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ABSTRACT

The production of crushed granite, which is one of the conventional coarse aggregates
used in concrete is expensive and energy demanding. This production process leads to
the emission of dust particles and also generates noise leading to environmental hazards,
which are harmful to humans. But rapid increase in population creates drive towards
increase in infrastructural development. This has, in the last decade, overstretched
crushed granite in an alarming rate. Many approaches have been used to develop
models for predicting the properties of concrete containing various aggregate types.
This study is solely focused on applying Artificial Neural Network (ANN) in predicting
properties of concrete using Bida Natural Gravel (BNG) as coarse aggregate due to its
abundance in the environ. Physical and mechanical properties of the fine and coarse
aggregates were determined. Three water-cement ratios (w/c) of 0.40, 0.50 and 0.60.
and three coarse aggregate-total aggregate (ca/ta) ratios of 0.55, 0.6 and 0.65 as well as
three total aggregate-cement ratios (ta/c) ratios of 3.00, 4.50 and 6.00 was used for
factor settings. Full factorial experimental design was used to generate twenty-seven (27)
experimental data points. Combinations of constituent materials in each experimental
data point were used to produce concrete mixtures. Slump of the concrete were
determined and the compressive, flexural, splitting tensile strengths and modulus of
elasticity were determined at 28 days curing age. The highest slump of 270 mm was
recorded using w/c of 0.60, ca/ta of 0.55 and ta/c of 3.00 while zero slump was recorded
using w/c of 0.40, ca/ta of 0.65, 0.6.0 and 0.55 and ta/c ratio of 6.00. Highest
compressive, flexural and splitting tensile strengths of 44.30, 7.60 and 3.42 N/mm2 as
well as modulus of elasticity of 32.74 kN/mm2was recorded using low w/c ratio of 0.40,
medium ratio of 0.55 and low ta/c ratio of 3.00 while the lowest compressive, flexural
and splitting tensile strengths of 7.79, 1.60 and 0.57 N/mm2 respectively and elastic
modulus of 4.09 kN/mm2 was recorded using low w/c ratio of 0.40, medium ca/ta ratio
of 0.60 and high ta/c ratio of 6.00. The results obtained were augmented using a
MATLAB script and the augmented data sets were used to develop two case ANN
models for slump, compressive, flexural, splitting tensile strength and modulus of
elasticity using a MATLAB back propagation, feed-forward ANN algorithm. Mean
Square Error (MSE), Root Mean Square Error (RMSE) and Regression (R) were used to
examine the performance of the models. A 5-89-1 ANN architecture with a tangent
sigmoid activation function was found to be sufficient in predicting slump data for
concrete using Bida Natural Gravel (BNG) as aggregate. A 5-69-1 ANN architecture
with tangent sigmoid activation function was found to be sufficient in predicting
compressive strength data, while a 5-91-1 ANN architecture with logistic sigmoid
activation function was found to perform best in predicting flexural strength of concrete
using BNG as coarse aggregate. Architecture with 5 input neurons, 91 hidden neurons
and 1 output neuron (5-91-1) was adjudged to best predict the splitting tensile strength
of concrete containing BNG using tangent sigmoid activation function, while a 5-67-1
ANN architecture with a logistic sigmoid activation function was selected for predicting
the elastic modulus of concrete containing BNG. The ANN models developed herein
can be used in predicting properties of concrete using BNG as coarse aggregate with
98% accuracy.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background of the Study

Concrete is no doubt the most flexible and globally used construction material due to its

versatility, durability, sustainability and economy when compared to other structural

materials. It can be engineered to satisfy a wide range of performance specifications,

unlike other building materials, such as natural stone or steel, which generally have to

be used as they are. Because the tensile strength of concrete is much lower than its

compressive strength, it is typically reinforced with steel bars, in which case it is known

as reinforced concrete (Mehta and Monteiro, 1993; Shetty, 2005; Neville, 2011).

The term concrete refers to a mixture of aggregates, usually sand, and either gravel or

crushed stone, held together by a binder of cementitious paste. The paste is typically

made up of Portland cement and water and may also contain supplementary

cementitious materials (SCMs), such as Silica Fume (SF), Fly Ash (FA), Rice Husk Ash

(RHA) or slag cement; and chemical admixtures, such as, plasticisers, superplasticiser

(SP), and air entraining admixtures (Aitcin, 1998; Nawy, 2008; Caldarone, 2009).

Therefore, concrete properties can be enhanced by modifying its properties by the

addition of mineral or chemical or both admixtures. Concrete can also be described as a

composite material consisting of aggregates enclosed in a matrix of cement paste

including possible pozzolans. This implies that concrete has two major components;

cement paste and aggregates. The strength of concrete depends on the strength of these

components, their deformation properties, and the adhesion between the paste and

aggregate surface (Abdullahi, 2009; Neville, 2011; Osama and Sagady, 2013).
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Aggregate is a very crucial raw material for preparing concrete, especially coarse

aggregate, which greatly affects the concrete performance. Concrete performance, such

as, frost resistance, permeability resistance, drying shrinkage, and durability, have been

reported to have a direct bearing with aggregate type (Fowler and Quiroga, 2003; Abebe,

2005; Shetty, 2005; Neville, 2011; Yang, 2015). Aggregates can be classified as natural

or artificial depending on their sources. Natural aggregates are obtained from quarries

by processing crushed rocks or from riverbeds, while artificial aggregates are obtained

from industrial by-products, such as, blast furnace slag (Abebe, 2005, Neville, 2011).

Natural aggregates are most commonly obtained and are relevant in the Nigerian

construction industry, since man-made aggregates are seldom manufactured in the

country.

Bida Natural Gravel (BNG), which is the coarse aggregate of interest in this research is

a by-product of the Precambrian decomposition, transportation and deposition of rocks

of the Bida basin. Bida basin geographically lies in the North central part of Nigeria and

is bounded to the North-East and South-West by basement complex (Nuhu, 2009;

Alhaji, 2016). The production of BNG involves removal of shrubs, excavation and

sieving. The production process is estimated to cost N5000 for about 3.8m3, while the

cost of delivery to site is estimated at N8,000 compared to conventional crushed granite

of the same quantity estimated to cost between N65,000 to N70,000 excluding cost of

delivery to site (Alhaji, 2016). Therefore, BNG is adjudged to be 8 times cheaper than

crushed granite. This cost difference has fostered its preponderance in construction in

and around Bida basin and environs. Concrete production in areas of similar basement

deposits in Nigeria and the world at large may also benefit from the results of this

research.
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Artificial Neural Network (ANN) refers to a data processing system consisting of a

large number of simple, highly interconnected processing elements (artificial neurons)

in an architecture inspired by the structure of the central cortex of the human brain.

ANN have the ability to learn from experience in order to improve their performance

and to adapt themselves to any changes that may arise (Flood and Kartam, 1994a;

Mansour et al., 2004; Hola and Schabowicz, 2005). This research is therefore focused

on application of artificial neural network for predicting the properties of concrete using

BNG as coarse aggregate.

1.2 Problem Statement

The population of Nigeria as at May 2021 is estimated at 210,652,803 people with a

population density of 226 people per km2 (586 people per m2). The projected population

of Nigeria is estimated at 410,637,868 people with a population density of 451 people

per km2 for 2050 (Worldometers, 2021). These will most definitely in the nearest future,

lead to a rise in the construction of building and other infrastructure for better living of

the Nigerian populace. The chief construction material in Nigeria today is concrete.

Conventional crushed granite, which is the main aggregate used in the production of

concrete in Nigeria is depleting and also scarce in some parts of Nigeria due to the rapid

increase in population (Maneeth and Chandrashekar, 2014; Sulymon et al., 2017).

Furthermore, cost of crushed granite is considerably higher than locally sourced gravels.

Alhaji (2016) carried out a cost comparative study and reported that Bida Natural

Gravel (BNG) is 8 times cheaper than crushed granite. There is therefore the need to

explore other coarse aggregate sources for use in concrete production.
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Researches carried out by Abdullahi (2012), Olajumoke and Lasisi (2014), Ode and Eluozo

(2016), and Sulymon et al. (2017) established that the quality of concrete is governed by the

type of coarse aggregate used. Coarse aggregate constitutes the largest percentage of the

total volume of concrete and its properties greatly affects the strength, durability and

general performance of concrete. Therefore, the importance of using the right type and

quality of aggregates cannot be overemphasized. Coarse aggregate used in concrete is

usually sourced from natural gravel or crushed rock, blast furnace slag, or recycled

concrete, ceramics and bricks (Kett, 2000; Alexander and Mindess, 2005; Cachim, 2017;

Nawy, 2008; Neville, 2011).

Relationships between constituents of concrete are significant to the response of

concrete mixtures. There exist several methods of designing concrete mixtures for

modelling purposes. Alhaji (2016), used central composite design for composing

concrete mixtures modelled for mechanical properties using natural gravel from Bida

environs. Central composite design generally considers reducing the size and

complexity of mixture designs, but does not adequately give protection to curvature in

the response function (Montgomery, 2001; Tijana et al., 2014; MINITAB, 2017).

Furthermore, central composite design may discard useful mixtures relating the

interaction of constituents or factors. Without the use of full multilevel factorial

experiments, important interactions may remain undetected. Therefore, a full multilevel

factorial experiment was used in this study.

Ilyasu (2014) and Shehu et al. (2016) used BNG to produce self-compacting concrete

measuring properties, such as, the workability, compressive, flexural and tensile

strengths. Salihu (2011) also examined the compressive strength of concrete using Bida
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natural deposit stone, while Alhaji (2016) modeled the mechanical properties of

concrete made using coarse aggregate from Bida environs by employing a statistical

method. Statistical models generally consider linear, interactive, pure quadratic and full

quadratic functions in predicting and modelling properties and parameters in different

cases. The process usually consumes time because it involves a lot of trial and error

before achieving the best fit model. However, Artificial Neural Network (ANN) models

parameters while employing non-linear functions can generate the best model in

seconds depending on the volume of data. Information regarding the use of any artificial

intelligence technique in predicting properties of concrete made from BNG is scarce in

literature. This research is however focused on the application of ANN for predicting

strength properties of concrete using BNG.

1.3 Aim and Objectives of the Study

This research is aimed at applying ANN for predicting the strength properties of

concrete using Bida natural gravel as coarse aggregate.

To achieve this aim, the objectives are to;

(i) determine the physical and mechanical properties of the constituent materials.

(ii) determine the fresh and hardened properties of the concrete produced using BNG

(iii) develop, train and validate ANN models based on laboratory results.

1.4 Scope and Limitation of the Study

This study was focused on applying ANN for predicting properties of concrete using

Bida Natural Gravel (BNG). Bida Natural Gravel (BNG) was selected as the coarse

aggregate of choice in this study. The physical and mechanical properties of aggregates

determined were limited to those necessary for mix design and those which provides
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information about the strength of the aggregates; specific gravity, bulk density, moisture

content, sieve analysis, water absorption, aggregate impact value as well as aggregate

crushing value. The parameters used for mix design were; water-cement ratio (w/c),

coarse aggregate-total aggregate ratio (ca/ta) and total aggregate-cement ratio (ta/c). The

general multilevel factorial experiment was chosen because it allows for the selection of

discontinuous factors and does not discard any combination of factors from the

available mixture. This allowed for a true representation of the interrelationship

between the constituents of the mixture. The properties of the concrete measured were

those which provides information about the workability and strength of the concrete;

slump, compressive strength, flexural strength, splitting tensile strength and modulus of

elasticity. A three-layer (Input, hidden and output) ANN architecture was used. The

ANN model comprised of five (5) input parameters (water-cement ratio, weight of

water, weight of cement, weight of fine aggregate and weight of Bida natural gravel).

The ANN architecture comprised of five (5) independent output parameters (Slump,

compressive strength, flexural strength, tensile splitting strength and elastic modulus).

The weights assigned to each neuron in all layers was independently chosen by the

model and the back propagation feed forward algorithm was used applying the tansig

and logsig activation functions. Many software and algorithms are available for

developing artificial neural networks. ANN algorithm embedded in MATLAB (2015)

software was used to develop the ANN model.

1.5 Justification of the Study

Due to the progressive increase in population, the demand for affordable housing and

sustainable infrastructure will continue to increase. The demand for naturally occurring

gravel will therefore continue to increase. The production of crushed granite requires
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enormous amount of energy and often leads to noise and air pollution. BNG has been

reported to be 8 times cheaper than the cost of crushed granite. Furthermore, studies

have shown that naturally occurring stones are not prohibited for use in concrete

provided that the engineering properties are known and satisfactory. As such, carrying

out research to develop an ANN model for predicting the properties of concrete

produced using BNG is well justified as the model produced can serve as a tool for

researchers in the concrete realm.

The world is gradually embracing artificial intelligent and artificial technology in

solving a lot of problems in engineering, medicine, agriculture and other fields.

Prediction of the strength properties of concrete has been an active research area over

the past two decades. Several research efforts to develop precise models for predicting

strength properties of different concrete types using different artificial intelligence

techniques are available in literature (Ni and Wang, 2000; Baykasoglu et al., 2004;

Akkurt et al., 2004; Oztas et al, 2006; Pala et al., 2007; Rajamane et al., 2007; Ozturan

et al., 2008; Palika et al., 2008; Alshihri et al., 2009; Saridemir, 2009; Saridemir, 2010;

Diab, 2014; Neela et al., 2014; Kirtikanta et al., 2016; Sonebi et al., 2016; Otunyo and

Jephter, 2018; El-Khoja et al., 2018; Jin et al., 2019; Marijana et al., 2019). Information

regarding the application of ANN to predict strength properties of concrete made using

BNG is however rare in literature. This research is therefore justified as the model

developed can be used for research purpose and in the field.
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Concrete

Concrete is a construction material made up of aggregates (fine and coarse) embedded

in a binding agent such as, a combination of Portland cement and water. Many

researchers have noted that concrete is the most widely consumed construction material

in today's world (Mehta and Monteiro, 1993; Abebe, 2005; Crow, 2008; Nishant, 2016),

but the type of aggregates and other constituents differ from region to region due to

their availability and structural application of the resulting concrete.

2.1.1 Types of concrete

Concrete used in construction all over the world has been distinguished and classified

according to different criteria. Types of concrete used in construction and their

properties contained in Zongjin (2011) are presented below:

(a) Normal Strength Concrete: The concrete that is obtained by mixing the basic

ingredients cement, water and aggregate will give us normal strength concrete.

The strength of these type of concrete will vary from 10 N/mm2 to 40 N/mm2.

The normal strength concrete has an initial setting time of 30 to 90 minutes that

is dependent on the cement properties and weather conditions of the construction

site

(b) Plain Concrete: The plain concrete will have no reinforcement in it. The main

constituents are the cement, aggregates, and water. Most commonly used mix

design is 1:2:4, which is the normal mix design. The density of the plain

concrete will vary between 2200 and 2500 kg/m3. the compressive strength is

between 200 to 500 kg/cm3. These types of concrete are used in the construction
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of pavements and building especially in area where there is less demand for high

tensile strength.

(c) Reinforced Concrete: Reinforced Concrete (RCC) is defined as the concrete to

which reinforcement is introduced to bear the tensile strength. Plain concrete is

weak in tension and good in compression. Hence, the placement of

reinforcement will take up the responsibility of bearing the tensile stresses. RC

works with the combined action of the plain concrete and the reinforcement. The

steel reinforcement used in the concrete can be in the form of rods, bars or in the

form of meshes. Now fibers are also developed as reinforcement. Fiber

reinforced concrete are concrete that use fibers (steel fibers) as reinforcement for

the concrete. The use of meshes in concrete will give ferrocement. Whatever be

the type of reinforcement used in concrete, it is very necessary to ensure proper

bond between the concrete and the reinforcement. This bond will control the

strength and durability factors of the concrete.

(d) Prestressed Concrete: Most of the mega concrete projects are carried out through

prestressed concrete units. This is a special technique in which the bars or the

tendons used in the concrete is stressed before the actual service load application.

During the mixing and placing of the concrete, these tensioned bars are placed

firmly and held from each end of the structural unit. Once the concrete sets and

hardens, the structural unit will be put in compression. This phenomenon of

prestressing makes the lower section of the concrete member to be stronger

against the tension. The process of prestressing will require heavy equipment

and labour skill (jacks and equipment for tensioning). Hence, the prestressing

units are made at site and assembled at the construction site. These are used in

the application of bridges, heavy loaded structures, and roof with longer spans.
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(e) Precast Concrete: Various structural elements can be made and cast in the

factory as per the specifications and brought to the site at the time of assembly.

Such concrete units are called as the precast concrete. The examples of precast

concrete units are concrete blocks, staircase units, precast walls and poles,

concrete lintels and many other elements. These units have the advantage of

acquiring speedy construction as only assemblage is necessary. As the

manufacturing is done at site, quality is assured. The only precaution taken is for

their transportation.

(f) Lightweight Concrete: Concretes that have a density lesser than 1920 kg/m3 will

be categorized as lightweight concrete. The use of lightweight aggregates in

concrete design give lightweight aggregates. Aggregates are the important

element that contributes to the density of the concrete. The examples of light

weight aggregates are the pumice, perlites, and scoria. The light weight concrete

is applied for the protection of the steel structures and are also used for the

construction of long span bridge decks. These are also used for the construction

of the building blocks.

(g) High-Density Concrete: The concretes that have densities ranging between 3000

to 4000 kg/m3 which are made using heavy weight aggregates are called

heavyweight concrete. The crushed rocks are used as the coarse aggregates. The

most commonly used heavy weight aggregates is Barytes. These types of

aggregates are most commonly used in the construction of atomic power plants

and for similar projects. The heavy weight aggregate helps the structure to resist

all possible types of radiations.

(h) Air Entrained Concrete: There are concrete types into which air is intentionally

entrained for an amount of 3 to 6% of the concrete. The air entrainment in the
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concrete is achieved by the addition of foams or gas – foaming agents. Some

examples of air entraining agents are resins, alcohols, and fatty acids.

(i) Ready Mix Concrete: The concrete mixed and bathed in a central mixing plant is

called ready-mix concrete. The mixed concrete is brought to the site with the

help of a truck-mounted transit mixer. This once reached in the site can be used

directly without any further treatment. The ready-mix concrete is very precise

and specialty concrete can be developed based on the specification with utmost

quality. The manufacture of these concrete will require a centralized mixing

plant. These plants will be located at an adjustable distance from the

construction site. If the transportation is too long then it will result in setting of

concrete. Such issues of time delay are adjusted to the use retarding agents that

delays the setting.

(j) Polymer Concrete: When compared with the conventional concrete, in polymer

concrete the aggregates are bound with the polymer instead of cement. The

production of polymer concrete helps in the reduction of volume of voids in the

aggregate. This thus reduce the amount of polymer that is necessary to bind the

aggregates used. Hence, the aggregates are graded and mixed accordingly to

achieve minimum voids which result into maximum density. This type of

concrete has different categories: Polymer Impregnated Concrete, Polymer

cement concrete and Partially Impregnated concrete.

(k) High-Strength Concrete: The concretes that have strength greater than 40 N/mm2

can be termed as high strength concrete. This increased strength is achieved by

decreasing the water-cement ratio even lower than 0.35. The calcium hydroxide

crystals that are the major concerned product during hydration for the strength

properties is reduced by the incorporation of silica fume. In terms of
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performance, the high strength concrete ought to be less performing in terms of

workability which is an issue.

