
BASE STATION CLUSTERING AND MOBILE DATA TRAFFIC
PREDICTION IN CLOUD RADIO ACCESS NETWORK FOR

MULTIPLEXING GAIN

BY

UMASABOR, Nelson
MEng/SEET/2017/7200

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL
UNIVERSITY OF TECHNOLOGY, MINNA, IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF
ENGINEERING IN COMMUNICATION ENGINEERING

OCTOBER, 2021

i

ABSTRACT

Mobile network operators over-dimension network resources due to lack of pre-knowledge
of the data traffic volume and this leads to underutilization of the network resources as
usage of base station resources vary throughout the day. This over-dimensioning also leads
to increased cost. Cloud Radio Access Network (C-RAN) allows for network resources to
be shared amongst several base stations thereby reducing cost. Previous works have used
clustering to group base stations with similar network load and others have clustered base
stations with light and heavy network load together, but this does not capture the true
network resource requirement due to the limited size of the network. To prevent the size of
the network from affecting multiplexing gains, the base stations need to be able to respond
proactively to any change in network load. A Long Short-Term Memory (LSTM) algorithm
is going to be used for the prediction of the data traffic volume of a base station thereby
providing the pre-knowledge of the network load. This will allow for proper provisioning of
network resources, and using different clustering algorithms such as K-means, Hierarchical
and Gaussian Mixture Models to cluster these base stations there is a reduction in the
needed network resources and this reduces cost. Capacity Utility and cost of deployment
are the metrics used in making a comparative analysis of the different clustering algorithms
used in this work. From evaluation of the methodology, it showed that the Hierarchical
clustering algorithm had a Capacity Utility of 0.0012, Gaussian Mixture Models had 0.0035
and K-means with 0.0044 and when this is evaluated against the Capacity Utility before
clustering of 0.63 it can be seen that the Hierarchical clustering algorithm had reduced the
needed network resources better than Gaussian Mixture Models and K-means. The 3
clustering algorithms were also able to reduce the number of needed base stations from 182
to 80, thereby reducing cost of deployment.

