Z z

7 _f71% T3 Ziss

B pd b b?

27 Z
7 - 136 4135
139 b2 b
Z
A
140 b
Z
A 1
141 2b
2142 = 2134 + Z137
Z
Ly =2y — Ly — 1z
1 1+ a
Z,=—Q,€ + TV ara-2
R, b R,

Zoe =—%(2(1+1//)—1+T‘/’a]

Zys6 :_iEcl\/I (1+l//2)
R
1 a
Lyg=—F5 -5
R, 2R,
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z, :(Zus Zus  Zue Zus T s S
b (a-2b) S, a a (a-b) (a-5S,)
Ligy = ( Zb1;14 + ZO? - Z;SZ )
fiss = b(ff‘fff b)
7, = s
Z _ Zl48
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VA Z

Zl47

161 —
2a

z

Z162 = _2153 + 2154 + lee - Z157 + 2158 - 2159

Zmy:§§L+&0—Sf(£i%j—&
R b

e

Zyg, = Sc2 (]--I—ij =23, (1+ l//)

Zgs = "Ny

Z,. = Ly N Ly N Zigs
b S -a «a

7 - Ly _ Ly _ L

W s? S

C

Z Z
Zyo = 81625 _ 8163
c C
V4
Ly = ;65
7. = Ly

" p(b+S,)
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— Z166
Z172 - OC(CK—SC)

Z173 = Z168 + 2171 + Z172

3.2.7 Case 4: When the reaction is steady with chemical reaction

a=0
3.2.7.1 Solution for case 4

In this case, equations (3.73) — (3.77) reduces to

f”’+%(e‘b’7—1) e (e 1) t4n(1'+g) f”-zf'[mg f”j

—2g'(f’+% f"]—Qf ?—(M+y)f'+G,(1+0)+G, ¢=0

g”’+%(e‘b’7 —1)g"+%(e‘b'7 —1)g”+77(f’+g')g”—2f’(g’+%g”j

_Zg'[g’+%g"j—Qg'2 -(M+y)g'=0

R1¢9"+%(eb’7 —1)0'+%(e"’” ~1)¢'+n(f'+g')e

—2(&9}%9')(1‘4 0")+EM (F2+97)+N,0%

S
+N 0% +Q, (1+€0)+5p=0

¢"+%(e‘b’7 —1)¢'+S°T‘”(e—b" ~1)¢'+S.n(f'+g")¢

28, [¢+%¢'j( f'+9')+ N0 —S.06=0

Again, rewriting equations (3.398) — (3.401) in the form:
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(3.398)

(3.399)

(3.400)

(3.401)



" 14 1+l// 14 ! !/ " !/ !/ 77 "
f "+ bf {(TJ( —1)—be +n(f'+g')f"-2f (f +o )

—Zg( +

g"'+bg”+(( ‘Ll//j(e—bﬂ _1)_bjg”+77(f¢+g¢)g”

_2fr(g!+%gn _zgr(gr+%gnj_ggr2_(M +]/)ng0

f"|-Qf?—(M+y)f'+G, (1+€6)+G,p=0

NS

|

R10”+6"+((1+Tl//j(e‘b’7—1)—1)«9'+77(f'+g')9’
—2((é+0j+%0’j(f’+ 9')+EM (f’2+g’2)
+N,0'¢'+ N6 +Q, (1+ €6)+5$=0

¢ +S. 4 +S (l;‘”j( ‘b”—l)—1j¢’+scn(f’+g’)¢’

28, [¢+g¢'](f’+g’)+ N,0"—S.0%=0

Introducing an artificial parameter < in equations (3.402) — (3.405) gives

1+l// —bn " ’ ’ 4 ! ! 77 ﬂj
ikl 48 -1)-b |f f fr—2f" f'+=f
(( b J(e ) j rfee) ( 2

_2g'[f'+g f”j—Qf Z—(M+y)f'+G,(1+€6)+G ¢

f"+bf"+ e =0

1+l// —bn " ' ' " r[ v n)
il 4 ~1)-b f —2f Ui
(( . j(e ) jg +n(f'+9')g g +2g

_2gl g¢+%g"j_Qgrz_(M +7/)g/

9" +bg"+e =0
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(3.402)