(l) High-Performance Concrete: These concretes conform to a particular standard

but in no case, is limited to strength. It has to be noted that all the high strength

concrete can be high-performance type. But not all high-performance concrete

(HPC) is high strength concrete. Standards that conform to the high-performance

concrete are enlisted below:

i. Strength gain in early age

ii. Easy placement of the concrete

iii. Permeability and density factors

iv. Heat of hydration

v. Long life and durability

vi. Toughness and life term mechanical properties

vii. Environmental concerns

(m) Self – Consolidated Concrete: The concrete mix when placed compacts by its

own weight and it is regarded as self-consolidated concrete. No vibration must

be provided for the same separately. This mix has a higher workability. The

slump value will be between 650 and 750mm. This concrete due to its higher

workability is also called as flowing concrete. The areas where there is thick

reinforcement, self – consolidating concrete works best.

(n) Shotcrete Concrete: Here the concrete type differs in the way it is applied on the

area to be cast. The concrete is shot into the frame or the prepared structural

formwork with the help of a nozzle. As the shooting is carried out in a higher air

pressure, the placing and the compaction process will be occurring at the same

time.
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(o) Pervious Concrete: Pervious or permeable concrete are concrete that are

designed in such a way that it allows water to pass through it. These types of

concrete will have 15 to 20% voids of the volume of the concrete when they are

designed. The pervious concrete is created by a unique mixing process,

performance, application methods. These are used in the construction of

pavements and driveways where storm water issues persist. The storm water will

pass through these pervious concrete pavements and reach the groundwater.

Hence, most of the drainage issues is solved.

(p) Vacuum Concrete: Concrete with water content more than required quantity is

poured into the formwork. The excess water is then removed out with the help of

a vacuum pump without waiting for the concrete to undergo setting. Hence, the

concrete structure or the platform will be ready to use earlier when compared

with normal construction technique. These concretes will attain their 28 days

compressive strength within a period of 10 days and the crushing strength of

these structure is 25 % greater compared with the conventional concrete types.

(q) Pumped Concrete: One of the main properties of the concrete used in large mega

construction especially for high-rise construction is the conveyance of the

concrete to heights. Hence one such property of concrete to easily pump will

result in the design of pumpable concrete. The concrete that is used for pumping

must be of adequate workability so that it is easily conveyed through the pipe.

The pipe used will be rigid or a flexible hose that will discharge the concrete to

the desired area. The concrete used must be fluid in nature with enough fine

material as well as water to fill up the voids. The more the finer material used,

greater will be the control achieved on the mix. The grading of the coarse

aggregate used must be continuous in nature.
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(r) Stamped Concrete: Stamped concrete is an architectural concrete where realistic

patterns similar to natural stones, granites, and tiles can be obtained by placing

impression of professional stamping pads. These stamping is carried out on the

concrete when it is in its plastic condition. Different coloring stains and texture

work will finally give a finish that is very similar to much expensive natural

stones. A high aesthetic look can be obtained from a stamped finish

economically. This is used in the construction of driveways, interior floors, and

patios.

(s) Limecrete: This is a concrete type in which the cement is replaced by lime. The

main application of this product is in floors, domes as well as vaults. These

unlike cements have many environmental and health benefits. These products

are renewable and easily cleaned.

(t) Asphalt Concrete: Asphalt concrete is a composite material, mixture of

aggregates and asphalts commonly used to surface roads, parking lots, airports,

as well as the core of embankment dams. Asphalt concrete is also called as

asphalt, blacktop or pavement in North America, and tarmac or bitumen

macadam or rolled asphalt in the United Kingdom and the Republic of Ireland.

(u) Roller Compacted Concrete: These are concrete that is placed and compacted

with the help of earth moving equipment like heavy rollers. This concrete is

mainly employed in the excavation and filling needs. These concretes have

cement content in lesser amount and filled for the area necessary. After

compaction, these concretes provide high density and finally cures into a strong

monolithic block.

(v) Rapid Strength Concrete: As the name implies these concretes acquires strength

within few hours after its manufacture. Hence the formwork removal is made
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easy and thus, the building construction is covered as fast as possible. These

have a wide spread application in the road repairs as they can be reused after few

hours.

(w) Glass Concrete: Recycled glass can be used as aggregates in concrete. Thus, we

get a concrete of modern times, the glass concrete. This concrete increases the

aesthetic appeal of the concrete. They also provide long-term strength and better

thermal insulation. Properties of concrete are influenced by many factors mainly

due to mix proportion of cement, sand, aggregates and water.

2.2 Constituent of Concrete

2.2.1 Portland cement

Many cement classes and types exist in the market today. These cements have distinct

characteristics owing to adjustment in their constituent materials to meet certain

performance target. The cements used in the production of concrete possess the ability

to set and harden in the presence of water and are termed hydraulic cements. Hydraulic

cements can be categorised as natural cements, Portland cements, and high-alumina

cements (Neville, 2011; Mehta and Montero, 2001; Aitcin, 1998). The majority of

buildings and other concrete-based infrastructure in Nigeria are constructed using

Portland cement. Various types of Portland cement have been specified for different

applications. The governing factors for the choice of Portland cement include;

construction type, chemical composition of the soil, the cost of construction and the

construction pace. Five types of Portland cement are (Neville, 2011);

(i). Type I Portland cement: Type I cements are utilised for general and normal

constructions. They are used for pavement constructions where concrete is not



16

susceptible to sulphate attacks or where hydration does not result to excessive

fluctuation.

(ii). Type II Portland cement. Type II cements are modified and generates lesser heat

at a slower rate than Type I, but possess an enhanced resistance to sulphate. They are

applicable in hot weather when moderate heat generation tends to minimize the rise in

temperature.

(iii). Type III Portland cement. Type III cements are employed in cases where high

early strength is desirable in construction. Formworks can be disconnected early and the

concrete can be put in service as soon as possible. It is also used to reduce the amount of

time uncured cement is exposed to low temperatures. High strength can suitably and

cost effectively be achieved at the early stages with Type III cements than with Type I.

(iv). Type IV Portland cement. Type IV cements are necessary when the quantity and

rate of heat liberated must be kept at a minimum. Its strength development is much

slower than Type I cements. Type IV is normally used in large, mass projects, such as,

concrete dams, to combat the rise in temperature where heat generated during hardening

may be a critical factor, for the strength development of the resulting concrete when

placed.

(v). Type V, Sulfate-resistant Portland cement. Type V cement is used in structures

that are exposed to severe sulfate action, such as, areas that have water with a high acid

content. It gains strength at a slower rate than Type I.
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The widely utilised type of Portland cement in Africa and particularly in Nigeria today

is Ordinary Portland Cement (OPC), which by ASTM C150 – 97 (2000) classification

falls under Type I cement. According to BS EN 197-1 (2011), common cements are

grouped into five CEM classes depending on the percentage of clinker, major as well as

minor additives. Portland cement is however, a product obtained after blending and

crushing a combination of limestone and clay or shale together, and heating the

resulting mixture to 1450oC in a rotary kiln to produce clinker (Zongjin, 2011 and

Neville, 2011). The clinker produced is pulverised and further processed with gypsum

to produce a greyish powder called Portland cement. This ultimately implies that the

basic ingredients used for the production of Portland cement are limestone, clay, iron

ore and some amount of gypsum. Cement in any concrete should develop strength as it

hydrates over time and also possess excellent rheology in the fresh state (Shah and

Ahmad, 1994; Neville, 2011; Zongjin, 2011). Normal strength concretes usually contain

cement in the range of 300 – 450 kg/m3 but in high strength and high-performance

concrete (HPC), the amount of cement in addition to other supplementary cementitious

materials (SCM) is between 500 – 650 kg/m3 (Shah and Ahmad, 1994; Neville and

Aitcin, 1998).

2.2.2 Water

Concrete is usually made with hydraulic cements. Cements are chemical compounds

that set or harden in the presence of water. It is therefore necessary to prepare concrete

with the purest water to hydrate cement and lubricate the aggregates to enhance

workability. Nearly all natural, odourless and tasteless water that is safe for drinking can

be used as mixing water for concrete making (Nawy, 2008; Neville, 2011). BS 3148

(1980) stipulates that water possessing harmful constituents, contaminants, silt, sugar,
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oil and other forms of chemicals is damaging to the strength and setting times of cement.

Although ASTM C94 (2021) opined that water that is not safe for drinking may be used

to make concrete provided that it satisfies some acceptance criteria. The primary factor

governing the selection of water for use in concrete is related to the performance in the

wet and solid state. Impurities in water have an adverse effect on the strength and

setting times of cement as well as the durability of the resulting concrete since chemical

constituents present in water may actively participate in the chemical reactions and thus

affect the setting, hardening and strength development of concrete (Nawy, 2008;

Kucche et al., 2015). Sources of water applicable for concrete production are

categorized into three: added water, inherent aggregate moisture and liquid addictive in

form of plasticisers and superplasticisers (Abdullahi, 2009; Aitcin, 1998; Shetty, 2005).

Health issues regarding handling of water used in concrete production is also of great

concern. Therefore, the suitability of water can be identified from past service records

or tested to performance limits, such as, setting times, compressive strength and

durability test. Limits are specified for mixing water with their constituents, such as,

total alkalis and chloride sulfate. Biological treatment and pathogen reductions are also

required to ensure safety in handling of reclaimed water and saline water (Neville,

2011).

2.2.3 Aggregates

Globally, aggregates are recognised to be fragments of rocks or its equivalent which can

be used in its bounded or unbounded form to construct a part or total building or

infrastructure. Aggregates accounts for 65-75% of overall concrete volume and are

important ingredients in concrete production (Abebe, 2005; Nawy, 2008; Neville, 2011).

In other words, about three-quarters of the total volume of concrete are made up of
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aggregates. Hence, the quality and type of aggregate is of significant importance when

producing concrete of any grade, because properties of aggregates have a direct

relationship with the strength and durability of the resulting concrete. The cost of

aggregates is cheaper than cement. It is, therefore, necessary to incorporate into a

concrete mix as much aggregates as possible in other to produce a cost-effective

concrete. Aggregates also offer a great technical benefit in concrete. They give higher

volume stability and excellent durability when compared to cement paste only. The size

of aggregates used in concrete ranges from tens of millimetres down to particles less

than one-tenth of a millimetre in cross-section. The maximum size actually varies but,

in any mix, particles of different sizes are incorporated, the particle size distribution

being referred to as grading (Neville, 2011; Neville and Brooks, 2001). Aggregates used

in concrete can either be natural, artificial or recycled aggregate. Natural mineral

aggregates include sand, gravel or crushed rocks derived from natural sources. Artificial

aggregates can be thermally processed materials like expanded clays and shale or

aggregates manufactured from industrial by-products like fly-ash and blast furnace slag.

Recycled aggregates on the other hand are obtained from municipal and recycled

concrete from demolished buildings and pavements (Neela et al, 2014; Kamran, 2015;

Kirtikanta et al, 2016). To produce good quality concrete however, aggregates in at

least two size groups are used. The aggregates not larger than 4 mm in size termed as

fine aggregate and referred to as sand in BS EN 12620 (2008) as well as those termed as

coarse aggregates comprising of materials greater than 5mm in size (Nawy, 2008;

Neville, 2011). Therefore, aggregates in concrete are of two types, fine aggregate (sand)

and coarse aggregate (crushed stone or gravel).

(a). Fine aggregate
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Research carried out to ascertain the optimum properties of fine aggregates sufficient

for use in concrete is scarce in literature owing to the fact that the characteristics of fine

aggregates can be extensive particularly from one region to another (Mack and

Leistikow, 1996). Fine aggregates used to produce normal strength concrete usually

possess a particle size distribution within the range recommended by ACI -221R (1996).

Nonetheless, the selected fine aggregates to be used in concrete should fall on the coarse

side of these limits, which stipulates a fineness modulus of 2.7 to 3.0 (Aitcin 1998;

Neville and Aitcin 1998). The use of coarse sand results in a slight decrease in the

amount of mixing water necessary for a given workability, which is advantageous from

a strength and economic point of view. Finally, the use of a coarse sand results in an

easier shearing of the cement paste during mixing (Aitcin, 1998). Generally, there is no

particular advantage to using one type of sand rather than another as long as it is clean

and free from clay and silt.

(b). Coarse aggregates

Selecting coarse aggregates for concrete is more crucial than selecting fine aggregate as

the target compressive strength of concrete increases. In most cases, water-cememt ratio

is the factor that governs the strength of concrete, but studies have shown that strength

of coarse aggregates as well plays an important role in the strength of concrete (Aginam,

2013; Kaplan, 1959; Cordon and Gillespie, 1963; Ezeldin and Aitcin, 1991; Rocco and

Elices, 2009; Abdullahi, 2012). Coarse aggregates account for about 75% of concrete by

volume. Therefore, its properties cannot be neglected. Crushed limestone, dolomite as

well as igneous rocks such as granite, diorite, gabbro, syenite and diabase of plutonic

origin have been successfully used to produce concrete. The sharpness and angularity of

coarse aggregates measures the roundness of the aggregates which is controlled by the
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strength and abrasion resistance of the parent rock (Neville, 2011). Classification of

roundness is well documented in BS 812 - 1 (1975) and recently revised and published

as BS EN 933-4 (2008) and it is presented in Table 2.2. Natural mineral aggregates

constitute the most essential class of aggregates for Portland cement concrete

production (Mehta and Montero, 2001). Nearly 70% of concrete produced in Nigeria

today are made up crushed rock. Natural mineral gravel takes the remaining 30%. Many

researchers have sort alternative aggregate other than crushed granite for concrete

production in Nigeria. Natural mineral aggregates are obtained from various rock types,

which are made up of several minerals (Omar, 2009).

Natural and bush gravel have proven to be a viable alternative to crushed granite and

they have been used in the production of concrete particularly in Nigeria and different

regions of the world. Maneeth and Chandrashekar (2014) used river stone obtained from

India as coarse aggregates in concrete. In the same vein, Zahid et al. (2015) used natural

aggregates from Kashmir province in India for the production of concrete. In Nigeria

however, Apebo et al. (2013) carried out a comparative study on concrete made from

aggregates obtained from river Benue; Ezeokonkwo et al. (2015) prepared concrete for

compressive strength using natural aggregates form Anambra, South-East Nigeria;

Aginam et al. (2013) also investigated the impact of various natural coarse aggregates from

South-East Nigeria on the compressive strength of concrete. Olajumoke and Lasisi (2014)

examined the strength of concrete made with dug-up gravel existing in Ile-Ife area of South-

West Nigeria, while Sulyman et al. (2017) and Fakuyi et al. (2019) reported the use of

natural gravel for concrete in South-West Nigeria. Ode and Eluozo (2016), found out that

impurities in gravel impacts the compressive strength of concrete prepared with unwashed

gravel occurring in South-South Nigeria. Bamibgoye et al. (2016) also explored the

possibility of using gravel from South-South Nigeria. All of these researches confirmed that
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natural gravels can be used for preparing concrete of various grades. Efforts have been

made to characterize the properties of BNG and examine its suitability for concrete

production. Ilyasu (2014) and Shehu et al. (2016) used BNG in the production of self-

compacting concrete, while Salihu (2011), Alhaji (2016) and Yusuf et al. (2020) used BNG

for the production of normal strength concrete. These researches confirmed that BNG can

be used in place of conventional crushed granite in concrete preparation.

Bida Natural Gravel (BNG) is a by-product of the Precambrian decomposition,

transportation and deposition of rocks of the Bida basin. Bida Basin is assumed to be a

northwesterly extension of the Anambra Basin (Akande et al., 2005; Nuhu, 2009). The

basin fill comprises a north west trending belt of Upper Cretaceous sedimentary rocks

that were deposited as a result of block faulting, basement fragmentation, subsidence,

rifting and drifting consequent to the cretaceous opening of the South Atlantic Ocean

(Nuhu, 2009).

Table 2.1: Particle size classification of aggregates

Classification Description Examples
Rounded Fully water-worn of completely

shaped by attrition
River or seashore
gravel; desert, seashore
and wind-blown sand

Irregular Natural irregular, or partly shaped by
attrition and having rounded edges

Other gravels; land or
dug flint
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Flaky Material of which the thickness is
small relative to the other two
dimensions

laminated rock

Angular Possessing well-defined edges formed
at the intersection of roughly planar
phases

Crushed rock of all
types; talus; crushed
slag

Elongated Material, usually angular, in which the
length is considerably larger than the
other two dimensions

-

Flaky and
Elongated

Material having the length
considerably larger than the width, and
the width considerably larger than the
thickness

-

Source: BS EN 933-4 (2008)

(c). Properties of aggregates and their significance

(i). Particle shape and texture of aggregates

The shape and texture of fine and coarse aggregates have a direct bearing on the

workability of the resulting concrete and to some extent the strength. Essentially, to

reduce the quantity of cement paste sufficient to provide required workability of fresh

concrete, aggregates with roughly equidimensional shape with relatively smooth

surfaces are desirable (Aitcin, 1998; Metha and Montero, 2001, Neville, 2011). These

properties are peculiar to most natural sands and gravels. Where natural sand and gravel

are unavailable, crushed stone may be used. Crushed stone tends to have a rougher

surface and to be more angular in shape. As a result, it tends to require rather more

cement paste for workability. Whether using natural gravels or crushed stone, however,

either flat or elongated particles should be avoided, as they will lead to workability and

finishing problems (Abdullahi, 2012; Shetty, 2005).

(ii). Aggregate water absorption and moisture content
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Aggregates can possess water by absorbing it within the aggregate porosity or by

holding it as a moisture film on the particle surface. For mix design reasons, it is

important to be aware of the quantity of water the aggregate can absorb from the mixing

water or the amount of water the aggregate can supply to the mix. Aggregates moisture

condition can therefore be defined in four ways (Neville, 2011; Shetty, 2005);

(a) Oven Dry (OD): This condition is obtained by keeping the aggregate in an oven at a

temperature of 110◦C long enough to drive all water out from internal pores and, hence,

reach a constant weight.

(b) Air Dry (AD): This condition is obtained by keeping the aggregate at ambient

temperature and ambient humidity. Under such condition, pores inside of aggregate are

partly filled with water. When the aggregate is under either the OD or AD condition, it

will absorb water during the concrete mixing process until the internal pores are fully

filled with water.

(c) Saturated Surface Dry (SSD): In this situation, the pores of the aggregates are fully

filled with water and the surface is dry. This condition can be obtained by immersing

coarse aggregates in water for 24 h followed by drying of the surface with a wet cloth.

When the aggregate is under the SSD condition, it will neither absorb water nor give out

water during the mixing process. Hence, it is a balanced condition and is used as the

standard index for concrete mix design.

(d) Wet (W): The pores of the aggregate are fully filled with water and the surface of

the aggregate has a film of water. When aggregate is in a wet condition, it will give out

water to the concrete mix during the mixing process. Since sand is usually obtained

from a river, it is usually in a wet condition.

The absorption capacity, effective absorption, and surface moisture data are invariably

needed for correcting the batch water and aggregate proportions in concrete mixtures
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made from stock materials. As a first approximation, the absorption capacity of an

aggregate, which is easily determined, can be used as a measure of porosity and strength.