v

TABLE OF CONTENTS

Cover Page

Title Page i

Declaration ii

Certification iii

Acknowledgements iv

Abstract v

Table of Contents vi

List of Tables ix

List of Figures x

Abbreviation xii

CHAPTER ONE

1.0 INTRODUCTION 1

1.1 Background of Study 1

1.2 Statement of Research Problem 3

1.3 Aim and Objectives 3

1.4 Justification of Research 4

1.5 Scope of Study 5

vi

1.6 The Structure of the Thesis 5

CHAPTER TWO

2.0 LITERATURE REVIEW 6

2.1 Overview of C-RAN Design and Features 6

2.2 Cloud RAN Architecture 6

2.3 Traditional RAN Architecture 7

2.4 Advantages of Cloud RAN 10

2.5 Challenges of Cloud RAN 10

2.6 Long Short-Term Memory (LSTM) 10

2.7 Concept of Clustering 12

2.8 Concept of Deep Learning 13

2.9 Clustering Algorithms and Mobile Network Performance 14

Metrics

2.10 Algorithms for Optimizing Cost for Network Deployment using 18

Clustering Techniques

2.11 Clustering Benefit for Network Capacity Utility 21

Improvement

2.12 Chapter Summary 24

CHAPTER THREE

3.0 MATERIALS AND METHODS 25

vii

3.1 Software 25

3.2 Source of Dataset 25

3.3 Methodology for Objective 1 27

3.3.1 Clustering Algorithm 27

3.3.2 Evaluation 28

3.4 Methodology for Objective 2 29

3.4.1 Deep Learning 29

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION 34

4.1 Results of Clustering Algorithms 34

4.2 Cluster Calculations for Capacity Utility 39

and Cost of Deployment

4.3 Result of Deep Learning 43

CHAPTER FIVE

5.0 CONCLUSION AND RECCOMENDATIONS 45

5.1 Conclusion 45

5.2 Recommendations 46

5.3 Contribution to Knowledge 46

REFERENCES 47

APPENDICES 51

viii

LIST OF TABLES

Table Page

2.1 Comparison between Traditional RAN and C-RAN 8

3.1 Dataset Description 26

4.1 Results of Cluster Algorithms 38

4.2 Results of Capacity Utility and Cost of Deployment 39

4.3 Comparison of Methodology 44

ix

LIST OF FIGURES

Figure Page

1.1 A C-RAN with 2 RRHs 2

2.1 Cloud RAN Architecture 7

2.2 Traditional RAN Architecture 8

2.3 3G RAN Architecture 9

2.4 Long Short-Term Memory Block 11

2.5 Deep Learning Framework Overview 16

2.6 C-RAN with Packet Based Architecture 19

2.7 iTREE System Model Structure 20

2.8 Movement of Network load over the Course of a day 22

2.9 C-RAN Network with 2 Fronthaul Segments 23

3.1 Milan Grid 26

3.2 Flowchart of the Clustering Algorithms 27

3.3 Architecture of the LSTM Model 30

3.4 Flowchart of Deep Learning LSTM Prediction 30

3.5 Diagram of Methodology 32

3.6 Flowchart of Cluster Algorithm Comparison 33

4.1 K-Means Clustering Algorithm 34

x

4.2 Hierarchical Clustering Algorithm 35

4.3 Gaussian Mixture Model Clustering 36

4.4 Comparison of the Cluster Algorithms 37

4.5 Milan Traffic Volume Prediction 44

xi

ABBREVIATIONS

Acronyms Meaning

BBU

BF

BnB

CPRI

C-RAN

DCCA

FFT

FH

GOPS

IQ

ITREE

LSTM

MAE

NDA

QoS

RAN

RNN

Baseband Unit

Balanced Fair

Branch and Bound

Common Public Radio Interface

Cloud Radio Access Network

Distance-Constrained Complementarity-Aware

Fast Fourier Transform

Fronthaul

Giga Operations Per Second

In-phase/ Quadrature-phase

Intelligent Traffic and Resource Elastic Energy

Long Short-Term Memory

Mean Absolute Error

Non-Disclosure Agreements

Quality of Service

Radio Access Network

Recurrent Neural Network

xii

RRH

SA

VBS

WCDMA

WIMAX

Remote Radio Head

Simulated Annealing

Virtual Base Station

Wideband Code Division Multiple Access

Worldwide Interoperability for Microwave Access

xiii

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

In recent years, due to increase in personal devices and data-hungry mobile applications, the

demand for an efficient and always available high data rate radio access network has

increased (Visual and Index, 2019). The radio access network part of a base station is one

of the most important and about 80% of the capital expenditure is spent on it (Bihnam,

2021). Moreover operating expenditure like power consumption and maintenance is also

increasing (Ye Li et al., 2011). Cloud Radio Access Network (C-RAN) is an architecture to

solve the problem of increase in capital and operating expenditure (Peng et al., 2021) . C-

RAN was initially proposed by Lin et al. (2010) with further details in (Chen, 2011). One

major drawback in the achievement of C-RAN is the limited fronthaul capacity. The

fronthaul is the connection between the Remote Radio Heads (RRHs) and the Baseband

Units (BBUs). The signals sent from the RRHs to the BBUs can be analog or digital

(Mcclean and Morrow, 2020). The digitized or In-phase/Quadrature-phase (IQ)

transmission is carried out using the Common Public Radio Interface (CPRI) protocol

(Common Public Radio Interface, 2015). For C-RAN to be achieved there is need for a

fronthaul connection with high bandwidth and low latency but in reality the available

fronthaul is both capacity and time-delay constrained (Peng et al., 2015). Different

techniques have been used to solve this problem such as lossless compression and the use of

power over fibre on the fronthaul (Alimi et al., 2018; Lorca et al., 2013; Ramalho et al.,

2017).

1

In C-RAN there is the centralization of baseband processing of statistically varying traffic

loads from different base stations, these loads are multiplexed and the processing resources

are also shared. A base station is built to serve the maximum traffic load but due to

variations in traffic load throughout the day, there may be times of underutilization. The

peak of this multiplexed load across several base stations is seen to be lower than the sum

of individual peak loads (Rish et al., 2001).

Figure 1.1: A C-RAN with 2 RRHs showing the application of BBU resource multiplexing

to short-term (in frames) and long-term (in hours) load fluctuations (Kalor et al., 2017)

In Figure 1.1, (a) and (b) load at each RRH. (c) Aggregate load at the BBU. (d) long term

multiplexing. (e) short term multiplexing.

This lowered peak load leads to reduction in processing resources and this leads to the

statistical multiplexing gain of baseband processing resources as the bandwidth requirement

2

for each user compensates for each other due to the variability of the data traffic as shown

in Figure 1.1. Multiplexing gain has the following benefits: Reduced cost, Reduced energy

consumption, Better spectrum utilization, Better resource utilization, Scalability (Liu et al.,

2014).

Long-term multiplexing is the capacity to adjust to slow variations and this slow variation

is the change in traffic load during the course of a day. These changes occur in the minute

to hour scale. Short-term multiplexing is the capacity to adjust to fast variations usually in

the millisecond to seconds scale (Kalor et al., 2017).