(3.403)

(3.404)

(3.405)

(3.406)
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/_\\

.
RO"+0'+ ¢ [1 + 2o

€ 2
+5¢

¢"+S.9'+€

[ 1“" e ™ —1)—1j¢'+8077(f’+g')¢'

!+gr)61_

f'+g)+EM(f?+g?)+N,0¢ +NO*+|=0 (3.408)
c b t

=0 (3.409)

(¢+ ](f +9')+N,0"—S. o9

Similarly, Simplifying, processing and collecting like powers of< gives the order zero and

one equations with their respective boundary conditions given below:

€

fW bf " __ o

f,(0)=0, f/(0)=-1, f/(7>%)—>0
gg+bgg =0

9,(0)=0, g5(0)=-w, go(n—>x)—>0

" 1 i
00 +EQO :0

1

6,(0)=1, G,(n—>»)—>0

i+ .05 =
#%(0)=1, ¢ (n—>0)—>0

(3.410)

(3.411)

(3.412)

(3.413)
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% b+ ((—1;‘/’ j(e‘”’? -1)- b) f () +90 ) 1) -
21, (f +727 f, j 290'(f0’+g fo")—Qfo'z—(M 7)1y

+G,, (1+€6,)+G, ¢, =0
f,(0)=0, f/(0)=0, f/(n—>o)—>0

m " 1+ — " ! ! "
f."+ bf "+ ((ij(e b”—1)—bj f, +77(fo +0, )fo -
(i g

+G,, (I+ € 90)+ G4 =0
£,(0)=0, f/(0)=0, f/(n—>»)—>0

o'+ L 6 + =
Rl

@'+ S. 4 +S ((1;1/1]
(1,

((—1”’)(?“ —1)—1)49(; +n(f/+95)6, -
b

1 ! !’ ’ |/ !
—2((;+90)+290j( fy+095)+EM (2 +9;)

+Ny Oty + NGyZ +Q, (1+ € 6, ) + 54,

J¢o+s ( 0'+96)¢(;_

((éo + Z ¢o + go + Nub; —S.00, =

$(0)=0, ¢(n—>x)—>0
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Similarly, following the same processes of case one above gives

1, lege_b” - Zlgoe_zm7 + Zlglﬂe_bﬂ —Z,g "
f (77) = B(e_ g —l)+ c

Z
=Scn 194 A-bn
+Z,4,8 + _b e+ 2o

g (77) =%(e_b” _l)+ € (sze—bn + Zo1€ " = Z o + %e_bﬂ + Zzosj

—an ~an ~(a+b)n
=Ly " =L,y + 2,0

- Zz17eanJ
—(a+Sc)n -2an by -an
+221ee + ZZlSe - Zzwe - ZZZle

0(n)=e’“”+ e{

¢(77) =g >4 e[

75077 ’Scﬂ _(b+sc )77 —an
Ly €+ Lypgn€ " + 7,008 +Zy50€ ]

—(Sc+a)n —S¢7
+2231e - Zz3ze

where

A 1 183
184 = P2 b
z
7 8
185~ 52
z
7 _‘cm
186 b
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Zig =
(b-a)
Zygy ==
188
S, (b-5,)
Z Z
Ligy=— E)84 - blgs
Z
Z — 185
190 2h
Z
Z191 - tl)se
Z
Z192 — 187
Z _ Z188
193 S
C
Zigy =Zigs +Zigs + Zig; + Zigg

Z
- 194
Z195 - Z190 + Z192 - leg + Z193 -

Z a—w—(ty+1//2)—b2y/+(M +7)y

196 —
Re

2

Zyg; :(‘//+’//2)_Q‘//

z z
Zigg = blgs - b127

128



A Zgae

Z, =~ % _ %

7, =%

Zyos = Zygg + Z oo

z Z Z Lo

205 — 4203 — %201

1 1+
Z o6 Z_Q(Qh €+Twa+aj

Ly :_%(Z(Jﬁyj)—l—l—Twaj

Loy = _Ri EM (l+ 1//2)