Normally, moisture correction values for intrusive igneous rocks and dense sedimentary

rocks are very low, but they can be quite high in the case of porous sedimentary rocks,

lightweight aggregates, and damp sands. Typically, the effective absorption values of

trap rock, porous sandstone, and expanded shale aggregates are 1/2, 5, and 10 percent

respectively.

iii. Density and apparent specific gravity

For the purpose of proportioning concrete mixtures, it is not necessary to determine the

true specific gravity of an aggregate. Natural aggregates are porous; porosity values up

to 2 percent are common for intrusive igneous rocks, up to 5 percent for dense

sedimentary rocks, and 10 to 40 percent for very porous sandstones and limestones. For

the purpose of mix proportioning, it is desired to know the space occupied by the

aggregate particles, inclusive of the pores existing within the particles. Therefore,

determination of the apparent specific gravity, which is defined as the density of the

material including the internal pores, is sufficient. The apparent specific gravity for

many commonly used rocks ranges between 2.6 and 2.7; typical values for granite,

sandstone, and dense limestone are 2.69, 2.65, and 2.60, respectively. For mix

proportioning, in addition to the apparent specific gravity, data are usually needed on

bulk density, which is defined as the weight of the aggregate fragments that would fill a

unit volume. The phenomenon of bulk density arises, because it is not possible to pack

aggregate fragments together, such that there is no void space. The term bulk is used

since the volume is occupied by both aggregates with voids. The approximate bulk
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density of aggregates commonly used in normal-weight concrete ranges from 1300 to

1750 kg/m3.

d. Unit weight

The unit weight is defined as the weight per unit bulk volume for bulk aggregates. In

addition to the pores inside each single aggregate, the bulk volume also includes the

space among the particles. According to the weight measured at different conditions, the

unit weight can be divided into UW (SSD) and UW (OD):

e. Crushing strength, abrasion resistance and elastic modulus

Crushing strength, abrasion resistance, and elastic modulus of aggregates are

interrelated properties, which are greatly influenced by porosity. Aggregates from

natural sources that are commonly used for making normal weight concretes are

generally dense and strong, and therefore are seldom a limiting factor to strength and

dynamic elastic modulus for most granites, basalts, trap rocks, flints, quartzitic

sandstone, and dense limestones are in the range 210 - 310 N/mm2 and 70 - 90 N/mm2,

respectively. But with regard to sedimentary rocks, the porosity varies over a wide

range, and so will their crushing strength and related characteristics. In one

investigation involving 241 limestones and 79 sandstones, while the maximum crushing

strengths for each rock type were of the order of 240 N/mm2, some limestone and

sandstones showed as low as 96 N/mm2 and 7000 48 N/mm2 crushing strengths,

respectively.

f. Particle grading

The particle-size distribution in a sample of aggregate, referred to as the grading, is

generally expressed in terms of the cumulative percentage of particles passing (or
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retained on) a specific series of sieves. These distributions are most commonly shown

graphically as grading curves. In practice, one can provide good concrete with quite a

range of aggregate grading. Although the continuous type of grading is the most

common, other types of grading are sometimes used for special purposes; for example,

gap grading refers to a grading in which one or more of the intermediate size fractions is

omitted. This is sometimes convenient when it is necessary to blend different aggregates

to achieve a suitable grading. Such concretes are also prone to segregation of the fresh

concrete. No-fines concrete is a special case of gap-graded concrete in which the fine

aggregate (< 4.75 mm) is omitted entirely to produce a porous, lighter weight concrete

that, for example, may allow water to drain through it. For fine aggregates, the particle-

size distribution tends to be described by a single number, the fineness modulus (FM).

2.2.4 Admixtures

Historically, admixtures are almost as old as concrete itself. The Romans used milk,

animal fat, and blood to improve the properties of concrete (Zongjin, 2011). Although

these were added to improve workability, blood was a very effective air-entraining

agent and might well have improved Roman concrete durability. In more recent times,

calcium chloride was often used to accelerate the hydration of cement. The systematic

study of admixtures began with the introduction of air-entraining agents in the 1930s

(Zongjin, 2011), when it was accidentally found that cement ground with beef tallow

(grinding aid) had more resistance to freezing and thawing than a cement ground

without beef tallow. The concrete properties, both in fresh and hardened states, can be

modified or improved by admixtures. The benefits of admixtures to concrete are listed

in Table 2.3. Today, almost all the contemporary concretes contain one or more

admixtures. It is thus important for practitioners to be familiar with commonly used
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admixtures (Zongjin, 2011). Admixtures are chemicals or minerals, added to concrete,

mortar or grout at the time of mixing, to enhance the properties, either in the wet state,

immediately after mixing or after the mix has hardened (Newman and Choo, 2003).

They can be a single chemical or a blend of several chemicals and may be in powdered

form, but most are aqueous solutions because in this form they are easier to accurately

dispense into, and then disperse through the concrete. The active chemical is typically

35 - 40% in liquid admixtures but can be as high as 100% (shrinkage-reducing

admixtures) and as low as 2% (synthetic air-entraining admixtures).

Table 2.2: Beneficial effects of different kinds of admixtures on concrete properties
Concrete Properties Admixture Type Category of Admixture
Workability Water reducers Chemical

Air-entraining agents Air entraining

Inert mineral powder Mineral

Pozzolans Mineral

Polymer latexes Miscellaneous

Set control Set accelerators Chemical

Set retarders Chemical

Strength Pozzolans Mineral

Polymer latexes Miscellaneous

Durability Air-entraining agents Air entraining

Pozzolans Mineral

Water reducers Chemical

Source: Zongjin (2011)

2.3 Properties of Concrete
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Fresh properties of concrete as well as the mechanical properties of the hardened

concrete are very important parameters that defines the grade and quality of concrete.

Major properties of concrete are discussed briefly:

2.3.1 Concrete in its fresh state

Fresh concrete is the nomenclature given to rheological concrete having a well-defined

plasticity. Plastic concrete gives room for transportation, placing, compaction and

surface finishing. It is therefore of paramount necessity to study fresh concrete

properties as it considerably affects the strength of a particular concrete mix. The

properties of fresh concrete which influence maximum compaction include; consistency,

mobility and compactibility. In concrete technology, these three properties are referred

to as the workability of the concrete (Gambhir, 2001; Nawy, 2008; Neville and Brooks,

2001; Naville, 2011; Zongjin, 2011). Tests commonly required to measure workability

are slump, compacting factor and V-B consistometer test. Slump test is the most

commonly used measure of workability and it is prescribed in BS 1881 - 102 (1983).

Three types of slump can be observed during slump test as shown in Figure 2.1;

i. True slump

This type of slump is observed with cohesive and rich mixes for which the slump is

generally sensitive to variation in workability.

ii. Shear slump

Shear slump occurs more often in leaner mixes than harsh mixes. Whenever shear

slump is obtained, the test should be repeated and, if persistent, this fact should be

recorded together with test result.

iii. Collapse slump
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This is usually associated with very wet mixes and is generally indicative of poor

quality concrete and most frequently result from segregation of its constituents materials.

The standard slump apparatus is only suitable for concretes in which the maximum

aggregate size does not exceed 37.5mm (Jackson, 1980; Gambhir, 2001).

Figure 2.1: Types of Concrete Slump (Yusuf et al., 2020)

2.3.2 Hardened concrete

Concrete must be proportioned and produced to carry live or imposed loads, resist

deterioration, deformations and be dimensionally stable. The quality of concrete is

characterised by its mechanical properties and ability to resist deterioration. The

mechanical properties of concrete can broadly be classified as short-term and long-term

properties. Short-term properties include strength in compression, tension, bond and

modulus of elasticity. The long-term properties include creep, shrinkage, behaviour

under fatigue and durability characteristics, such as, porosity, permeability, freeze-thaw

resistance and abrasion resistance (Zia et al, 1991; Gambhir, 2001; Neville, 2011).

2.3.2.1 Compressive strength
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Concrete compressive strength is widely used in specifying, controlling and evaluating

concrete quality. The strength of concrete depends on a number of factors including the

properties and proportioning of the constituent materials, degree of hydration, rate of

loading, method of testing and specimen geometry. The maximum compressive strength

that can be achieved practically have increased steadily in the last decade. Presently, 28

days strengths of up to 84 N/mm2 are routinely obtainable (Shetty, 2005; Aitcin, 1998).

For various strengths of concrete, compressive strength is the property generally

specified in construction design and quality control. The reasons are as follows:

(a) It is relatively easy to measure.

(b) It is believed that other properties can be related to the compressive strength and

can be deduced from strength data.

The 28-day compressive strength of concrete, determined by a standard uniaxial

compression test, is accepted universally as a general concrete property index for

structural design. To measure different strengths of concrete, various tests have to be

conducted with a universal testing machine (Neville, 2011; Zongjin, 2011).

2.3.2.2 Flexural strength

Flexural strength also called the modulus of rupture, can be determined by performing

four-point bending test following the procedures of ASTM C78 (2021) or BS 1881-118

(1983). The specimen for a flexural strength test is a 150 × 150 × 500 mm beam

according to ASTM C78 (2021), and a 150 × 150 × 750 mm beam according to BS

1881-118 (1983). The British Standard (BS) also allows a beam size of 100 × 100 ×

500mm when the maximum size of aggregate is less than 25 mm. According to the

mechanics of materials, it is believed that under the four-point bending, the middle third

portion of the beam is under pure bending.
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2.3.2.3 Tensile strength

The tensile strength governs the cracking behaviour and affects other properties such as

stiffness, damping action, bond to embedded steel and durability of concrete. It is also

of importance with regard to the behaviour of concrete under shear loads. The tensile

strength is determined either by direct tensile tests or by indirect tensile tests such as

flexural or split cylinder tests (ACI 363, 2010). Uniaxial tension test is more difficult to

conduct for three reasons. First, it is difficult to center the loading axis with the

mechanical centroid. Second, it is difficult to control the loading process due to the

quasi-brittle nature of concrete under tension. Third, the tension process is more

sensitive to a sudden change in cross-sectional area, and the specimen-holding devices

introduce secondary stresses that cannot be ignored. The indirect tension test is also

called the splitting test or Brazilian test. The standard specimen for the splitting test is a

150 × 300-mm cylinder (BS 1881 - 117 (1983); ASTM C496-71 (2004)). It should be

prepared by filling concrete into the mould in three equal layers, with each layer being

stroked 35 times by a hemispherical-tipped steel rod. The curing requirement is the

same for the compression specimen. The splitting test is carried out by applying

compression loads along two axial lines that are diametrically opposite. The loading rate

is 0.02 to 0.04 N/mm2/sec according to BS 1881 – 177 (1983), and 0.011 to 0.023

N/mm2/sec according to ASTM C496-71 (2004). Under such a line load, the stress

along the central diameter will be distributed.

2.3.2.4 Bond
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Bond strength is defined as the shear strength between the aggregate, fiber, reinforcing

steel, and cement paste. The bond strength plays an important role in determining the

properties of concrete, fiber reinforced concrete, and reinforced concrete. There is

considerable evidence to indicate that the interface is the weakest region in concrete. In

general, bond failure occurs before failure of either the paste or aggregate. Many

researchers have tried to measure the bond properties and have developed many models

to interpret the experimental results. Two types of bond strength are of interest in

concrete application; bond strength of concrete-to-concrete and bond strength of

reinforced steel. Bond strength between paste and reinforcement is proportional to the

tensile strength of concrete. It is therefore a function of compressive strength: the higher

the compressive strength, the higher the bond strength. The strength of concrete is

derived from the bond between paste and aggregate (Shetty, 2005; Abdullahi, 2009;

Neville, 2011). This bond strength depends upon the surface texture of the aggregate,

mineralogical nature of the aggregate and the specific surface of the gel. The inherent

micro-cracks that are generated within the body of the concrete also influence the bond

strength between paste and aggregate.

2.3.2.5 Deformation

The deformation of concrete depends on short term properties, such as, static and

dynamic modulus, as well as strain capacity. It is also affected by time dependent

properties, such as, shrinkage and creep. The modulus of elasticity is generally related

to the compressive strength of concrete. This relationship depends on the aggregate type,

mix proportions, curing conditions, rate of loading and method of measurement. More

information is available on the static modulus than on the dynamic modulus, since the
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measurement of elastic modulus can be routinely performed, whereas the measurement

of dynamic modulus is relatively more complex (Shetty, 2005).

2.3.2.6 Poisson’s ratio

Poisson’s ratio under uniaxial loading condition is defined as the ratio of lateral strain to

strain in the direction of loading. In the elastic range, due to volume dilation resulting

from internal micro-cracking, the apparent Poisson’s ratio is not constant but is an

increasing function of the axial strain. Piosson’s ratio tends to increase with decreasing

water-binder ratio. Using dynamic measurements, it was found that values of poisson’s

of concrete ranged from 0.23 to 0.32 regardless of compressive strength, coarse

aggregate and test age for 17 to 79 N/mm2 concretes (ACI 363, 2010).

2.3.2.7 Shrinkage

Shrinkage is the decrease in the volume of concrete with time. This decrease is as a

result of the change in moisture content and physiochemical properties, which occur

without stress attributable to actions external to the concrete. Swelling is the increase of

concrete volume with time. Shrinkage and swelling are usually expressed as a

dimensionless strain under given condition of relative humidity and temperature. Drying

shrinkage is considerably less in high performance concrete due to lower water-binder

ratio (Aitcin, 1998, Neville, 2011).

2.4 Mix Design of Concrete

It can be said that the properties of concrete are studied primarily for the purpose of

selection of appropriate mix ingredients. In the British usage, the selection of the mix

ingredients and their proportions is referred to as mix design. This term, although
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common, has the disadvantage of implying that the selection is a part of the structural

design process. The American term mixture proportioning is unexceptional, but it is not

used on a world-wide basis. Although structural design is not normally concerned with

mix selection, the design imposes two criteria for this selection: strength of concrete and

its durability. It is important to add an implied requirement to the effect that workability

must be appropriate for the placing conditions. The workability requirement applies not

only to, say, slump at the time of discharge from the mixer, but also to a limitation on

the slump loss, up to the time of placing of concrete. Because of the dependence of the

required workability upon the site conditions, workability should generally not be fixed

prior to the consideration of the construction procedure.

In addition, the selection of mix proportions has to take into account the method of

transporting the concrete, especially if pumping is envisaged. Other important criteria

are: setting time, extent of bleeding, and ease of finishing; these three are interlinked.

Considerable difficulties can arise, if these criteria are not properly taken into account

during the selection of the mix proportions or when adjusting these proportions. The

selection of mix proportions is thus, simply, the process of choosing suitable ingredients

of concrete and determining their relative quantities with the object of producing as

economically as possible concrete of certain minimum properties, notably strength,

durability, and required consistency.

The British approach, contained in BS EN 206-1 (2006) and the complementary BS

8500-2 (2015), recognise four methods of specifying concrete mixes. A designed mix is

specified by the designer principally in terms of strength, cement content, and

water/cement ratio; compliance relies on strength testing. A prescribed mix is specified
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by the designer in terms of the nature and proportions of mix ingredients; the concrete

producer simply makes the concrete ‘to order’. The assessment of mix proportions is

used for compliance purposes, strength testing not being routinely used. The use of

prescribed mixes is advantageous when particular properties of concrete, for instance,

with respect to its finish or abrasion resistance, are required. However, a prescribed mix

should be specified only when there are sound reasons for assuming that it will have the

required workability, strength, and durability. A standardized mix is based on

ingredients and proportions fully listed in BS 5328-2 (2002) for several values of

compressive strength up to 25 N/mm2, measured on cubes. The fourth and last type of

mix is the designated mix, for which the concrete producer selects the water/cement

ratio and the minimum cement content, using a Table of structural applications coupled

with standard mixes. This approach can be used only if the concrete producer holds a

special certificate of product conformity based on product testing and surveillance,

coupled with certification of quality assurance. Standard mixes are used only in minor

construction, such as, housing. Designated mixes, although they can be used for

strengths up to 50 N/mm2, are limited in application to routine construction. It is,

therefore, only in the selection of designed and prescribed mixes that a full knowledge

of properties of concrete can be used. These four types of mixes are varied in BS 8500-2

(2015). In the American practice, when there is no experience on the basis of which mix

proportions could be selected and trial mixes made, it is necessary to base the mix

proportions on standard proportions which, in order to be safe, are perforce very

stringent. This approach can be used only for low strength concrete.

The current British method of mix selection is that of the Department of the

Environment revised in 1997. Similarly, to the ACI 211 (2001) approach, the British
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method explicitly recognizes the durability requirements in the mix selection. The

method is applicable to normal weight concrete made with Portland cement only or also

incorporating ground granulated blast furnace slag or fly-ash, but it does not cover

flowing concrete or pumped concrete; nor does it deal with lightweight aggregate

concrete. Three maximum sizes of aggregate are recognized: 40, 20, and 10 mm. In

essence, the British method consists of 5steps, as follows.

Step 1. This deals with compressive strength for the purpose of determining the

water/cement ratio. The concept of target mean strength is introduced, this being equal

to the specified characteristic strength plus a margin to allow for variability. The target

mean strength is thus similar in concept to the mean compressive strength of ACI 318

R-05 (2005). The relation between strength of concrete and the water/cement ratio is

dealt with rather ingeniously. Certain strengths are assumed at a water/cement ratio of

0.5 for different cements and types of aggregates. The latter factor recognizes the

significant influence of aggregates on strength.

Step 2. This deals with the determination of the water content for the required

workability, expressed either as slump or as Vebe time, recognizing the influence of the

maximum size of aggregate and its type, namely crushed or uncrushed. It can be noted

that the compacting factor is not used in mix selection, although it can be used for

control purposes.

Step 3. This determines the cement content, which is simply the water content divided

by the water/cement ratio. This cement content must not conflict with any minimum
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value specified for reasons of durability or maximum value specified for reasons of heat

development.

Step 4. This deals with the determination of the total aggregate content. This requires an

estimate of the fresh density of fully compacted concrete, which can be read off for the

appropriate water content (from Step 2) and specific gravity of the aggregate. If this is

unknown, the value of 2.6 for uncrushed aggregate and 2.7 for crushed aggregate can be

assumed. The aggregate content is obtained by subtracting from the fresh density the

value of the cement content and of the water content.

Step 5. This determines the proportion of fine aggregate in the total aggregate, using the

recommended values of only data for 20 and 40mm aggregates are shown. The

governing factors are: the maximum size of aggregate, the level of workability, the

water/cement ratio, and the percentage of fine aggregate passing the 600 μm sieve.

Other aspects of the grading of the fine aggregate are ignored and so is the grading of

the coarse aggregate. Once the proportion of fine aggregate has been obtained,

multiplying it by the total aggregate content gives the content of fine aggregate.

2.5 Artificial Neural Network

The concept of neural networks was originally introduced by Donald Hebb in the early

1950's after studying how neurons in the brain adapt to learning and postulating a

simple training technique known as the Hebb's law (Hebb, 1949). In 1958, Rosenblatt

expanded the scope of Hebb by developing a mathematical model based on the

perception training algorithm (Hajela and Berke, 1991). Further research carried out in

the early 1980's resulted in the development of efficient, speedy, simple and alternative
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modelling using back propagation algorithms (Caudill and Butler, 1990). This gave

engineers enough confidence to explore neural networks as a modelling tool. Artificial

Neural Networks (ANN) are computational models inspired by the nervous system of

living beings. They have the ability to acquire and maintain knowledge (information

based) and can be defined as a set of processing units, represented by artificial neurons,

interlinked by a lot of interconnections (artificial synapses), implemented by vectors

and matrices of synaptic weights. The most relevant features concerning artificial neural

applications are the following:

(a) Adapting from experience;

The internal parameters of the network, usually its synaptic weights, are adjusted with

the examination of successive examples (patterns, samples, or measurements) related to

the process behavior, thus enabling the acquisition of knowledge by experience.

(b) Learning capability;

Through the usage of a learning method, the network can extract the existing

relationship between the several variables of the application.

(c) Generalization capability;

Once the learning process is completed, the network can generalize the acquired

knowledge, enabling the estimation of solutions so far unknown.

(d) Data organization;

Based on innate information of a particular process, the network can organise this

information, therefore enabling the clustering of patterns with common characteristics.

(e) Fault tolerance;

Thanks to the high number of interconnections between artificial neurons, the neural

network becomes a fault-tolerant system, if part of its internal structure is corrupted to

some degree.
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(f) Distributed storage;

The knowledge about the behavior of a particular process learned by a neural network is

stored in each one of the several synapses between the artificial neurons, therefore

improving the architecture robustness in the case where some of the neurons are lost.

(g) Facilitated prototyping;

Depending on the application particularities, most neural architectures can be easily

prototyped on hardware or software, since its results, after the training process, are

usually obtained with some fundamental mathematical operations.

The information processing performed by the human brain is carried out by biological

processing components, operating in parallel, for producing proper functions, such as,

thinking and learning. The fundamental cell of the central nervous system is the neuron,

and its role comes down to conduct impulses (electrical stimuli originated from

physical–chemical reactions) under certain operation conditions. This biological

component can be divided into three main parts: dendrites, cell body (also known as

“soma”), and axon. Dendrites are composed of several thin extensions that form the

dendritic tree (Figure 2.2). The fundamental purpose of dendrites is to acquire,

continuously, stimuli from several other neurons (connectors) or from the external

environment, which is the case of some neurons in contact with the environment (also

called sensory neurons). The cell body is responsible for processing all the information

that comes from the dendrites, to produce an activation potential that indicates if the

neuron can trigger an electric impulse along its axon. It is also in the cell body where

the main cytoplasmic organelles (nucleus, mitochondria, centriole, lysosome, and so

forth) of the neuron can be found. The axon is composed of a single extension whose

mission is to guide the electrical impulses to other connecting neurons, or to neurons
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directly connected to the muscular tissue (efferent neurons). The axon termination is

also composed of branches called synaptic terminals. The synapses are the connections,

which enable the transfer of electric axon impulses from a particular neuron to dendrites

of other neurons, as illustrated in Figure 2.2. It is important to note that there is no

physical contact between the neurons forming the synaptic junction, so the

neurotransmitter elements released on the junction are in charge of weighting the

transmission from one neuron to another.

In fact, the functionality of a neuron is dependable of its synaptic weighting, which is

also dynamic and dependent on the cerebral chemistry (Hodkin and Huxley, 1952). In

short, although the activities related to the biological neuron might seem very simple at

first, its components, when functioning altogether, are responsible for all the processing

executed and managed by the human brain. It is estimated that this biological neural

network, with very eccentric features, is composed of about 100 billion (1011) neurons.

Each one of those is interconnected through synaptic connections (made possible by

more than fifty neurotransmitter substances) to an average of 6,000 neurons, thus

resulting in a total of 600 trillion synapses (Hodkin and Huxley, 1952).
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Figure 2.2: Structure of biological neuron (Hodkin and Huxley, 1952)

2.5.1 Artificial neuron

The artificial neural network structures were developed from known models of

biological nervous systems and the human brain itself. The computational components

or processing units, called artificial neurons, are simplified models of biological neurons.

These models were inspired by the analysis of how a cell membrane of a neuron

generates and propagates electrical impulses (Hodgkin and Huxley, 1952). The artificial

neurons used in artificial neural networks are nonlinear, usually providing continuous

outputs, and performing simple functions, such as, gathering signals available on their

inputs, assembling them according to their operational functions, and producing a

response considering their innate activation functions. The simplest neuron model that
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includes the main features of a biological neural network—parallelism and high

connectivity—was proposed by McCulloch and Pitts (1943), and is still the most used

model in different artificial neural network architectures.

Figure 2.3: Structure of artificial neuron (McCulloch and Pitts, 1943)

In that model, each neuron from a network can be implemented as shown in Figure 2.3

The multiple input signals coming from the external environment (application) are

represented by the set {x1, x2, x3, …, xn}, analogous to the external electrical impulses

gathered by the dendrites in the biological neuron. The weighing carried out by the

synaptic junctions of the network are implemented on the artificial neuron as a set of

synaptic weights {w1, w2, …, wn}. Analogously, the relevance of each of the {xi}

neuron inputs is calculated by multiplying them by their corresponding synaptic weight

{wi}, thus weighting all the external information arriving to the neuron. Therefore, it is

possible to verify that the output of the artificial cellular body, denoted by u, is the

weighted sum of its inputs.
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Artificial neural network is a network of simple elements called neurons that receives

input signals, change their internal state (activation) according to that input and produce

output depending on the input and activation (Mohammed et al., 2013). A neural-

network structure is a collection of parallel processors connected together in the form of

a directed graph, organized such that the network structure lends itself to the problem

being considered (Stuart and Peter, 2010). A typical network diagram is shown in

Figure 2.4; each processing element (or unit) is schematically represented in the

network as a node, with connections between units indicated by the arcs. The direction

of information flow in the network is indicated through the use of the arrowheads on the

connections (Stuart and Peter, 2010).

Figure 2.4: A typical network diagram (Stuart and Peter, 2010)
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Artificial neural network is a typical example of a modern interdisciplinary subject that

helps in solving a wide range of engineering problems which could not be solved by the

statistical method and traditional modelling. Neural networks are capable of collecting,

memorizing, analysing and processing considerable collections of data gained from

some experiments, survey or numerical analyses. They are an illustration of

sophisticated modelling technique that can be used for solving many complex and

emerging problems. The trained neural network serves as an analytical tool for qualified

predictions of the results, for any input data, which were not included in the learning

process of the network. The operation is reasonably simple and easy, nonetheless

correct and precise. Using the concept of the artificial neural networks and the results

of the performed numerical analyses as input parameters, the prediction model for

defining the fire resistance of reinforced concrete columns incorporated in walls and

exposed to standard fire from one side, has been made (Marijana et al., 2019).

2.5.2 Artificial neural networks – basic concepts

The artificial neural networks, together with the fuzzy logic and genetic algorithms,

belong to the group of symbolic methods of intelligent calculations and data processing

that operate according to the principles of soft computing. Neural networks are

developed as a result of the positive features of a few different research directions: data

processing, neuro-biology and physics. They are a typical example of one modern

interdisciplinary field, which gives the basic knowledge principles that are used for

solving many different and complex engineering problems that could not be solved

otherwise (using the traditional modelling and statistical methods) (Marijana et al.,

2019). The inspiration for foundation, development and application of artificial neural

networks came out of the attempt of understanding the work of human brain and from
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the aspiration of creating an artificial “intelligent” system for data calculation and

processing that are typical for the homo-sapiens brain. As a result, the artificial neural

networks are very similar to the biological neural networks. Both networks have similar

structure, function, and technique of data processing and methodology of calculation.

Artificial neural networks are presented as a simplified mathematical model, a model

that is similar and analogous to the biological neural networks. They can easily simulate

the basic characteristics of the biological nervous system. The networks are capable of

gathering, memorizing and processing numerous experimental data. Some of their basic

characteristics are the following: they can analyse large number of data, they can learn

from the past data and they can solve problems that are complex, not clear and problems

that do not have a unique solution. Because of that, the artificial neural networks are

often a classic and traditional calculation methods (Marijana et al., 2019).

Research made around the world showed that neural networks have an excellent success

in prediction of data series and that is why they can be used for creating prognostic

models that could solve different problems and tasks.

2.5.3 Neuron

Processes inside the biological neural networks are very complex and they still cannot

be completely studied and explained. There are hundreds of different types of biological

neurons in human brain, so it is almost impossible to create a mathematical model that

will be absolutely the same as the biological neural network. However, for practical

application of artificial neural networks, it is not necessary to use complex neuron

models. Therefore, the developed models for artificial neurons only remind one of the

structures of the biological ones and they have no pretension to copy their real condition

(Marijana et al., 2019).
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2.5.4 Neural network

Neural network is composed of numerous mutually connected neurons grouped in

layers. The complicity of the network is determinate by the number of layers. Beside the

input (first) and the output (last) layer, the network can have one or few hidden layers.

The purpose of the input layer is to accept data from the surroundings. Those data are

processed in the hidden layers and sent into the output layer. The final results from the

network are the outputs of the neurons from the last network layer and that is actually

the solution for the analysed problem. The input data can have any form or type. The

basic rule is that for each data, there must be only one input value. Depending on the

problem’s type, the network can have one or few outputs as showed in Figure 2.5.

Figure 2.5: Model of one layered artificial neural network (Marijana et al., 2019)
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2.5.5 Weight coefficients

Weight coefficients are the primary elements of every neural network. They express the

relative importance of each neuron’s input and determine the input’s capability for

stimulation of the neurons. Every input neuron has its own weight coefficient. By

multiplying those weight coefficients with the input signals and by summing that, the

input signal from each neuron is calculated. In Figure 2.5, the input data are marked as

X1, X2 and X3, and the appropriate weight coefficients are W1, W2 and W3. The input

neuron impulses are W1X1, W2X2 and W3X3. Neuron registers the summed input impulse

which is equal to the sum of all input impulses: X = W1X1 + W2X2 + W3X3. The received

impulse is processed through an appropriate transformation function (activation

function), f(x), and the output signal from the neuron will be: Y = f(x) = f(W1X1 + W2X2 +

W3X3) (Marijana et al., 2019). Weight coefficients are elements of the matrix W that has

n rows and m columns. For instance, the weight coefficient Wnm is actually the mth

output of the nth neuron (Figure 2.5). The connection between the signal’s source and

neurons is determined by the weight coefficients. Positive weight coefficient means

speeding synapse and negative coefficient means inhibiting synapse. If Wij= 0 it means

that there is no connection between these two neurons. One very important

characteristic of neural networks is their ability for weight adjustment according to the

received history data, which is actually the learning process of the network (Marijana, et

al., 2019).

2.5.6 Activation function

The main purpose of the activation (transformation) function is to determine whether

the result from the summary impulse X = W1X1 + W2X2 +.... + WnXm can generate an

output. This function is associated with the neurons from the hidden layers and it is
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mostly a recognised non-linear function. Almost every non-linear function can be used

as an activation function, but the common practice is to use the sigmoid function

(hyperbolic tangent and logistic) with the following form: ��=
1

1+�−� .

where: Yt is normalised value of the result of the summary function. The normalisation

means that the output’s value, after the transformation, will be in reasonable limits,

between 0 and 1 (Marijana et al., 2019). If there is no activation function and no

transformation, the output value might be too large, especially for complex networks

that have few hidden layers.

2.5.7 Architecture of neural networks

A very vital aspect of neural networks is how to link the network elements. There are

many different models of neural networks and many different ways for their

classification (Marijana et al., 2019). Generally speaking, types of networks are divided

according to: number of layers (one layered and multi-layered networks), connection

type between neurons (layered, fully connected and cellular), learning process (feed

forward and feedback), data type (binary and continuous networks), course of

information spreading (supervised, partly supervised and unsupervised networks), and a

host of others.

2.5.8 The training process

ANN have several basic characteristics, among which their learning capability takes an

important place (this capability brings them closer to the real world and human

thinking), together with their capability of discovering connection between chaotic and

incomprehensible data and their generalizing capability (the network will give quality

outputs even though the input data are not completed). In many cases it is shown that
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the neural networks are a better calculation method compared to the classic methods,

mostly because of their capability to analyse data that contain errors, or to solve

problems that have no reasonable solution and to learn from the past data. The training

(learning) process of neural networks consists of periodic data transmission through the

network and compartment of the received input values with the expected ones. If there

is a difference between those values, then a weight coefficient’s adjustment

(modification of the neuron connections) has to be made. This process is repeated a few

times until the network reacts in the correct manner, or until all the weight coefficients

from all the training data are being adjusted. When the network gives correct outputs for

all of the training data, it can be said that it is a trained network. After the training

process the network should be able to generate outputs for new input data different from

the training ones (Marijana et al., 2019). The learning and training process that occurs

inside neural networks is of huge importance for their applicability in solving

engineering problems.

2.6 Application of Neural Network in Civil Engineering

Habeeb (2000) studied the effect of high temperatures (up to 800°C) on some

mechanical properties of high strength concrete. Three design strength investigated

were 40, 60 and 80 N/mm2. The investigated properties were compressive strength,

volume changes and flexural strength. Ultrasonic pulse velocity (U.P.V) and dynamic

modulus of elasticity were tested as well. The specimens were heated slowly to five

temperature levels (100, 300, 500, 600 and 800 °C), and to three exposure periods 1.0,

2.0 and 4.0 hours without any imposed loads during heating. The specimens were then

cooled slowly and tested either one day or one month after heating. He concluded that

the HSC is more sensitive to high temperatures than normal strength concrete. The
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residual compressive strength ranged between (90 - 106 %) at 100 °C, (72 - 103 %) at

300°C, (55 - 87 %) at 500°C and (22 - 66 %) between (600 - 800°C). The author

concluded that exposure time beyond one hour had a significant effect on the residual

compressive strength of concrete; however, the effect was diminished as the level of

temperature increased. Moreover, the compressive strength at age of one month after

heating, suffered an additional loss than at age of one day after heating. The flexural

strength was found to be more sensitive to high temperature exposure than compressive

strength the residual flexural strength was in the range of (92 - 98 %), (52 - 98 %) and

(29-47 %) at 100, 300, and 500 °C respectively and (2 - 30%) at (600 - 800) °C. The

author also noticed that the U.P.V and Ed were more sensitive to elevated temperature

on exposure than compressive strength.

Husem (2006) examined the variation in compressive and flexural strengths of ordinary

and high-performance concretes exposed to high temperatures of 200, 400, 600, 800 and

1000°C and then cooled in air or water. The compressive and flexural strengths of these

concrete specimens were compared with each other and with unheated specimens. On

the other hand, strength loss curves of these concrete specimens were compared with

the strength loss curves given in the codes. In this study, ordinary concrete with an

average compressive strength of 34 N/mm2 and high-performance concrete with an

average compressive strength of 71 N/mm2 were produced. From the results obtained, it

was concluded that

(a) For ordinary and high-performance concrete exposed to high temperature, the

flexural and compressive strengths decrease with the increase in temperature. Such

decrease is greater when the specimens were cooled in water.
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(b) The compressive strength of high-performance concrete cooled in air and water

decreases up to 200°C and increases between 200 and 400°C. The compressive strength

gain was 13% for the specimens cooled in air and 5% for those cooled in water. The

compressive strength of ordinary concrete decreases continuously.

(c) The compression test was not done on ordinary concrete at temperatures above

600°C, because the concrete specimens disintegrated. For high- performance concrete,

the compression test was not done at temperatures above 800°C.

(d) The concrete may completely lose its strength as a result of the immediate

expansions that take place during the expansion of mineral admixture used in the

production of high- performance concretes at high temperature.

(e) It was observed that some high-performance concrete specimens spalled explosively

at temperatures between 400 and 500°C, which is attributed to expansion of silica fume

used in the production of such concretes. Explosive spalling was not observed for

ordinary concrete specimens.

(f) Experimental studies indicated that ordinary and high-performance concretes

produced using limestone aggregate underwent high percentages of strength loss in the

specimens cooled in water after high temperature exposure.

(g) The CEN Eurocode and the CEB design curves for the properties of fire-exposed

concrete are not applicable to high strength concrete. The Finnish Code is more suitable

especially up to 400°C. These codes are not applicable to ordinary and high-

performance concrete cooled in water.

Yeh (2006), Lee (2003) and Ahmet et al. (2006) applied the ANN for predicting

properties of conventional concrete and high-performance concrete. Kim et al. (2004)

used back propagation neural networks to predict the compressive strength of ready
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mixed concrete. Hola and Schabowicz (2005) developed ANN models to predict the

compressive strength of concrete on the base of non-destructive determined parameters.

Zarandi et al. (2008) applied the fuzzy polynomial neural network to predict the

compressive strength of concrete.

Boukhatem et al. (2012) developed six Neural Network (NN) models to predict the

properties of concrete. Each model was trained and tested with their data set for training,

testing and validation based on several values of Principal Component Variance (PCV),

using the Bayesian regularization algorithm. The reason to train more models is to get

the best Neural Network (NN) architecture, and the optimum PCV value. According to

Boukhatem et al. (2012), the best architecture means that the optimal number of hidden

neurons must have a NN in the hidden layer and hence increases the NN generalization

capacity. The optimum value of PCV determined the Principal Component (PC) optimal

number retained for each set of data and facilitates the NN training. After post-

processing, a set of reduced and uncorrelated test data were produced and then

integrated into the NN to get the output values for each test and validation set. This was

based on calculating the sum of square errors which had a decreasing trend with the

number of training cycles (iterations).

Bilgehan and Turgut (2010) tested a total of 238 concrete core samples using ultrasound

for the determination of the velocities of the longitudinal ultrasonic waves before the

execution of destructive compressive test of concrete. The cores were obtained from

columns, shear or retaining walls in the reinforced concrete structures. The size of cores

was 100 × 200 mm and no reinforcement existed in the cores, which are drilled

horizontally through the thickness of the concrete elements. BS 1881 - 177 (1983) and
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ASTM C42-90 (1992) procedures were used for determining the compressive strength

of the cores. The velocity of the propagation of ultrasound pulses were measured by

direct transmission using a Controls E-48 ultrasound device, which measured the time

of propagation of ultrasound pulses with a precision of 0.10 μs. The transducers used

were 50 mm in diameter, and had maximum resonant frequencies, as measured in

laboratory conditions, of 54 kHz. The compressive strengths of the concrete cores are

then converted to those of a cubical sample with 15 mm side length, according to BS

1881 (1983). The problem was then defined as a nonlinear input-output relation among

the influencing factors, which are UPV, density of concrete specimens and compressive

strength of concrete values, for ANN analyses. The typical multi-layer feed-forward

ANNs consisted of an input layer, one or more hidden layer(s) and an output layer. All

data were divided into two sets; one for the network learning (training) set and the other

for testing set. Each of training and testing set covered approximately 50% of the total

data. The data set was normalised before the analyses and the predictive capabilities of

the feedforward back-propagation ANN are examined.

The methodology used for adjusting the weights was the momentum back-propagation

with a delta rule, as presented by Rumelhart et al. (1986). Throughout all ANN

simulations, the learning rates were used for increasing the convergence velocity. The

sigmoid and linear functions were used for the activation functions of the hidden and

output nodes, respectively. The hidden layer node numbers of each model were

determined after trying various network structures, since no theory yet exists to clarify

the number of hidden units needed to approximate a given function. The training phase

was stopped after 5000 epochs; when the variation of error became sufficiently small.