1

1
Ly = _5(5(8—2)-% Nbsca)

1

1
Lyo = _E(Qh)

1
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1
Zz11 =T Nt0‘2

1 1
Ly, :_ZE(]-'H//)E

b (a-2b) S a a (a-b) (a-5S,)

C

ZO :(2207 _ Z208 + Z209 _ ZZlO T Z211 _ Z212 o J

Z z
7. | L2 “o
213 ( b o j

Z
Z — 207
# b(a+b)
2215 ZZ:LO
Z _ ZZOQ

7 Z211

218 202
7 — Ly,

219

b(a—b)

Z _ ZZOG

220 —

b

Z221 = _2213 + Z214 + 2216 - Z217 + Z218 - Z219
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Z222 = Sco- - Sc2 (HTWJ - Sc

Zys =S, (]-—I—Tl//j_zsc (1+W)

2
Ly, =a"Ny

Zyys = S0

z VA
7, =2 4 Z 4 4 Lo
b S -a «a
VA Z
z
Zzzsz_SL:Z
Ly

7. —_ 23
# b(b+S,)

— ZZZ4
Z230 - a(a_sc)
Z
Z — 225
231 a(a_sc)

Z232 = Z227 + Z229 + ZZ30 + Z231
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION
4.1 Analysis of Results

In the analysis, The criteria for the existence of unique solutions of the model was
established, this is to show that the solutions of the model formulated depend continously
on the initial and boundary conditions; that is to say the model is well posed. Also we
examined the properties of solution of the model formulated, this is to show the behavior of
the solution when values are assigned to some key parameters of the model. We solved the
equations using iteration perturbation method where details can be found in (He, 2006); this

IS to see the effect of parameters involved on the concentration, temperature and velocities.
Finally, we examined the effect local Reynold numberR,, prandtl number P, ratio
parametery , radiation parameterR , Frank-kamenetskii parameter § magnetic parameterM ,

thermal grashof numberGrg, activation energy parameter <, porosity parameter

unsteadiness parameter a, heat source Q. concentration grashof number G,¢ ,Schmidt

numberS,, constant number b, Brownian diffusion parameter N,, thermopheresis

parameter N,, permeability parametery, Ecket number E,, concentration chemical reaction

parameter -~ on the steady and unsteady state problems. Solutions given by equation
(3.354), (3.376), (3.397) and (3.418) were computed and simulated using computer
symbolic algebraic package MAPLE 17. The results obtained from the method are shown
in Figures 4.1 to 4.33 for case 1 and Figures 4.34 to 4.40 for case 2, 4.41 to 4.47 for case 3

and 4.48 to 4.50 for case 1
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The graphical illustrations of the velocity profiles f (), g(z), f'(m)and g'(y),

temperature profile @(z;) and concentration profile ¢(;) for different physical parameters

which includes, local Ryenold number R, , prandtl number P, ratio parametery, radiation

parameterR , Frank-kamenetskii parameter ¢ magnetic parameterM , thermal grashof

number G , » activation energy parameter <, porosity parameter €2, unsteadiness parameter
a, heat source g, concentration grashof number G,¢ ,schmidt number S, constant number
b, Brownian diffusion parameter N,, thermopheresis parameterN,, permeability

parameter 7, Ecket number E,, concentration chemical reaction parameter o with the aid

of Maple 17 for four cases.
4.1.1 Graphs of Case 1: Transient state with Arrhenius chemical reaction

The graphical illustrations for the transient state with Arrhenius chemical reaction are
presented in Figures 4.1 to 4.33. Comparison between analytical and numerical results is
also presented in Table 4.1. The computations were done for the values of