The computer program code for the ANN simulation, including neural networks toolbox,
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was written in MATLAB software. Various ANN architectures were tried and then the

appropriate model structure was determined for the data sets. Numerous trials were

carried out in the neural network environment to determine the neuron number of the

hidden layers. Optimum hidden neuron numbers were obtained for different cases. The

ANN model was then tested and the results were compared by means of root mean

squared error, RMSE, and coefficient of determination, R2, statistics. Gradient descent

algorithm back-propagation learning rule was employed using tangent sigmoid (tansig)

and logarithmic sigmoid (logsig) activation functions. Learning rate was 0.4 with

training performance goal 10−5, momentum constant 0.9 and maximum number of

epochs 5000. After carrying out numerous trainings in the neural network simulation,

the optimum hidden neuron number and hidden layer number were determined as 50

and 1, respectively.

Ikechukwu and Chidozie (2015) modelled the compressive strength of concretes

incorporating termite mound soil using multi-layer perceptron networks. They used

termite mound soil as part of concrete mixture. Their work showed the development of

a computational model, based on artificial neural networks for the determination of

compressive strength of concrete materials made by replacing the fine aggregate with

termite mound soil. The work involved building a multi-layer perception neural network

model which used experimental data obtained from compressive strength test of

concrete made from termite mound soil. The compressive strength predicted were

compared with predictions from an alternative model based on regression analysis. The

results of the study showed that for the termite mound soil-based concrete, the

regression model prediction has a correlation coefficient of 0.94402 and a sum of

squares error of 0.72867100, while the neural network model prediction had a
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correlation coefficient of 0.94918 and a sum of squares error of 0.07629460. Generally,

the models predicted well, but the neural network model predicted better than the

regression model. The result of the study demonstrated a cheap, simple, very quick and

accurate alternative to experimental method of concrete strength determination.

Pandelea et al. (2015) proposed a manner to verify the concrete samples homogeneity

using artificial neural networks. The method proposed determined the percentages of

various areas of component materials visible at top and bottom of a concrete cylinder

having 20 cm diameter and 20 cm height. The training of the neural network was

realised by using backpropagation algorithm and then, in order to separate the regions

of interest Levenberg – Marquardt algorithm was used. After the network training with

a number of neurons that varied between 10 to 30 and 10 to 1,000 iterations obtained

various percentages of component materials. For the upper side of the cylinder, neural

network with 30 neurons and 1000 iterations generated a percentage of 40.8866%

rubber, 4.7264% aggregate and 52.6515% matrix. To the underside of the cylinder

network with the same number of neurons and iterations like upper side generated the

results: 28.5572% rubber, 4.1619% aggregate and 67.2809% matrix. The percentage

was varied between both sides, 12.3294% for rubber, 0.5645% for aggregate and

14.6294% for matrix.

Gupta (2013) developed an ANN model for 28-day compressive strength. The model

was trained with input and output experimental data. Correlation coefficient, RMSE and

MAE are statistical values that are calculated for comparing experimental data with

ANN model. As a result, the compressive strength values of concrete were predicted in

the ANN models without attempting any experiments in quite a short period of time
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with some error rates, which could be minimized further by using other data mining

techniques, such as, C5 method and fuzzy logic techniques. He also presented the actual

and predicted values of 28 days compressive strength by using ANN technique. The

correlation coefficient was found to be 0.8685.

It is for these accurate predictions that the ANN is employed in this work so as to

predict the properties of concrete made with Bida natural gravel as coarse aggregate.

However, it is necessary to base these predictions with experimental evaluation, hence

the need for experimental designs.

2.7 Design of Experiment

Many experimental design textbooks and software packages emphasize the use of

factorial and fractional factorial designs, where all factors in the experiment have two

levels, often called 2k-p designs, where k is the number of factors, p is the degree of

fractionation, and 2k-p is the number of runs. There are many good reasons for using

only two levels per factor, including: reducing the size of the experiment, allowing for

sequential experimentation, taking advantage of the relatively simple confounding

properties of two-level fractional factorials, and allowing for simple graphical analysis

of main effects and interactions (Box et al., 1978).

Bisgaard (1997) discusses the advantages of two-level fractional factorials for

technological experiments where all the factors are quantitative, meaning that the levels

are measured or metered amounts that are usually continuous, but at least ranked. It is

true that technological experiments often have only quantitative factors, however, it is

not uncommon for technological experiments to also include factors that are qualitative
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in nature, such as, raw material type, supplier name, or die configuration. There are

often more than two levels of such factors and since the levels cannot be ordered in any

meaningful way, leaving out levels of such factors provides no information about the

response’s behavior at the omitted levels. In order to include multi-level qualitative

factors, but maintain some of the useful characteristics of two-level fractional factorial

experiments, a common practice is to use a simple coding scheme. Many authors have

described this procedure including Taguchi (1987) and Montgomery (1997).

2.7.1 Factorial designs overview

Factorial designs allow for the simultaneous study of the effects that several factors may

have on a process. When performing an experiment, varying the levels of the factors

simultaneously rather than one at a time is efficient in terms of time and cost, and also

allows for the study of interactions between the factors. Interactions are the driving

force in many processes. Without the use of factorial experiments, important

interactions may remain undetected (Box et al., 1987; Montgomery, 1997; Pan 1996;

Doug, 2015).

(a). Full factorial designs

In a full factorial experiment, responses are measured at all combinations of the

experimental factor levels. The combinations of factor levels represent the conditions at

which responses will be measured. Each experimental condition is called a "run" and

the response measurement an observation. The entire set of runs is the design.



59

(b). Two-level full factorial designs

In a two-level full factorial design, each experimental factor has only two levels. The

experimental runs include all combinations of these factor levels. Although two-level

factorial designs are unable to explore fully a wide region in the factor space, they

provide useful information for relatively few runs per factor. Because two-level

factorials can indicate major trends, which can be used to provide direction for further

experimentation.

(c). General full factorial designs

In a general full factorial design, the experimental factors can have any number levels.

For example, Factor A may have two levels, Factor B may have three levels, and Factor

C may have five levels. The experimental runs include all combinations of these factor

levels. General full factorial designs may be used with small screening experiments, or

in optimization experiments.

(d). Fractional factorial designs

In a full factorial experiment, responses are measured at all combinations of the factor

levels, which may result in a prohibitive number of runs. To minimize time and cost,

designs that exclude some of the factor level combinations can be used. Factorial

designs in which one or more level combinations are excluded are called fractional

factorial designs. Minitab generates two-level fractional factorial designs for up to 15

factors. Fractional factorial designs are useful in factor screening, because they reduce

downwards the number of runs to a manageable size. The runs that are performed are a

selected subset or fraction of the full factorial design. Minitab displays an alias table

which specifies the confounding patterns. Because some effects are confounded and
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cannot be separated from other effects, the fraction must be carefully chosen to achieve

meaningful results. Choosing the "best fraction" often requires specialized knowledge

of the product or process under investigation undetected (Box et al, 1987; Montgomery,

1997; Pan, 1996; Doug, 2015).

(e). Plackett-Burman designs

Plackett-Burman designs are a class of resolution III, two-level fractional factorial

designs that are often used to study main effects. In a resolution III design, main effects

are aliased with two-way interactions. Minitab generates designs for up to 47 factors.

Each design is based on the number of runs, from 12 to 48, and is always a multiple of 4.

The number of factors must be less than the number of runs.

(f). Response Surface Designs

Response surface methods are used to examine the relationship between one or more

response variables and a set of quantitative experimental variables or factors. These

methods are often employed after identifying a “vital few” controllable factor and it is

desired to find the factor settings that optimize the response (Box and Behnken, 1960;

Box and Draper, 1987; Khuri and Cornell, 1987; Montgomery, 1997). Designs of this

type are usually chosen when it is suspected that curvature in the response surface may

occur. Response surface methods may be employed to;

i. find factor settings (operating conditions) that produce the "best" response

ii. find factor settings that satisfy operating or process specifications

iii. identify new operating conditions that produce demonstrated improvement in

product quality over the quality achieved by current conditions

iv. model a relationship between the quantitative factors and the response
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2.7.2 Mixture designs

Mixture experiments are a special class of response surface experiments in which the

product under investigation is made up of several components or ingredients. Designs

for these experiments are useful because many products design and development

activities in industrial situations involve formulations or mixtures. In these situations,

the response is a function of the proportions of the different ingredients in the mixture.

For example, you may be developing a pancake mix that is made of flour, baking

powder, milk, eggs, and oil. Or, you may be developing an insecticide that blends four

chemical ingredients (Cornell, 1990; Montgomery and Voth, 1994; Meyers and

Montgomery, 1995). In the simplest mixture experiment, the response (the quality or

performance of the product based on some criterion) depends on the relative proportions

of the components (ingredients). The quantities of components, measured in weights,

volumes, or some other units, add up to a common total. In contrast, in a factorial

design, the response varies depending on the amount of each factor (input variable).

Minitab can create designs and analyse data from three types of experiments:

a. Mixture experiments

b. Mixture-amounts (MA) experiments

c. Mixture-process variable (MPV) experiments

2.7.4 Taguchi design overview

Taguchi is regarded as the foremost proponent of robust parameter design, which is an

engineering method for product or process design that focuses on minimizing variation

and/or sensitivity to noise. When used properly, Taguchi designs provide a powerful

and efficient method for designing products that operate consistently and optimally over

a variety of conditions. In robust parameter design, the primary goal is to find factor
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settings that minimize response variation, while adjusting (or keeping) the process on

target. After you determine which factors affect variation, you can try to find settings

for controllable factors that will either reduce the variation, make the product insensitive

to changes in uncontrollable (noise) factors, or both. A process designed with this goal

will produce more consistent output. A product designed with this goal will deliver

more consistent performance regardless of the environment in which it is used (Peace,

1993).

Engineering knowledge should guide the selection of factors and responses. A robust

parameter design is particularly suited for energy transfer processes; for example, a car's

steering wheel is designed to transfer energy from the steering wheel to the wheels of

the car. You should also scale control factors and responses so that interactions are

unlikely. When interactions among control factors are likely or not well understood, you

should choose a design that is capable of estimating those interactions. Minitab can help

one to select a Taguchi design that does not confound interactions of interest with each

other or with main effects. Noise factors for the outer array should also be carefully

selected and may require preliminary experimentation. The noise levels selected should

reflect the range of conditions under which the response variable should remain robust.

Robust parameter designs use Taguchi designs (orthogonal arrays), which allow one to

analyze many factors with few runs. Taguchi designs are balanced, that is, no factor is

weighted more or less in an experiment, thus allowing factors to be analysed

independently of each other.

Minitab provides both static and dynamic response experiments.

a. In a static response experiment, the quality characteristic of interest has a fixed level.
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b. In a dynamic response experiment, the quality characteristic operates over a range of

values and the goal is to improve the relationship between an input signal and an output

response.

The methodology employed in this research is described in chapter three in order to

portray the importance of the reviewed methods and the absolute potency of the adopted

one for this study.
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CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Materials

The materials used in this research are; water, ordinary Portland cement, fine river sand

and Coarse aggregate (Bida Natural Gravel). The materials were tested in accordance

with relevant standards and specifications to ascertain their suitability for making

concrete.

3.1.1 Water

Water is necessary for mixing concrete to achieve the desired workability as well as for

cement hydration. As such, potable drinking water from the tap in Civil Engineering

Laboratory, Federal University of Technology, Minna was used for concrete mixing and

curing in accordance to BS EN 1008 (2002).

3.1.2 Ordinary Portland cement (OPC)

Commercially available OPC categorised as CEM 1 (NIS 87:2004) was used to produce

all concrete specimens in this research. The cement was sourced from local retailers

within Minna metropolis and tested in accordance with BS EN 197- 1 (2000).

3.1.3 Fine river sand

Fine river sand was collected within Minna metropolis and prepared for concrete

production.
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3.1.4 Bida Natural Gravel (BNG)

BNG is a brownish-red naturally occurring stone in Bida, Niger State, Nigeria. It is

found as a deposit in several metric tons in the middle of Niger Basin of Nigeria (Salihu,

2011; Nuhu, 2009). BNG was collected, washed and sun dried.

3.2 Methods

3.2.1 Moisture content test

Moisture content is the total amount of water contained in a material expressed as a

percentage of the dry weight of the material. Moisture content is determined by

measuring the loss of water in oven dried samples of aggregates. The test was

conducted on fine aggregate (river sand) and BNG, and also in accordance to BS EN

12620 (2008), while using Equation (3.1) to calculate the moisture content.

Moisture content = W2 – W3
W3−W1

x 100 (3.1)

Weight of empty moisture can = W1

Weight of moisture can + sample (wet) = W2

Weight of moisture can + sample (oven – dried) = W3

3.2.2 Specific gravity (SG)

Specific gravity is the ratio of the mass of the aggregates sample to the mass of the same

(absolute) volume of water. SG test was conducted on the fine aggregate and BNG. The

relationship used to calculate SG is given in Equation 3.2. This test was conducted in

accordance to BS EN 12620 (2008).

Specific gravity = W2−W1
W

(3.2)

W = (W4 - W1) – (W3 - W2) weight of water displaced by sample

Weight of density bottle = W1
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Weight of density bottle + sample = W2

Weight of density bottle + sample + water = W3

Weight of density bottle + water = W4

3.2.3 Bulk density

Bulk density test is an important characteristic that governs the amount of fine

aggregates and cement paste that will fill the voids between coarse aggregates grains.

Bulk density test was conducted on both fine and coarse aggregate. This test is a

representation of the actual mass that fills a container of unit volume. Loose and

compacted bulk density tests were conducted on the fine aggregates and BNG in

accordance to BS EN 12620 (2008).

Weight of sample divider = W1

Weight of sample divider + sample = W2

Weight of sample = W2 − W1 = W

Bulk density = W
V

(3.3)

a. Loose or Compacted Bulk Density

The sample divider was weighed empty and recorded as W1. The sample divider was

filled using a scoop, the surface was then levelled with a straight edge, the sample

divider and aggregate was weighed and the bulk density calculated as given in Equation

3.3.

The volume (V) of the sample divider = L x B x H (3.4)

Where:-

L = Length of sample divider

B= Breadth of sample divider

H = Height of sample divider
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3.2.4 Aggregate Crushing Value Test (ACV)

ACV is a measure of the resistance of an aggregate to crushing under gradually applied

load. It is expressed as a percentage to the first decimal place of the mass of fines

formed to the total mass of the test specimen. The test was conducted on the BNG in

accordance to BS 812 -110 (1990). ACV was calculated using Equation 3.5.

100
1

2

M
MACV  % (3.5)

Where

M1 = mass of the test specimen (in g);

M2= mass of the material passing the 2.36 mm test sieve (in g).

3.2.5 Aggregate impact value (AIV) test

AIV is a measure of the resistance of an aggregate to sudden shock or impact. The

procedure outlined in BS 812 - 112 (1990) was followed. The test was conducted on

BNG passing 14.0 mm test sieve and retained on a 10.0 mm test sieve. Aggregate sizes

larger than 14 mm are not appropriate to the aggregate impact value test. Thus, AIV was

calculated using Equation 3.6.

100
1

2

M
MAIV  % (3.6)

Where

M1 = mass of the test specimen (in g);

M2= mass of the material passing the 2.36 mm test sieve (in g).

3.2.6 Sieve analysis

Sieve analysis was done to determine the grading of the aggregate samples. Aggregate

sizes influence the strength of concrete and a well-graded aggregate sample is desired
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for concrete production. The procedure specified in BS EN 12620 (2008) for conducting

sieve analysis for fine and coarse aggregates was followed.

3.2.7 Mix design

Mix design is aimed at establishing the most suitable and economic blend of constituent

of concrete necessary for a trial batch to produce concrete similar to that which can

achieve a good stability between the intended properties. The concrete components used

for mix design include; water, cement, fine river sand and Bida natural gravel. The

method of experiment was chosen bearing in mind the interrelationship and interaction

between the concrete components, such that no mixture containing interaction between

the constituents is discarded. As such, the multilevel factorial experimental design was

used for this purpose. The absolute volume method thereafter, was used to obtain the

quantity of each ingredient required in a cubic metre of concrete and consequently for

the required volume.

3.2.7.1 Choice of parameters

The parameters selected for the study were chosen based on similar parameters used in

previous successful studies as well as parameters suggested in standards (Shamsad,

2007; ACI 211, 2001; Shakhmenko and Birsh, 1998; Abbasi et al., 1987; Soudki et al.,

2001). The parameters were selected bearing in mind the following:

(a) Water - cement ratio (w/c)

Three water-cement ratios were considered; 0.40, 0.50, 0.60. These w/c were chosen

because they cover practically, a range of w/c ratio necessary for achieving concrete of

adequate strength useful for a wide range of applications as obtained in literature. These
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w/c ratios have also been used in designing experiments in several studies (Shamsad,

2007; Shakhmenko and Birsh, 1998; Abbasi et al., 1987; Soudki et al., 2001). The w/c

ratios lower than 0.4 were not considered because they are applicable for the production

of high strength concrete. Also, any w/c ratio higher than 0.60 were not considered,

because it is believed that the strength of concrete from such ratios will only be

applicable for mass concreting.

(b) Coarse aggregate - total aggregate content ratio (ca/ta)

In other to achieve a concrete mix to meet workability and durability targets at

minimum cost, ca/ta ratio is one of the important factors governing the arrival at such

optimum concrete mix designs. For the purpose of this research, three ca/ta ratios were

chosen, namely, 0.55, 0.60 and 0.65. These ratios were selected based on similar ratios

used in previous studies and have been found to represent concrete within the practical

strength range for normal strength concrete (Abbasi et al., 1987; Alhaji, 2016).

(c) Total aggregate - cement (ta/c) ratio

Previous reviewed works using Bida Natural Gravel (BNG) as coarse aggregate used

ta/c ratio in the range of 3 - 6 (Salihu, 2011; Alhaji 2016), while other works using

crushed granite as coarse aggregate also suggested ta/c ratio within this region (Orr,

1972; Abbasi, et al., 1987; Soudki, et al., 2001). Therefore, in this research, a ta/c ratio

of 3.00, 4.50 and 6.00 was used. This was chosen because blending lower levels of w/c

ratio with higher levels of ta/c ratio will result in dry mixes. Similarly, blending higher

w/c ratios with lower levels of ta/c is likely to result in very wet mixes. Based on the

parameters chosen, random runs were selected to carry out trial mixes. Consistent mixes

were obtained for the chosen runs from the sample space of the experiment.
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3.2.7.2 Multilevel full factorial design

Multilevel full factorial design was used so as to accommodate various combinations of

factors and their respective levels. Based on the factors and their levels, MINITAB

(2017) produced 27 experimental runs as shown in Table 3.1. Nine separate mixes were

prepared for the purpose of validating the model produced.

Table 3.1: Experimental runs selected by Minitab
Run Order Coded Factors Uncoded Factors

A B C A B C
1 3 2 2 0.6 0.60 4.50
2 2 1 3 0.5 0.55 6.00
3 1 1 1 0.4 0.55 3.00
4 3 1 3 0.6 0.55 6.00
5 2 3 1 0.5 0.65 3.00
6 2 1 1 0.5 0.55 3.00
7 1 3 2 0.4 0.65 4.50
8 3 3 2 0.6 0.65 4.50
9 3 3 1 0.6 0.65 3.00
10 3 1 2 0.6 0.55 4.50
11 1 1 2 0.4 0.55 4.50
12 2 2 1 0.5 0.60 3.00
13 2 2 2 0.5 0.60 4.50
14 3 1 1 0.6 0.55 3.00
15 2 3 3 0.5 0.65 6.00
16 1 3 1 0.4 0.65 3.00
17 1 2 1 0.4 0.60 3.00
18 2 1 2 0.5 0.55 4.50
19 1 1 3 0.4 0.55 6.00
20 3 3 3 0.6 0.65 6.00
21 1 3 3 0.4 0.65 6.00
22 2 2 3 0.5 0.60 6.00
23 3 2 3 0.6 0.60 6.00
24 1 2 2 0.4 0.60 4.50
25 1 2 3 0.4 0.60 6.00
26 3 2 1 0.6 0.60 3.00
27 2 3 2 0.5 0.65 4.50
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3.2.7.3 Absolute volume equation

For the purpose of obtaining the required quantity of ingredients in a cubic metre of

concrete as well as the quantities required for preparing samples for different tests, the

absolute volume method was used. The quantity required for one cubic meter of

concrete is presented in Table 3.2, while the required quantity for each specimen is

shown in Table 3.3. The equation essential for the calculation of weight of cement

required in a cubic metre of concrete was derived from the absolute volume equation,

thus;

Absolute volume is given by;

1 VvVcaVfaVcVw (3.7)

1
1000100010001000

 Vv
Gca

Wca
Gfa

Wfa
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Ww ; using 2% air void, (3.8)
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Wc
Gw

Ww (3.9)

where,

Vw = volume of water

Vc = volume of cement

Vfa = volume of fine aggregate

Vca = volume of coarse aggregate

Vv = volume of air void

Ww = weight of water

Wc = weight of cement

Wfa = weight fine aggregate

Wca = weight coarse aggregate

Gw = specific gravityof water

Gc = specific gravity of cement



72

Gfa = specific gravity of fine aggregate

Gca = specific gravity of coarse aggregate

Given that;

Wc
Wc
WwWw 






 (3.10)
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Substituting the values of CAFAW andWWW ,, into the absolute volume equation and

making Wc the subject of the formula gives Equation 3.13 that was used to estimate the

volume of cement required in a cubic meter of concrete.
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Table 3.2: Quantities required for batching

Run

Order

w/c Water
(kg/m3)

Cement
(kg/m3)

Fine
Aggregate
(kg/m3)

Coarse Aggregate
(kg/m3)

1 0.6 221.56 369.27 664.69 997.03

2 0.5 156.26 312.52 843.80 1031.31

3 0.4 208.88 522.21 704.98 861.64

4 0.6 181.72 302.86 817.72 999.44

5 0.5 248.29 496.58 521.41 968.33

6 0.5 247.90 495.79 669.32 818.05

7 0.4 159.90 399.75 629.61 1169.27

8 0.6 221.76 369.60 582.12 1081.08

9 0.6 283.58 472.63 496.26 921.63

10 0.6 221.37 368.94 747.11 913.13

11 0.4 159.59 398.98 807.94 987.49

12 0.5 248.09 496.18 595.42 893.13

13 0.5 191.87 383.73 690.71 1036.07

14 0.6 283.15 471.92 637.09 778.66

15 0.5 156.57 313.15 657.60 1221.27

16 0.4 209.23 523.09 549.24 1020.02

17 0.4 209.06 522.65 627.18 940.76

18 0.5 191.69 383.38 776.34 948.86

19 0.4 129.12 322.81 871.59 1065.28

20 0.6 182.07 303.45 637.24 1183.45

21 0.4 129.39 323.48 679.31 1261.58

22 0.5 156.42 312.83 750.79 1126.19

23 0.6 181.89 303.15 727.57 1091.35

24 0.4 159.75 399.37 718.86 1078.29

25 0.4 129.26 323.15 775.55 1163.33

26 0.6 283.36 472.27 566.73 850.09

27 0.5 192.04 384.08 604.93 1123.45
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Table 3.3: Quantities of materials required at each sample point

Run w/c ca/ta ta/c

Volume
required
(m3)

Water
(kg/m3)

Cement
(kg/m3)

Fine
Aggregate
(kg/m3)

Coarse
Aggregate
(kg/m3)

1 0.6 0.6 4.5 0.04 9.19 15.31 27.56 41.34
2 0.5 0.55 6 0.04 6.48 12.96 34.98 42.76
3 0.4 0.55 3 0.04 8.66 21.65 29.23 35.72
4 0.6 0.55 6 0.04 7.53 12.56 33.90 41.44
5 0.5 0.65 3 0.04 10.29 20.59 21.62 40.15
6 0.5 0.55 3 0.04 10.28 20.56 27.75 33.92
7 0.4 0.65 4.5 0.04 6.63 16.57 26.10 48.48
8 0.6 0.65 4.5 0.04 9.19 15.32 24.14 44.82
9 0.6 0.65 3 0.04 11.76 19.60 20.58 38.21
10 0.6 0.55 4.5 0.04 9.18 15.30 30.98 37.86
11 0.4 0.55 4.5 0.04 6.62 16.54 33.50 40.94
12 0.5 0.6 3 0.04 10.29 20.57 24.69 37.03
13 0.5 0.6 4.5 0.04 7.95 15.91 28.64 42.96
14 0.6 0.55 3 0.04 11.74 19.57 26.41 32.28
15 0.5 0.65 6 0.04 6.49 12.98 27.27 50.64
16 0.4 0.65 3 0.04 8.68 21.69 22.77 42.29
17 0.4 0.6 3 0.04 8.67 21.67 26.00 39.01
18 0.5 0.55 4.5 0.04 7.95 15.90 32.19 39.34
19 0.4 0.55 6 0.04 5.35 13.38 36.14 44.17
20 0.6 0.65 6 0.04 7.55 12.58 26.42 49.07
21 0.4 0.65 6 0.04 5.36 13.41 28.17 52.31
22 0.5 0.6 6 0.04 6.49 12.97 31.13 46.69
23 0.6 0.6 6 0.04 7.54 12.57 30.17 45.25
24 0.4 0.6 4.5 0.04 6.62 16.56 29.80 44.71
25 0.4 0.6 6 0.04 5.36 13.40 32.16 48.23
26 0.6 0.6 3 0.04 11.75 19.58 23.50 35.25
27 0.5 0.65 4.5 0.04 7.96 15.92 25.08 46.58
V1 0.55 0.55 3.50 0.04 10.07 18.30 28.83 35.24
V2 0.55 0.45 5.50 0.04 7.45 13.55 40.99 33.54
V3 0.55 0.55 5.50 0.04 7.45 13.59 33.62 41.09
V4 0.44 0.55 3.50 0.04 8.41 19.29 30.39 37.14
V5 0.45 0.45 5.50 0.04 6.31 14.02 42.41 34.70
V6 0.45 0.55 5.50 0.04 6.32 14.05 34.77 42.49
V7 0.40 0.65 5.00 0.04 6.15 15.37 26.89 49.94
V8 0.60 0.65 5.00 0.04 8.57 14.29 25.00 46.43
V9 0.50 0.65 5.00 0.04 7.40 14.81 25.91 48.12



75

3.2.8 Production of concrete using BNG

The production routine of concrete to satisfy pre-defined performance criteria has a

direct relationship with the quality of the resulting concrete. Mix design, mixing of

concrete constituents, curing and test methods have been identified as factors that

govern the quality of the resulting concrete (Aītcin, 1998; Mehta and Monteiro, 2014;

Neville and Aitcin, 1998; Olawuyi, 2016). The aggregates, water and cement were

weighed and a mini concrete mixer was used for the mixing. The fine aggregate was

first put in the mixer and the cement was added to it while the mixture was mixed for 60

seconds. BNG was then added to the mixture and mixing continued for another 60

seconds. Half of the required water was added to the mixture and the other half after

mixing for 60 seconds. The mixing was extended for an additional 120 seconds as

recommended in literature so as to achieve an adequate mixed concrete (Aītcin, 1998,

Abdullahi, 2009; Mehta & Monteiro, 2014). Table 3.3 shows the number of test

specimens that was produced for the experiments.

Table 3.3: Number of required specimens
S/N Concrete Specimen 28-day testing

1 150x150x150 mm cube 81

2 100x100x500 mm prism 81

3 100x200 mm cylinder 81

4 100x200 mm cylinder 81

For each of the mix combination suggested by MINITAB, concrete was prepared and

the slump loss was examined in accordance to BS EN 12350 - 6 (2009). Three concrete

cubes were prepared for compressive strength test, 3 prisms for flexural strength test

and 6 cylinders were produced for splitting tensile strength and modulus of elasticity

tests. The hardened concrete was cured in the curing tank for 28 days after which the

strength tests and modulus of elasticity were carried out.
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3.2.9 Test on hardened concrete

150 x 150 x 150mm cubes, 100 x 100 x 500 mm beams and 100 x 200 mm cylinders

were cast, covered with thick polythene and allowed to set for 24 hours. The samples

were demoulded after 24 hours and cured for 28 days. The cured samples were

thereafter tested for compressive strength according to BS EN 12390 - 3 (2009),

flexural strength according to BS EN 12390 - 5 (2009), tensile splitting test in

accordance to BS EN 12390 - 6 (2009), and modulus of elasticity in accordance to BS

EN 12390 - 13 (2009).

3.2.10 Model development

The model was developed using MATLAB (2015) from MathWorks. Before developing

the Artificial Neural Network (ANN), various ANN architectures were tried to select

the best architecture. The network was trained to recognise, process and interpret inputs

and translate to outputs based on data fed into the system. This procedure is explained

below in (a) to (e).

a. Design of the ANN architecture

A multilayer feed-forward ANN architecture with a single hidden layer was adopted

because it has been adjudged efficient in its generalisation ability (Kartam et al., 1997;

Flood and Kartam 1994a; Flood and Kartam 1994b). Development of the ANN

architecture requires the selection of the number of inputs, and outputs. The number of

neurons in each layer (input, hidden and output), the type of activation function, the

assignment of weights and biases as well as the selection of the training algorithm.

Water/cement ratio (w/c), weight of water (Ww), weight of cement (Wc), weight of fine

aggregate (Wfa) and weight of BNG (WBNG) was used as inputs while slump,
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compressive strength, flexural strength, split tensile strength and modulus of elasticity

served as the output in each of the ANN models developed. Between the input and

output layer, 1 hidden layer was selected with 2 neurons up to a maximum of 50

neurons. The network was allowed to randomly assign weights and biases to the

network and logsig and tansig activation functions were tried for the hidden layers while

the linear activation function (pureline) was selected for the output layer in each of the

models developed. The characteristics of the activation function used are as given in

Table 3.4 and the model equation for the two cases (logsig and tansig) considered are as

given in Equations 3.9 to 3.11.

Table 3.4: Activation functions adopted in the study

Activation
Function

Equation Derivative Range

Purlin (Linear) xxf )( 1)(' xf -∞ to ∞
Log Sigmoid

xe
xf 1

1)( ))(1)(()(' xfxfxf  0 to 1

Tan Sigmoid 1
1

2)( 2 


  xe
xf ))(1()(' 2xfxf  -1 to 1

b. Preparing training, validation and test data sets

ANN is structured to function like the human brain. As such, it performs knowledge

acquisition from interconnection of inputs data (x) and corresponding output data (y)

based on an iteration process of weight (coefficient) and in most cases bias (constant)

adjustments up until the error between the actual output (experimental results) and

model output is negligible in line with preselected performance metrics as shown in

Figure 3.1. This process is known as the back-propagation training algorithm and was

adopted in this study. New sets of input data are supplied to the network based on fixed

weights and bias of final training process to generate outputs depending on the learnt

input/output pair.
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Figure 3.1: Mode of operation of the artificial neural network

The input and output data pairs were augmented using a MATLAB (2015) script shown

in Figure 3.2 and the 180 augmented data sets are presented in Appendix A. 100 data

points from the augmented data were used for training, 20 data points were used for

validation and 60 data points were used for testing the ANN model.

Figure 3.2: MATLAB script used for data augmentation
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c. Pre-processing input data sets

ANN input data sets are often not on the same numerical scale. Activation functions

used to transform weighted sum of inputs to give outputs are usually nonlinear functions

of sigmoid nature. These functions are typically sensitive to data within specific range.

Furthermore, experimental data usually contain noisy and omitted observations and in

most cases of inconsistent nature. Procedures encompassing data reduction, data

transformation, data integration, data cleaning and data normalisation have been

reported to improve the effectiveness and precision of ANN models. In order to fairly

judge the neural network identities, data normalisation was performed on the input data

sets. Consequently, min-max normalisation technique shown in Equation 3.14 was used

to transform the input data to a uniform scale between -1 and +1. This method has been

reported to be effective for sigmoid activation function, which is adopted in this study.

�� = ( �−����
����−� ���

) (3.14)

Where;

Nd is the normalized data

x = input data

xmin = minimum value of the data x and

xmax = maximum value of the data x.

d. The artificial neural network model

Input data sets were supplied to the neurons in the input layer and were each treated

with coefficients and constants known as weights and bias respectively to obtain a sum

of weighted inputs and bias as given in Equation 3.15.

� = �=1
� ��. ��� + �1� (3.15)

Where;
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� = weighted sum of input and bias

xi = input data i

wij = weight associated with the input-hidden layer and

b1 is the constant associated with input-hidden layer.

Equation 3.15 was treated with a tangent sigmoid activation function given in Equation

3.16 to obtain the first layer output given in Equation 3.17.

� = 2
1+�−2� − 1 (3.16)

Where;

β = activation function

� = � �=1
� ��. ��� + �1� (3.17)

Where;

� is the hidden layer output.

The first (hidden) layer output � was supplied to the neuron in the output layer and

were further processed with new weights and bias. The weighted sum was further

treated with a linear activation function given in Equation 3.18 to obtain the overall

model output given in Equation 3.19 termed as the case 1 model.

� � = � (3.18)

� = µ( �=1
� ���� . � + �2) (3.19)

Where;

�= output of the entire case 1 ANN model

µ = linear activation function �(�)

wij = weight associated with the output layer and

b2 = bias associated with the output layer
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Similarly, logsig activation function shown in Equation 3.20 was used to treat the

weighted input sum � given in Equation 3.15 to obtain the first hidden layer output

given in Equation 3.21.

� = 1
1+�−� (3.20)

�hidden = � �=1
� ��. ��� + �1� (3.21)

Where;

�hidden = output of the hidden layer and

� = logsig activation function

The first (hidden) layer output �hidden was supplied to the neuron in the output layer and

were further processed with new weights and bias. The weighted sum was treated with a

linear activation function given in Equation 3.18 to obtain the overall model output

given in Equation 3.22 termed as the case 2 model.

�output = µ( �=1
� ���� . � + �2) (3.22)

Where;
�outpu = output of the entire case 2 ANN model

e. Evaluation of the ANN model

The models were trained using back propagation algorithm. The sequence requires

updating the connection weights and biases according to the learning capacity of the

network. The iterative process lasted up until the network was able to identify the

smallest error between the actual experimental result and the model output based on the

parameters given in Table 3.5. The performance of the trained model was examined

using Mean Square Error (MSE), Root Mean Square Error (RMSE) and Regression (R)

given in Equations 3.23, 3.24 and 3.25 respectively. The MSE is a measure of the

average of the square of the difference between the experimental result and the model

output. It also depicts the deviation of the predicted output from the actual output. Thus,
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the smaller the MSE, the smaller the error margin and the better the model. RMSE

denotes the standard deviation of the prediction errors or the residual. It is a measure of

the concentration of the data points around the line of best fit. R value range from 0 to 1

or from 0 to 100 percent with values closer to 100% signifying a high goodness of fit.

Table 3.5: Parameters used to train the feed forward ANN models
Parameter Configuration

Input data w/c, water, cement, sand and BNG content

Output data Slump, Compressive, flexural and splitting tensile

strengths and modulus of elasticity

Maximum number of epochs 10

Performance goal 0.000001

Learning Rate 0.01

Momentum constant 0.9

Training function TrainLM

Activation function Hidden layer – Tansig and logsig; Output layer - Purelin

ANN architectures tried 2:50 in steps of 2

��� = �=1
� (������ � − ������(�))� 2

�
(3.23)

���� = �=1
� (������ � − ������(�))� 2

�
(3.24)

� = �=1
� ������(�)−������(�)� ��������� ������(�)−������(�)� ����������

�=1
� ������(�)−������(�)� ��������� 2� �=1

� ������(�)−������(�)� ��������� 2�

2
(3.25)

Where;

Output (i) = output obtained from ANN model for each of the properties of concrete

considered.

Actual (i) = actual experimental result for each of the properties of concrete considered.

������(�)� ��������� = average actual data,

������ �� ���������� = average output from the ANN model and

n is the sample size.
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Figure 3.3: Flow chart showing the algorithm of the ANN model used.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Preliminary Test Results of Fine and Coarse Aggregates

4.1.1 Moisture content

The moisture inherent in an aggregate is the amount of water exceeding that at the

saturated and surface dry condition. Moisture content contributes to the water demand

of concrete and is of great importance when designing concrete mixtures. The moisture

content of the coarse and fine aggregates used is as shown in Table 4.1. Acceptable

moisture content of aggregate in concrete stipulated by Neville (2011) is in the region of

0 to 1 % for coarse aggregates and 1 to 10 % for fine aggregates. From Table 4.1, the

moisture content of both aggregates is within limits. This indicate that mix adjustment is

not necessary in order not to cause great variability in the concrete produced.

Table 4.1: Moisture content of aggregate

Coarse Aggregate (BNG) Fine Aggregate (Sand)
Trial Trial 1 Trial 2 Trial 1 Trial 2
Can no. Y3 P2 F3 I9
weight of can (g) 25.3 24.5 27.8 26.7
weight of can + wet sample (g) 79.9 93.5 83.5 75.5
weight of can + dry sample(g) 79.6 93.2 82.1 74.6
weight of water (g) 0.3 0.3 1.4 0.9
weight of dry sample (g) 54.3 68.7 54.3 47.9
Moisture content (%) 0.55 0.44 2.58 1.88
Average Moisture Content (%) 0.50 2.23

4.1.2 Specific gravity

Specific gravity was determined from a representative sample of the coarse and fine

aggregates used. Table 4.2 shows the result of specific gravity for the coarse and fine

aggregates obtained from three trials. The specific gravity of the natural coarse
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aggregate was 2.62 while that of the sand was 2.60. Neville (2011) recommended that

specific gravity of coarse and fine aggregates should be between 2.5 - 3.0 and 2.6 - 2.7

respectively. The aggregates used were therefore within the specified range of specific

gravity.