R,=0.1, R=10,Pr=071S,=022G,=01G, =01y =1 y=La=-15=0.1,
Q=1 €=001 N,=0.1, N, =03, E, =0.1,Q=02 6=0.1 M=1and b=0.2
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Table 4.1: Comparison between iterative perturbation method and numerical results

n f'(7)1PM Results f'(77)Numerical Results frimer = T ror
0 -1 -1 0

1 0.8486088699 0.1404504484 7.082 x10*
2 0.7000842521 0.1683682918 5.317 x101
3 0.5600638028 0.1583546596 4,017 x101
4 0.4323550159 0.1540526436 2.783 x101
5 0.3192471021 0.1529084507 1.663 x10!
6 0.2218070827 0.1526534215 6.915 x107
7 0.1401514746 0.1521795550 1.203 x107?
8 0.0736882343 0.1510442569 7.736 x1072
9 0.0213262897 0.1491157112 1.278 x10!
10 0.0183479204 0.1463876809 1.280 x10!
11 0.0469259176 0.1428990509 9.597 x1072
12 0.0660625567 0.1387001841 7.264 x1072
13 0.0773884586 0.1338294798 5.644 x107
14 0.0824462359 0.1282728465 4,583 x107
15 0.0826470683 0.1218691242 3.922 x107
16 0.0792442096 0.1140906653 3.485 x1072
17 0.0733201633 0.1035584878 3.024 x107
18 0.0657845281 0.0870266879 2.124 x1072
19 0.0372687238 0.0573798328 2.011 x1072
20 0.0486930351 0 4.869 x102
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Figure 4.1: Effect of R, on f'(n)
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Figure 4.2: Effect of R, on 9'(’7)
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Figure 4.3: Effect of R, on 6(n)

Figure 4.4: Effect of R, on ¢(7)
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Figure 4.5: Effect of Pr on 6(7)
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Figure 4.6: Effect of Pr on ¢(7)
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Figure 4.8: Effect of 7 on f'(p)
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Figure 4.12: Effect of M on 6(7)
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Figure 4.16: Effect of y on ¢(77)
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Figure 4.18: Effect of Q on 6(7)
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Figure 4.20: Effect of N, on 6()
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Figure 4.21: Effect of N, on 6(7)
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Figure 4.22: Effect of N, on ¢(7)

145



— &=01
6=1
'8=1

Figure 4.23: Effect of 5 on 6(1)
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Figure 4.24: Effect of - on ¢(’7)
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Figure 4.25: Effect of 2 on f'(7)

Figure 4.26: Effect of 2 on g'(77)
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Figure 4.30: Effect of < on ¢'(7)
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4.1.1.1 Analysis of Results and Discussion for Transient state with Arrhenius chemical

reaction
Table 4.1 above demonstrates agreement between the results obtained using iterative

perturbation method and purely fourth-order Runge Kutta numerical integration approach

coupled with shooting method at small and moderate parameter values. Generally, the

difference is of order 10 and 1072
Figures 4.1 to 4.2 display the profiles of dimensionless x and y components of velocity for

€It was observed that as the local renold

different values of local Reynolds number
number increases, the velocity profiles decreases along x and increase in y direction

respectively and consequently decreases boundary layer thickness. Figures 4.3 to 4.4
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presents the effects of local renolds number on both temperature and concentration profiles.
Increase in local renolds number causes the temperature to increase and decrease the

concentration with the boundary layer thickness reducing. Figures 4.5 to 4.6 gives the

Pr . .
effect of prandtl number on both temperature and concentration profiles. It was noted

that increase in prandtl number enhances both temperature and concentration. The impact

of radiation parameter R on temperature profiles is depicted by figures 4.7. An increasing
value of radiation parameter decreases temperature . Figures 4.8 to 4.9 illustrate the

4

influence of permeability parameter along the primary and the secondary velocity

profiles. For increasing values of permeable parameter, all the velocity profiles increases.