Table 4.2: Specific gravity of coarse and fine aggregate

BNG Fine Aggregate
Trial 1 2 3 1 2 3

weight of cylinder (g) 555.5 585.8 580.1 69
116.
5 394

weight of cylinder + Sample (g) 872.3 954.8 955.8
136.
5

286.
8

542.
3

weight of cylinder + Sample + water
(g)

1745.
8 1812

1795.
1

210.
3

461.
6

926.
2

weight of cylinder + water (g)
1549.
9

1585.
1

1561.
1

168.
2

359.
4

837.
3

Specific Gravity 2.62 2.60 2.65 2.66 2.50 2.50
Average Specific Gravity 2.62 2.60

4.1.3 Bulk density

BS 812 - 2 (1995) specifies two degrees of compaction of aggregates for concrete. The

uncompacted (loose) and compacted bulk densities. The loose and compacted bulk

densities of the aggregates used are presented in Table 4.3 and range between 1634.06

to 1939.28 kg/m3. The bulk density of aggregates usually used in normal weight

concrete is between 1200 and 1950 kg/m3 (Jackson and Dhir, 1996; Abdullahi, 2006), it

is therefore within this range. The aggregate is thus suitable for concrete production.
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Table 4.3: Bulk density of coarse and fine aggregate

Uncompated Uncompacted
Trail 1st 2nd 3rd 1st 2nd 3rd

BNG River sand

volume of mould
0.0002
3

0.0002
3

0.0002
3

0.0002
3

0.0002
3

0.0002
3

weight of mould (g) 266.7 266.7 266.7 266.7 266.7 266.7
weight of mould + sample
(g) 661.8 665.4 670.2 649.2 637.6 640.8
Weight of sample (g) 395.1 398.7 403.5 382.5 370.9 374.1

Bulk Density (kg/m3)
1717.8
3

1733.4
8

1754.3
5

1663.0
4

1612.6
1

1626.5
2

Average Bulk Density
(kg/m3)

1735.2
2

1634.0
6

Compacted Compacted
weight of mould (g) 266.7 266.7 266.7 266.7 266.7 266.7
weight of mould + sample
(g) 706.8 720 711.4 663.3 662.9 666.7
Weight of sample (g) 440.1 453.3 444.7 396.6 396.2 400

Bulk Density (kg/m3)
1913.4
8

1970.8
7

1933.4
8

1724.3
5

1722.6
1

1739.1
3

Average Bulk Density
(kg/m3)

1939.2
8

1728.7
0

Void Ratio 0.89 0.95

4.1.3 Water absorption

The water absorption of aggregate are measured within 24 hours based on BS 812 - 2

(1995) guidelines. BS 882 (1992), specifies that aggregates for concrete should possess

water absorption of not more than 3 %. Gupta (2013), however, opined that water

absorption of coarse aggregates should lie between 0.5 to 1%, while that of fine

aggregates should be in the range 0.1 to 5%. The water absorption of the aggregates

used are as depicted in Table 4.4. It is evident that the aggregates have WA well within

the range specified by BS 812 – 2 (1995) but does not conform to the recommendations

of Gupta (2013). However, it is safe to use these aggregates for concrete production.
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Table 4.4: Water absorption of coarse and fine aggregate

BNG River Sand
1st
trial

2nd
trial

3rd
trial

1st
trial

2nd
trial

3rd
trial

Weight of can (g) s40.5 39.3 51 52.9 60.9 53.6
Weight of can + dry soil (g) 189.3 222.5 191.1 213.2 263 288.9
Weight of can + wet soil (g) 192.5 225.4 194 252.5 311.7 308.1
Weight of dry soil (g) 148.8 183.2 140.1 160.3 202.1 235.3
Weight of wet soil (g) 152 186.1 143 199.6 250.8 254.5
Water Absorbtion (%) 2.15 1.58 2.07 2.45 2.41 0.82
Avearage Water Absorption
(%) 1.93 1.89

4.1.4 Aggregate crushing value

The coarse aggregate crushing value was determined and the result is as shown in Table

4.5. The aggregate crushing value is an index which defines the strength of an aggregate

and is applicable in pavement and road construction. BS 812 - 110 (1990) specifies

ACV values less than 30% is desirable in concretes used in roads and pavements. The

ACV obtained for the BNG was 27.27 % as shown in Table 4.5. This depicts that the

aggregates possess considerable strength and can be used as a pavement material.

Table 4.5: Crushing value of coarse aggregate (BNG)

Trial
A B C

Weight of mould (g) 4500 4500 4500
Weight of sample+ mould (g) 8049.5 8032.8 8025.5
Weight of Compacted sample (M1) (g) 3549.5 3532.8 3525.5
Wt. of sample passing 2.35 sieve (M2) (g) 950.5 967.2 974.5
Aggregate Crushing Value (ACV) = (M2/M1) x
100 26.78 27.38 27.64

Average ACV (%) 27.27
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4.1.5 Aggregate impact value (AIV)

The coarse aggregate impact value was determined and the result is as given in Table

4.6. BS 812 - 112 (1990) specifies that coarse aggregates with AIV greater than 30%

should be treated with caution due to their low impact value. This implies that AIV

values should be less than 30%. Furthermore, aggregates with AIV value between 19

and 28 % should be regarded as a mixed gravel. The coarse aggregate is therefore a

mixed gravel with AIV of 24.10 % sufficient to withstand sudden shock or impact. The

aggregate used (BNG) possesses the required AIV value and is suitable for use in

concrete production.

Table 4.6: Aggregate impact value of coarse aggregate

Trial
A B C

Weight of mould (g) 2400 2400 2400

Weight of sample+ mould (g) 3400 3300 3355

Weight of sample (M1) (g) 1000 900 955

Wt. of sample passing 2.35 sieve (M2) (g) 250 200 240

Aggregate Impact Value (AIV) = (M2/M1) x 100 25 22.2 25.1
Average AIV (%) 24.10

4.1.6 Sieve analysis

4.1.6.1 Sieve analysis for coarse aggregate (BNG)

Sieve analysis was conducted on the coarse aggregate to ascertain its suitability for

concrete production. The sieve analysis result for coarse aggregate as well as the

grading curve is as presented in Table 4.6 and Figure 4.1 respectively. BS 882 (1992)

stipulates grading limits for coarse aggregates of size 20 mm – 5 mm to be used in

concrete as given in Table 4.7. Sieve size 10 mm does not conform to this limit. This

implies that the aggregate contains large proportion of particles between 14mm and

10mm. Studies have shown that the smaller the size of coarse aggregate, the higher the
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strength of the resulting concrete. It is therefore appropriate to use this aggregate for the

production of concrete. Furthermore, the grading characteristics of aggregates are

described by the coefficient of uniformity (Cu) and coefficient of curvature (Cc) values.

Well-graded aggregates should possess Cc values between 1 and 3. Cu and Cc values

are calculated as;

10

60

D
DCu  = 1.63

1060

2
30

xDD
D

Cc  = 1.24

D10, D30 and D60 values were traced from the grading curve as 9.5, 13.5 and 16.5

respectively. Since the Cc value is greater than 1, but less than 3, the aggregate is said to

be well graded according to Craig (2004).

Table 4.7: Sieve analysis of coarse aggregate

Sieve
Size
(mm)

Mass
Retained

(g)

Percentage
Mass

Retained (%)

Cumulative
Percentage

Mass Retained
(%)

Percentage
Passing (%)

Grading Limits
Prescribed by
BS 882 (%)

20 100 2 2 98 90 - 100
14 2700 54 56 44 40 - 80
10 1600 32 88 12 30 - 60
6.3 400 8 96 4
5 200 4 100 0 0 - 10

Total 5000
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Figure 4.1: Particle size distribution curve for coarse aggregate

4.1.6.2 Sieve analysis for fine aggregate

The results of the sieve analysis of the fine aggregate (sand) used is as given in Table

4.8 while the grading curve is presented in Figure 4.2. The sand satisfied the grading

limits specified by BS 882 (1992). Fineness modulus, Cu and Cc of the sand was

determined in order to examine its suitability for concrete making. The fineness

modulus obtained was 2.66 indicating that the majority of the aggregate lies between

0.30 and 0.60 mm. This indicate that the sand was coarse in nature. The Cu and Cc was

3 and 1.23 respectively. The sand can therefore be said to be well-graded and suitable

for concrete production.
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Table 4.8: Sieve analysis of fine aggregate

Sieve
size
(mm)

Weight
of sieve
(g)

weight of
sieve +

sample (g)

Percentage
retained
(%)

Cumulative
percentage
retained (%)

Percentage
passing
(%)

Grading
Limits

Prescribed
by BS 882

(%)
5 475.1 477.1 0.4 0.4 99.6 98 - 100

3.35 467.8 476.9 1.82 2.22 97.78
2.36 433.7 447.8 2.82 5.04 94.96 60 - 100
2 416.5 429.1 2.52 7.56 92.44

1.18 384.9 456.3 14.28 21.84 78.14 30 - 100
850 352 415.2 12.64 34.48 65.52
600 467.7 573.3 21.12 55.6 44.4 15 - 100
425 435 539.3 20.86 74.46 25.54
300 384.3 430.8 9.3 85.76 14.24 5 to 70
150 420.5 480.9 12.08 97.84 2.16 0 - 15
75 326.9 330.1 0.64 98.48 1.52
pan 297.6 304.7 1.42 99.9 0.1

Figure 4.2: Particle size distribution curve for fine aggregate
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4.2 Slump, Strength Properties and Modulus of Elasticity

4.2.1 Slump

Slump loss was used to examine the workability of each mix. The slump loss of all

mixes was between 0 and 270 mm as presented in Table 4.9. A similar range of slump

was recorded by Abbasi et al. (1985) 0 - 200 mm and Alhaji, (2016) 0 - 245 mm using

similar w/c, ca/ta and ta/c ratios. The range of slump obtained covers the practical range

of slump for normal weight concrete reported by Neville (2011). BS EN 206 - 1 (2006)

categorised workability of concrete based on slump into five. No slump (So): Mix A11,

A19, A21 A25 and C5 showed zero slump. These mixes were produced with low w/c

and high ta/c ratio. This implies that the mix lack fine aggregate and the required

amount of mixing water to produce adequate workability. Consequently, the mixes were

stiff and harsh showing a deficiency of mixing water and a deficiency of cement. Low

Slump (S1): Mix A2, A3, A4, A7, A15, A16, A17, A18, A20, A22, C2, C3, C4, C6, C7

and C9 had slump values corresponding to the low slump range (10 - 40 mm). This was

attributed to the fact that the mixes contain high ca/ta ratio or were made with low w/c.

This ultimately resulted in the production of partially stiff but workable mixes. Mixes in

this range also indicated the highest range of compressive strength. Medium Slump (S2):

Three mixes; A1, A13 and A27 fell in this category having a slump between 50 and 90

mm. These mixes were made using very low ta/c ratio which require more water for

workability. The mixes also recorded high compressive strength values. High Slump

(S3): None of the mixes prepared had slump values corresponding to this range (100 -

150 mm). Very High Slump (S4): Mixes with slump values in excess of 160 mm are

characterised to have very high slump. Mix A5, A6, A8, A9, A10, A12, A14, A26 and

C1 fell into this category. The mixes were prepared with a very high w/c ratio and very
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low ta/c ratio. This is an indication that the water was in excess of that which aids

cohesion of the constituent materials.

Table 4.9: Slump and mechanical properties measured at 28days curing age

Run
Order/
Mix ID

CA/T
A

TA/
C

w/c Slump
(mm)

Compressiv
e Strength
(N/mm2)

Flexural
Strength
(N/mm2)

Tensile
Splitting
Strength
(N/mm2)

Modulus
of

Elasticity
(kN/mm2

)
1/A1 0.6 4.5 0.6 65 23.17 3.16 1.78 19.12
2/A2 0.55 6 0.5 10 27.51 4.71 2.06 21.66
3/A3 0.55 3 0.4 40 44.30 7.60 3.42 32.74
4/A4 0.55 6 0.6 25 26.93 4.67 2.05 20.37
5/A5 0.65 3 0.5 192 30.30 5.33 2.27 24.23
6/A6 0.55 3 0.5 195 26.74 4.60 2.04 20.97
7/A7 0.65 4.5 0.4 7 37.56 6.33 2.56 26.77
8/A8 0.65 4.5 0.6 178 24.89 4.00 1.95 19.68
9/A9 0.65 3 0.6 225 23.33 3.73 1.89 19.32
10/A10 0.55 4.5 0.6 178 22.96 2.93 1.76 19.29
11/A11 0.55 4.5 0.4 0 29.66 5.07 2.14 23.50
12/A12 0.6 3 0.5 190 34.37 5.87 2.44 25.79
13/A13 0.6 4.5 0.5 52 32.44 5.67 2.36 24.91
14/A14 0.55 3 0.6 270 25.78 4.40 2.02 20.88
15/A15 0.65 6 0.5 10 29.70 5.13 2.16 23.91
16/A16 0.65 3 0.4 26 41.63 6.53 2.71 31.29
17/A17 0.6 3 0.4 22 36.96 6.27 2.46 25.53
18/A18 0.55 4.5 0.5 8 32.96 5.80 2.41 24.63
19/A19 0.55 6 0.4 0 14.25 2.27 1.40 10.18
20/A20 0.65 6 0.6 3 28.52 4.80 2.09 21.27
21/A21 0.65 6 0.4 0 13.11 2.11 1.29 10.05
22/A22 0.6 6 0.5 2 30.44 5.53 2.33 24.99
23/A23 0.6 6 0.6 4 25.56 4.37 2.02 20.44
24/A24 0.6 4.5 0.4 3 28.22 4.80 2.08 23.21
25/A25 0.6 6 0.4 0 7.79 1.60 0.57 4.09
26/A26 0.6 3 0.6 230 24.53 3.96 1.93 19.61
27/A27 0.65 4.5 0.5 60 28.74 4.93 2.10 23.89
V1/C1 0.55 3.50 0.55 215 30.22 5.20 2.19 24.17
V2/C2 0.45 5.50 0.55 2 24.15 3.87 1.91 19.90
V3/C3 0.55 5.50 0.55 4.5 25.04 4.11 1.97 20.27
V4/C4 0.55 3.50 0.45 32 36.59 6.13 2.45 25.91
V5/C5 0.45 5.50 0.45 0 13.63 2.13 1.36 10.27
V6/C6 0.55 5.50 0.45 2 25.48 4.27 1.99 20.20
V7/C7 0.65 5.00 0.40 6 23.26 3.20 1.85 19.04
V8/C8 0.65 5.00 0.60 154 26.30 4.44 2.04 20.97
V9/C9 0.65 5.00 0.50 33 30.22 5.27 2.25 23.31
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4.2.2 Compressive strength

The compressive strength of all specimens made with various combination of

constituents were determined after curing by full immersion for 28 days. The

compressive strength of concrete is dependent on factors such as water-cement ratio,

cement type and strength, material quality and quality control techniques. It also

depends to a great extent on the quality of cement paste, type of aggregate and the

transition zone between the aggregate and cement paste (Rocco and Elices, 2009;

Neville 2011; Neville and Brooks, 2001; Abdullahi, 2012). The compressive strength

recorded was between 7.79 and 44.30 N/mm2 as shown in Table 4.9. Although four

(A19, A21, A25 and C5) mixes fell below the C15 grade of concrete (14.25, 13.11, 7.79

and 13.63 N/mm2 respectively), all other mixes recorded compressive strength well

above the C20 grade (22.96 - 44.30 N/mm2). Mix A19, A21, A25 and C5 is discouraged

for structural application while other mixes are suitable for various types of structural

use such as construction of slabs, beams, columns, footings and pre-stressed concrete

elements depending on their actual designated grade. It was, however, observed that

mixes A19, A21, A25 and C5 indicated low compressive strength because they were

made with low W/C but high ca/ta and high ta/c ratios. High ta/c ratio implies that low

cement content was used and high ca/ta ratio implies that the mixes contain high

amount of fine aggregates, which will normally require high water and cement content,

in order to achieve any reasonable strength and workability for structural application.

The mixes were extremely harsh and stiff as was observed from their slump values.

Therefore, the combination of constituent materials leading to the production of the

mixes should be avoided. It is a well-established fact that the lower the w/c ratio, the

higher the compressive strength of concrete. Compressive strength greater than 40

N/mm2 was recorded for Mix A3 and A16 specimens. These mixes were prepared with
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high cement content corresponding to low ta/c ratio, low w/c ratio and high ca/ta ratio

corresponding to high coarse aggregate content. This is a clear indication that the

properties of the constituent materials can further be engineered to produce concrete of

considerable high strength without necessarily using mineral or chemical admixtures.

The failure pattern and failure surface of one of the test specimens is shown in

Appendix B. It was observed that the coarse aggregate was the factor contributing most

to the failure of the specimens as most of the aggregate sheared or broke into pieces

after crushing. This was the case for almost all the other specimens.

4.2.3 Flexural strength

Although the 28-day compressive strength of concrete is the most desirable property

used in the design of concrete structural elements, other properties are also important so

as to study the behavior of the element under various loading conditions. Flexural

strength otherwise known as the modulus of rupture, is a measure of the response of

prismatic concrete beams to vertical forces. A typical range of flexural strength of

concrete reported by Alhaji (2016), lies between 2 N/mm2 and 7 N/mm2 inclusively.

The flexural strength obtained herein encompass 1.6 N/mm2 to 7.6 N/mm2 as shown in

Table 4.9. Only mix A25 did not fall within the prescribed range. All other mixes were

within the specified range. The pattern of strength increase or decrease in flexural

strength based on the mix ingredients were similar to the compressive strength results.

The failure pattern and failure surface of a representative specimen is shown in

Appendix C. The aggregate surface is also seen as the most susceptible failure plane

since it is the most stressed failure surface of the concrete and closest to the applied

loads.
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4.2.4 Splitting tensile strength

Concrete is a composite material with low tensile capacity. The tensile strength of

concrete can be measured directly or indirectly. The tensile strength of concrete is a

function of the strength and type of aggregates (Neville, 2011; Sallal et al., 2018). Since

this research herein is based on the use of naturally occurring coarse aggregates, it

became necessary to evaluate the tensile behavior of the concrete produced from these

aggregates. The tensile splitting strength obtained was between 0.57 - 3.42 N/mm2.

Although mix A19, A21, A25 and C5 recorded very low splitting tensile strength values.

This was also the case in the compressive strength of those mixes. All other mixes

indicated values between 1.76 and 3.42 N/mm2 as shown in Table 4.7. The splitting

tensile strength obtained at 28 days of curing for 20 different mixes by Alhaji (2016)

using the same coarse aggregates and similar constituents was between 0.72 and 2.62

N/mm2. Furthermore, results obtained by Sallal et al. (2018), SagarTanwani (2016),

Kanawade et al. (2014), Joseph and Maurice (2012) and Ali et al. (2018) were between

1.85 and 4.96 N/mm2. The results obtained using BNG are, however, within this range.

The failure pattern and failure surface are depicted in Appendix D.

4.2.5 Modulus of elasticity

In order to avoid excessive deformations while maintaining acceptable serviceability

requirements when designing concrete elements, the modulus of elasticity of normal

weight concrete must be between 18 - 34 kN/mm2 for 28 day compressive strength and

between 20 - 40 N/mm2 as specified in BS 8110 - 2 (1997). The modulus of elasticity

recorded for all mixes was between 4.09 - 32.74 kN/mm2 as presented in Table 4.9. Mix

A19, A21, A25 and C5 indicated the lowest modulus of elasticity between 4.09 and

10.05 kN/mm2. Other mixes indicated between 19.04 kN/mm2 and 32.74 kN/mm2,
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which were well within the range for normal weight concrete specified by BS 8110

(1997). Relating the modulus of elasticity to the compressive strength, it was observed

that mix A19, A21, A25 and C5 indicated compressive strength less than grade C15.