Figures 4.10 to 4.12 portray the effects of magnetic parameter M on the velocities and
temperature profiles. Incremental behavior was observed on the velocities and temperature

profile for increasing values of magnetic parameter. Figures 4.13 to 4.16 depict the
velocities, temperature and concentration profiles for various value of velocity ratio Y An

v

P !
augmentation in " indicates an decrease in the velocity ) and g (77) The temperature

and concentration also increases with increasing values of V. Figure 4.17 show the

distribution of primary velocity for increasing values of ~ " . An increase is observed on the

velocity. Figure 4.18 displays the impact of heat source strength on the temperature profile
which increases for increasing values on. Figures 4.19 illustrate the  concentration

Increasing values of S

distribution for increasing values of ¢ ¢ provides reduction in

concentration. Figures 4.20 reveal the impact of increasing Brownian diffusion parameter
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" on temperature. An increase was seen in the temperature. In figures 4.21 to 4.22,

Increase is seen on both temperature and concentration profiles with increasing values

N ) N :
of '. An increasing impact was found on the temperature and decreasing effect on the

concentration profiles with increase in the Frank-kamenetskii and chemical reaction

parameters 0 and & in figures 4.23 to 4.24. Figures 4.25 to 4.28 show the influence of
unsteadiness parameter on the velocity, temperature and concentration profiles. For
increasing values of the unsteadiness parameter, the primary velocity reduce and the
secondary velocity increase. Also for increasing value of?, the temperature increases and
concentration decreases. Figures 4.29 to 4.32 display the effects of activation energy
parameter “on velocities, temperature and concentration profiles. An increasing impact is
seen along the velocity in the x axis with opposite impact on the y axis velocity, and
tempreture reduces with reverse effect on the concentration for increasing values of

activating energy parameter. Figure 4.33 gives the effect of ecket number. the temperature

increases with increasing values E.

4.1.2. Steady state with Arrhenius chemical reaction

The graphical responses for the steady state with Arrhenius chemical reaction are provided
in the figures 4.34 to 4.40. The simulation were carried out with values of
R,=0.1, R=10, Pr=0.71,8,=0.22, G, =01, G, =01y =1 y =1,

a=0,0=01 Q=1 e=0.01, N,=0.1, N, =0.3 E. =0.1Q0=0.2,
=01 M=1and b=0.2
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Figure 4.36: Effectof M on f'(7)

Figure 4.37: Effect of M on g'(7)
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Figure 4.38: Effect of y on f'(p)
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4.1.2.1 Analysis of Results and Discussion for Steady state with Arrhenius chemical

reaction

Figures 4.34 to 4.35 present the influence of permeability y on velocity profiles. It can be
clearly seen that as the permeability increases, the fluid velocity increases from both x and
y direction. The impact of magnetic parameter M is shown by figures 4.36 to 4.37. It is
observed that velocity profiles increase for increasing values magnetic parameter. Figures
4.38 to 4.39 show the effect of velocity ratio parameter i . For increasing value of velocity
ratio, the velocity in x and y direction decreases. The velocities increase for increasing

values of thermal grashof parameter _ in figures 4.40.
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4.1.3. Transient state with chemical reaction of Constant rate

The graphical responses for the steady state with Arrhenius chemical reaction are provided
in the figures 4.41 to 4.46. The simulation were carried out with values of
R, =0.1, R=10, Pr=0.71, S, =0.22, G,, =0.1, G,, =0.1, y =1 y =1,

a=-1,6=0.1 Q=1 =0.01,, N, =0.1, N, =0.3, E,. =0.1Q=0.2,
=01 M=1and b=0.2
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Figure 4.41: Effectof a on f'(77)
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Figure 4.46: Effect of - on ¢(7)

4.1.3.1 Analysis of Results and Discussion for Transient state with Chemical Reaction

of Constant Reaction Rate

Figures 4.41 to 4.42 have been plotted to demonstrate the effect of velocities along x and y
axis for different valuesa. It is noticed that the velocity profiles decreases along x and
increase along y with multiple values of unseadiness parameter a. The temperature profile

for selected values of N, is presented in figures 4.43. The tempreture increases for
increasing values Brownian diffusion n,. The temperature and concentration profiles
generated due to increasing Thermophoresis parameter N, are ploted in figures 4.44 to

4.45. An increase was seen in both the tempreture and concentration. Figure 4.46 explain
the impact of & on concentration . but the concentration shows its usual trend of gradually
decaying for increasing values of chemical reaction o .
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4.1.4.1 Steady State with Chemical Reaction of Constant Reaction Rate

The graphical responses for the steady state with Arrhenius chemical reaction are provided
in the figures 4.47 to 4.50. The simulation were carried out with values of

R,=0.1, R=10, Pr=0.71, S,=0.22, G, =0.1, G, =0.1, y =1 y =1,

a=00=01 Q=1 e=0.01, N,=0.1, N, =0.3, E. =0.1Q=0.2,
=01 M=1and b=0.2

Figure 4.47: Effect of § on 6(n)
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4.1.4.1 Analysis of Results and Discussion for Steady State with Chemical Reaction of

Constant Reaction Rate
It is evident in figure 4.47 that temperature increases for increasing number of Frank-

kamenetski parameter & . The effects of S and - on concentration are shown in Figures

4.48 t0 4.49. Increasing values in s_and o results gradual concentration reduction. The

behaviour of Eckert number on temperature profile is depicted by figure 4.50. For

increasing values of g_, the temperature increases.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

51 Conclusion

This present work has been able to extend the flow concept of Anuradha and priyadharshini
(2016) by incorporating Magnetic field effect, Porosity into momentum equations,
Arrhenius chemical reaction and extension of 1 dimensional shrinking sheet problem into
three dimensional one shrunk in two direction holding z axis as constant. The problems
were looked at in four ways viz unsteady state with Arrhenius chemical reaction, steady
state with Arrhenius chemical reaction, unsteady state with chemical reaction of constant
reaction rate and steady state with chemical reaction of constant reaction rate. The obtained
equations of the formulated problems are converted into Ordinary differential equations
(ODEs) using similarity transformation variables. The ODEs were solved using lteration
perturbation method (IPM) and the comparisons of the results were established with the
shooting technique. The effects of various dimensionless flow parameters like local
Reynolds number, prandtl number, velocity ratio, radiation , Frank-kamenetskii, magnetic,
thermal grashof number, activation energy parameter, porosity, unsteadiness, schmidt
number, Brownian diffusion, thermopheresis, permeability, Ecket number, heat source and
chemical reaction on the velocity, temperature and concentration are analysed. It was

discovered that:

I.  Results of the IPM are in quite agreement with the shooting technique.

Il.  The boundary conditions are satisfied by all the presented graphs.
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VI.

VII.

5.2

Increase in the values of local Reynolds number, velocity ratio and unsteadiness

decreases the fluid velocity along x axis while permeability, magnetic effect,

thermal grashof and activation energy increase the velocity.

Fluid velocity is increased along v axis for increasing values of local Reynolds

number, permeability, magnetic effect and unsteadiness while velocity ratio and
activation energy is against the velocity.

Temperature strength is enhanced with increase in local Reynolds number, Prandtl,
magnetic effect, heat source, velocity ratio, Brownian diffusion, thermophoresis
effect, Eckert, Frank-kemenetskii number and unsteadiness parameters and it is
decreased by Radiation and activation energy .

Concentration appreciates with increase in Prandtl, velocity ratio, thermophoresis
effect and activation energy and decreases with local Reynolds number, Schimidt
number, chemical reaction parameter and unsteadiness.

The heat transfer and chemical reaction rates have no significant difference for all

the cases.

Recommendations

We recommend that further research should be on Hybrid nanofluid and not to be restricted

on dynamics of incompressible nanofluid, and during the course of this study, it was

observed that many industrial and engineering process care less about implementing the

result of several research work, thus, the outcome of this research is recommended to be

used in industrial processes, technology and engineering since the present work serve as the

scientific tool for understanding the dynamics of Arrhenius and constant reaction for

different cases considered.
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5.3  Contribution to knowledge

The frame work has been able to improve upon the existing work by achieving model
formulation, and also incorporating magnetic field effect, Porosity ,Arrhenius chemical
reaction, extending the work into three dimensional one shrunk in two direction helding z
axis as constant, and the condition for the existence of unique solution of the model by
actual solution method and Derrick and Grossman approach was established and also the

properties of solution of the model was examined by upper and lower solution method.
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