The reasons for the low compressive strength recorded by these mixes are therefore in

line with the reasons for their low elastic modulus values.

4.3 Artificial Neural Network (ANN) Models

Since there is no predetermined rule guiding the use of a particular ANN architecture

that will adequately perform the required prediction for the ANN models, several ANN

architectures from 1 to 50 neurons with a multiple of 2 neurons in the hidden layer per

iteration were tried, based on the premise of Bandara (2013). Tansig and logsig

activation function were tried for each of the architectures in each case.

4.3.1 ANN slump model

The performance metrics for the cases 1 and 2 slump models with tangent sigmoid and

logistic sigmoid activation functions in the training, validation and testing phase are as

given in Table 4.10. It can be observed that there exists a significant difference in the

performance of the models based on the MSE and RMSE results. Although the

regression (R) for both models were similar. The case 1 model with a tansig activation

function indicated the least MSE values of 0.0014, 0.1268, 0.0015 and RMSE values of

0.0375, 0.3560, 0.0393 in the training, validation and testing phase respectively. A

better accuracy when compares to MSE of 0.0149, 0.3341, 0.0094 and RMSE of 0.1219,

0.5780, 0.0972 was indicated by the case 2 model in the training, validation and testing

phase respectively. Low MSE and RMSE values proves that the difference between

experimental results and the model output is trivial. The dynamic range of the tangent
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sigmoid activation function of (-1, 1) as compared to the logistic sigmoid range (0,1)

accounts for why the case 1 model provides better performance. Furthermore, the min-

max data normalisation approach adopted to transform inputs to a uniform scale

between -1 and +1 is suitable for tansig activation functions. This shows that the type of

normalization technique as well as type of activation function affects the performance

of ANN slump model for concrete containing Bida natural gravel.

Table 4.10: Performance result for cases 1 and 2 models (Slump)

Performance MSE RMSE R Hidden layer function/Architecture
Training 0.0014 0.0375 1.0000 Tansig/5-89-1

0.0149 0.1219 1.0000 Logsig/5-75-1

Validation 0.1268 0.3560 1.0000 Tansig/5-89-1

0.3341 0.5780 0.9999 Logsig/5-75-1

Testing 0.0015 0.0393 1.0000 Tansig/5-89-1

0.0094 0.0972 1.0000 Logsig/5-75-1

In addition to the MSE and RMSE values, the regression (R) was used to judge the

accuracy of the cases 1 and 2 models. High values of R depict a high goodness of fit of

the model result to the actual experimental data. Nevertheless, the R metrics is limited

to 1. Based on results presented in Table 4.10, a R of 1 signifying a perfect goodness of

fit was recorded in the training, validation and testing phase for the cases 1 and 2

models except for the logsig activation function, which indicated a regression, R, of

0.9999 in the validation phase. This further confirms that the case 1 model possesses

superior performance to the case 2 model. The performance output for the training,

validation and testing phase are presented in Figure 4.6 and 4.7. From the Figures, it

was observed that the actual experimental results fitted almost perfectly with the model

outputs in the training, validation and testing phase for the cases 1 and 2 models.

Although a negligible deviation exists in the validation result of the model with logsig
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activation function between the 18th and 20th data points. This explains why it indicated

a R of 0.9999 in the validation phase. The R values obtained exceeds R of 0.937

reported by Alhaji (2016) using statistical modelling approach to model slump of

concrete containing Bida natural coarse aggregate. Thus, the case 1 model is the best

and selected model for predicting the slump of concrete using Bida natural gravel as

coarse aggregates.
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Figure 4.6: Relationship of actual to predicted results for cases 1 and 2 (slump model).
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Figure 4.7: Regression result for cases 1 and 2 slump model.
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The weights and bias of the ANN for the case 1 slump model with the least MSE,

RMSE and highest R in the training, validation and testing phase are presented in

Appendix E. Accordingly, the model equation for the selected slump model (case 1) is

given in Equation 4.1.

� = µ( �=1
� ���� . � + 0.3203 (4.1)

4.3.2 ANN compressive strength model

Performance parameters obtained for cases 1 and 2 compressive strength models are

presented in Table 4.11. The parameters were analogous with the trend obtained in the

slump model for cases 1 and 2.

Table 4.11: Performance result for cases 1 and 2 models (compressive strength)

Performance MSE RMSE R Hidden layer function/Architecture
Training 3.2971xe-04 0.0182 1.0000 Tansig/5-69-1

6.4206xe-04 0.0253 1.0000 Logsig/5-89-1

Validation 7.2308xe-04 0.0269 1.0000 Tansig/5-69-1

0.0219 0.1480 0.9999 Logsig/5-89-1

Testing 2.4230xe-04 0.0156 1.0000 Tansig/5-69-1

5.7678xe-04 0.0240 1.0000 Logsig/5-89-1

It was observed that MSE and RMSE obtained in the case 1 model were much lower

than the case 2 model in the training, validation and testing phase. The case 1 model

indicated MSE of 3.2971xe-04, 7.2308xe-04, 2.4230xe-04 and RMSE 0.0182, 0.0269,

0.0156 in the training, validation and testing phase. It is revealing that the case 2 model

with MSE of 6.4206xe-04, 0.0219, 5.7678xe-04 and RMSE of 0.0253, 0.1480, 0.0240 in

the training, validation and testing phase respectively, presents lower accuracy to the

case 1 model. An indication that the case 1 model presents the most negligible error
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between the experimental compressive strength and the model results. The low RMSE

recorded also signifies that the residuals are much closer to the fitted line as shown in

Figures 4.8 and 4.9. Similar to the slump model, the dynamic range of the tangent

sigmoid activation function of (-1, +1) as compared to the logistic sigmoid range (0, +1)

accounts for why the case 1 model provides superior performance. Moreover, the min-

max data normalisation approach used to transform inputs to a uniform range between -

1 and +1 is suitable for tansig activation functions and this shows that the type of

normalization technique as well as the type of activation function affects the

performance of ANN compressive strength models for concrete containing Bida natural

gravel. Regression (R) was further used to examine the precision of the compressive

strength models. R value of 1 was recorded by the case 1 model in the training, testing

and validation phase. The case 2 model also recorded R value of 1 in the training and

testing phase, but 0.9999 in the validation phase. Based on the result presented in Figure

4.8, a perfect goodness of fit was recorded in the training, validation and testing phase

for the cases 1 and 2 models. The R values exceeds R of 0.998 reported by Alhaji (2016)

using statistical modelling approach to model compressive strength of concrete

containing Bida natural coarse aggregates. The case 1 model is thus selected as the best

model. The weights and bias of the ANN for the selected case 1 model with the least

MSE, RMSE and highest R in the training, validation and testing phase are presented in

Appendix F. Accordingly, the model equation for the selected compressive strength

model (case 1) is given in Equation 4.2.

� = µ( �=1
� ���� . � + 0.2429 (4.2)
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Figure 4.8: Relationship of actual to predicted results for cases 1 and 2 (compressive strength
model).
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Figure 4.9: Regression result for cases 1 and 2 compressive strength models.
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4.3.3 ANN flexural strength model

The performance metrics obtained for case 1 and case 2 models are presented in Table

4.12. It was observed that the case 1 model indicated MSE and RMSE of 1.6754xe-07,

3.0976xe-04, 1.6223e-07 and 4.0932xe-04, 0.0176, 4.0278xe-04 respectively, while the case

2 model indicated a MSE and RMSE of 6.0418xe-10, 8.7042xe-04, 6.1359xe-10 and

2.4580xe-05, 0.0295, 2.4771xe-05 during the training validation and testing phase

respectively. A better performance when compared with the case 1 model. In the

validation phase, however, the case 1 model indicated a slightly higher MSE and RMSE

than the case 2 model. This emphasises that the case 2 model presents the most

negligible error between the experimental compressive strength and the model results in

the training and testing phase. A small RMSE value obtained in the training and testing

phase signify that the residuals are much closer to the fitted line as shown in Figures

4.10 and 4.11. Contrary to the slump and compressive strength models, the case 2

model with logistic sigmoid activation function gave the best performance. This was the

case, because the range of values obtained after normalisation of the data sets for

flexural strength converges quickly in the neighborhood of 0 and 1. This range is

particularly adapted to logistic functions with saturation values of 0 and 1. Furthermore,

the optimal result (case 2 model) recorded 91 neurons in the hidden layer, while the

case 1 model indicated optimal result with 81 hidden neurons. The regression values of

the case 2 model gave R value of 1 in the training and testing phase but an R value of

0.9998 in the validation phase as depicted in Figure 4.11. When compared to R value of

0.998 obtained by Alhaji (2016) for statistical model for flexural strength of concrete

containing Bida natural coarse aggregate, the ANN flexural strength model can be said

to possess a better prediction capacity based on the MSE, RMS and R metrics. The case

2 model is therefore presented as the best ANN model for predicting the flexural
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strength of concrete containing Bida natural gravel. The weights and bias of the ANN

for the selected case 2 model with the least MSE, RMSE and highest R in the training,

validation and testing phase are presented in Appendix G. Consequently, the flexural

strength model equation for the selected model (case 2) is given in Equation 4.3.

�output = µ( �=1
� ���� . � − 0.0299) (4.3)

Table 4.12: Performance result for cases 1 and 2 models (flexural strength)

Performance MSE RMSE R Hidden layer function/Architecture
Training 1.6754xe-07 4.0932xe-04 1.0000 Tansig/5-81-1

6.0418xe-10 2.4580xe-05 1.0000 Logsig/5-91-1

Validation 3.0976xe-04 0.0176 0.9999 Tansig/5-81-1

8.7042xe-04 0.0295 0.9998 Logsig/5-91-1

Testing 1.6223e-07 4.0278xe-04 1.0000 Tansig/5-81-1

6.1359xe-10 2.4771xe-05 1.0000 Logsig/5-91-1
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Figure 4.10: Relationship of actual to predicted results for cases 1 and 2 (flexural
strength models).
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Figure 4.11: Regression result for cases 1 and 2 flexural strength model.
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4.3.4 ANN splitting tensile strength model

Table 4.13 shows the summary of the performance obtained for cases 1 and 2 of split

tensile strength, ANN model. The case 1 model indicated substantially lower MSE and

RMSE values and higher R value in the training, validation and testing stage than the

case 2 model. The case 1 model showed MSE and RMSE of 2.8449xe-09, 6.6054xe-04,

2.7093xe-09 and 5.3338xe-05, 0.0257, 5.2050xe-05 respectively in the training, validation

and testing phase. A much better performance to the case 2 model which recorded MSE

and RMSE of 0.0025, 0.0056, 0.0016 and 0.0499, 0.0752, 0.0406 respectively in the

training, validation and testing phase. Lower MSE value depicts that the error between

the actual experimental result and the model output is very small. Low RMSE value on

the other hand accounts for the closeness of the residual to the fitted line as can be seen

in Figures 4.12 and 4.13. From Figure 4.13, it is evident that the actual data fits closely

to the model data in the training, validation and testing stage with high R value of 1,

0.9981 and 1 in the training, validation and testing phase signifying high goodness of fit.

Comparing the R value of the case 1 model to 0.937 R value reported by Alhaji (2016),

the case 1 model with R value of 1 can be said to possess better precision. The case 1

model displayed better performance due to the range of tansigmoid activation function

and the min - max normalisation technique adopted, which operates on the data range

between -1 and +1. Consequently, the case 1 model with tansigmoid activation function

is selected as the best model for predicting the split tensile strength of concrete using

Bida natural gravel as aggregate. The weights and bias of the ANN for the selected case

1 model with the least MSE, RMSE and highest R in the training, validation and testing

phase are presented in Appendix H. Consequently, the split tensile strength model

equation for the selected model (case 1) is given in Equation 4.4.

� = µ( �=1
� ���� . � + 0.1711 (4.4)
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Table 4.13: Performance result for cases 1 and 2 models (split tensile strength)

Performance MSE RMSE R Hidden layer function/Architecture
Training 2.8449xe-09 5.3338xe-05 1.0000 Tansig/5-91-1

0.0025 0.0499 0.9955 Logsig/5-27-1

Validation 6.6054xe-04 0.0257 0.9981 Tansig/5-91-1

0.0056 0.0752 0.9842 Logsig/5-27-1

Testing 2.7093xe-09 5.2050xe-05 1.0000 Tansig/5-91-1

0.0016 0.0406 0.9968 Logsig/5-27-1
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Figure 4.12: Relationship of actual to predicted results for cases 1 and 2 (flexural

strength model).
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Figure 4.13: Regression result for cases 1 and 2 flexural strength model.
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4.3.5 ANN modulus of elasticity model

Summary of the performance recorded by the cases 1 and 2 modulus of elasticity

models are presented in Table 4.14. The case 1 model indicated MSE of 0.006, 1.1110

and 1.1110 in the training, validation and testing phase respectively. A less superior

performance when compared to the case 2 model, which recorded MSE of 3.961xe-07,

3.0398 and 3.9310xe-07 in the training, validation and testing phase respectively. This

shows that the case 2 model presents the smallest amount of error between the

experimental data and the model output. The case 2 model showed higher RMSE of

6.2941xe-04 and 6.2698xe-04 in the training and testing phase respectively. In the

validation phase of the case 2 model, RMSE of 1.7435 was recorded 0.7 in excess of the

RMSE indicated by the case 1 model. This is an indication that the residuals are closer

to the fitted line in the case 2 model, and it is evident from the fitted regression plot

shown in Figure 4.15. The case 2 model posited regression R, of 1 in the training and

testing phase of 0.00001 more than the case 1 model, which indicated R of 0.9999 in the

training and testing phase respectively. This further establishes the case 2 model as the

best performed model. Alhaji (2016) recorded R of 1 in a statistical model for predicting

elastic modulus of concrete. Based on the error and regression values, the case 2 model

is selected as the best model for predicting the modulus of elasticity of concrete using

Bida natural gravel as coarse aggregates. The weights and bias of the ANN for the

selected case 2 model with the least MSE, RMSE and highest R in the training,

validation and testing phase are presented in Appendix I. Accordingly, the model

equation for the selected case 2 model is given in Equation 4.5 as:

�output = µ( �=1
� ���� . � − 0.0450) (4.5)
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Table 4.14: Performance result for cases 1 and 2 models (modulus of elasticity)

Performance MSE RMSE R Hidden layer
function/Architecture

Training 0.0060 0.0776 0.9999 Tansig/5-75-1

3.9616xe-07 6.2941xe-04 1.0000 Logsig/5-67-1

Validation 1.1110 1.0540 0.9906 Tansig/5-75-1

3.0398 1.7435 0.9735 Logsig/5-67-1

Testing 0.0051 0.0714 0.9999 Tansig/5-75-1

3.9310xe-07 6.2698xe-04 1.0000 Logsig/5-67-1
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Figure 4.14: Relationship of actual to predicted results for cases 1 and 2 (modulus of elasticity

model).
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Figure 4.15: Regression result for cases 1 and 2 modulus of elasticity model.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Based on the finding from the research, the following conclusions were made;

The fine aggregate recorded specific gravity of 2.60, moisture content of 2.23, water

absorption of 1.89 and uncompacted and compacted bulk densities of 1735.22 and

1634.06 kg/m3 respectively. Thus, these results and the coefficient of curvature (Cc) of

3 and coefficient of uniformity (Cu) of 1.23 obtained from sieve analysis, the fine

aggregate was found to be well – graded, while containing majorly coarse particles. The

sand was, therefore, suitable for concrete production. The Bida Natural Gravel (BNG)

showed an aggregate impact value of 24.10 and aggregate crushing value of 27.27. It

also recorded specific gravity of 2.62, moisture content of 0.5, water absorption of 1.93

and with uncompacted and compacted bulk densities of 1939.28 and 1728.70 kg/m3

respectively. In addition, it recorded Cc of 1.24 and Cu of 1.63. Based on the observed

properties, it was concluded that the BNG is suitable for concrete production and

possess sufficient strength to withstand shock. This corroborates other earlier works that

have been executed in this wise.

The slump recorded were categorised as no slump, low slump, medium slump and very

high slump of concrete based on BS EN 206 – 1 (2006). The highest slump of 270 mm

was recorded when using w/c of 0.60, ca/ta of 0.55 and ta/c of 3.00, while no slump was

recorded while using w/c of 0.40, ca/ta of 0.65, 0.60 and 0.55 and ta/c ratio of 6.

The highest compressive strength, flexural strength and splitting tensile strength of

44.30, 7.60 and 3.42 N/mm2, as well as, modulus of elasticity of 32.74 kN/mm2 was
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recorded using low w/c ratio of 0.40, medium ca/ta ratio of 0.55 and low ta/c ratio of

3.00 while the lowest compressive strength, flexural strength and splitting tensile

strength of 7.79, 1.60 and 0.57 N/mm2 respectively and elastic modulus of 4.09 kN/mm2

were recorded while using low w/c ratio of 0.40, medium ca/ta ratio of 0.60 and high

ta/c ratio of 6.00.

Five different Artificial Neural Network (ANN) models were developed for slump,

compressive strength, flexural strength, splitting tensile strength, as well as, modulus of

elasticity. Based on error indices and goodness of fit, a 5-89-1 ANN architecture with a

tangent sigmoid activation function was found to be sufficient in predicting slump data

for concrete using Bida Natural Gravel (BNG) as aggregates. A 5-69-1 ANN

architecture with tangent sigmoid activation function was found to be sufficient in

predicting compressive strength data while a 5-91-1 ANN architecture with logistic

sigmoid activation function was found to perform best in predicting flexural strength of

concrete using BNG as coarse aggregate. Architecture with 5 input neurons, 91 hidden

neurons and 1 output neuron (5-91-1) was adjudged to best predict the splitting tensile

strength of concrete containing BNG using tangent sigmoid activation function, while a

5-67-1 ANN architecture with a logistic sigmoid activation function was selected for

predicting the elastic modulus of concrete containing BNG.

5.2 Recommendations

From the results obtained in this research, the following recommendations are made;

i. Bida Natural Gravel (BNG) is recommended for use in the production of normal

weight concrete based on the numerical and experimental results of the physical and

mechanical properties.
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ii. Using a maximum BNG size of 20 mm and a w/c ratio of 0.40, 0.50 and 0.60, ca/ta

ratio of 0.55, 0.60 and 0.65, as well as, a ta/c ratio of 3.00, 4.50 and 6.00, is

recommended for the production of concrete in the normal strength class.

iii. The developed artificial neural network models for slump, compressive strength,

flexural strength, splitting tensile strength and modulus of elasticity are recommended

to be used for predicting properties and performance of concrete using BNG as coarse

aggregate.

5.3 Contribution to Knowledge

i. Comprehensive information on physical and mechanical properties of BNG is

available for reference.

ii. Data on the fresh and hardened properties of concrete produced using BNG is

documented for future reference.

iii. ANN models for predicting the slump, strength and modulus of elasticity of concrete

produced using BNG is documented.

5.4 Area for Further Study

i. Advanced studies on the prediction of the durability properties of concrete containing

BNG should be caried out.

ii. BNG should be used in the production of other types of concrete such as high

performance, high strength and pervious concrete.

iii. Properties of concrete made using BNG should be modeled using other artificial

intelligence techniques such as fussy logic and genetic algorithm.
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