1.2 Statement of the Research Problem

Some base station resources may be underutilized as usage of base station resources vary

throughout the day and this can be reduced by clustering of base stations effectively

(Checko et al., 2014) and exploiting their multiplexing gains. However mobile network

operators over-dimension network resources due to lack of pre-knowledge of the data

traffic volume. This research has considered clustering of base stations and deep learning

technique to predict data traffic volume to provide this pre-knowledge.

1.3 Aim and Objectives of the Research

The aim of this research is to develop a cluster technique to cluster base stations effectively

and predict its data traffic volume in cloud radio access network for multiplexing gain.

The objectives are:

i. To carry out comparative analysis of clustering algorithms to determine the better

C-RAN clustering algorithm based on the following evaluation metrics: capacity

utility and cost of deployment.

3

ii. To build an LSTM prediction model to predict data traffic volume with a low mean

absolute error.

1.4 Justification of the Research

Several authors, Rish et al. (2001); Pompili et al. (2015); Bhamare et al. (2018); in their

research have proposed several methods for achieving multiplexing gains in cloud radio

access network. Other authors like Bhaumik et al. (2012); Werthmann et al. (2013); Taleb

et al. (2018a) have proposed using clustering as a way to achieve multiplexing gain,

Werthmann et al. (2013) proposed clustering several base station sectors into a single cloud

base station to achieve operational cost reduction, but this was not tested on a true urban

environment. Taleb et al. (2018a) proposed clustering algorithm was to achieve reduction in

network power consumption and reduce transmission delay, this was complicated since you

have to jointly solve for user association and RRH clustering. Bhaumik et al. (2012)

proposed a Cloud IQ framework to reduce compute resources, its pitfall is that it was for a

homogenous system.

Clustering in C-RAN is important because it allows for the increase in capacity utility, and

this increase is as a result of the BBUs sharing the data computations of several RRHs in

different times of the day (Bhaumik et al., 2012). The focus of this work is to improve

Capacity Utility and reduction of Cost and this is important because this encompasses every

other gain that can be achieved from clustering, it is also the solution to a major problem

faced by mobile network operators (Lehrmann et al., 2014).

Chen et al. (2018) used several deep learning techniques and a Distance Constrained

Complementary Aware (DCCA) clustering algorithm and compared the performance of the

4

various deep learning techniques but to the best of our knowledge none has compared the

performance of several clustering algorithms with a single deep learning technique. Python

programming language will be used for the simulation, real-world data from the Telecom

Italia Big Data Challenge will be used. The evaluation will be comparing the capacity

utility and cost reduction achieved by the clustering algorithm.

1.5 Scope of the Research

This research is limited to the use of several clustering algorithms to achieve multiplexing

gains such as improved capacity utility and reduced cost, and prediction of mobile traffic

data using deep learning technique.

1.6 Structure of the Thesis

This thesis is structured in 5 chapters as follows: Chapter 1 is the Introduction. Chapter 2

introduces various concepts like Multiplexing Gain, C-RAN, LSTM, Clustering, Deep

Learning. and the Literature review that presents various approaches in achieving

multiplexing gains through Clustering. Chapter 3 is the Research Methodology which

presents the use of clustering and prediction algorithms in achieving the objectives of this

research. Chapter 4 is the presentation of result and discussion; Chapter 5 is Conclusion and

Recommendations.

5

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Overview of C-Ran Design and Features

C-RAN is a network architecture where there is a separation of the Baseband units (BBUs)

and Remote Radio Heads (RRHs), the BBUs are responsible for baseband processing such

as coding, modulation, Fast Fourier Transform (FFT) and RRHs for radio functionalities

such as digital processing frequency filtering and power amplification (Lehrmann et al.,

2014). Baseband processing are concentrated into the cloud and their functions shared

among various base stations in a BBU pool, which allows it to adapt to dynamic traffic

patterns and use network resources more efficiently. This allows for the use of fewer BBUs

thereby reducing capital and operating expenditure. It also reduces energy consumption; it

improves scalability because new BBUs can be added easily. The third part of the C-RAN

is the fronthaul transport infrastructure which provides connection between the Remote

Radio Heads and Baseband Units. An Optical transport network is used to achieve this, but

actualization of this is a big challenge due to the requirements of this interface such as high

bandwidth (tens of Gbps), low jitter, low latency and cost.

2.2 Cloud Ran Architecture

The concept of C-RAN was first introduced by IBM (Lin et al., 2010). In Cloud RAN as

seen in Figure 2.1, the Remote Radio Heads (RRHs) also called Remote Radio Units

(RRUs) are separated from the Baseband Units (BBUs), these BBUs are concentrated into

pools and these pools are shared among base stations so as to maximize the network

resource usage from heavily and lightly loaded base stations. C-RAN is a concept of

6

combining the applications of cloud computing on mobile network radio access network. C-

RAN was proposed to address the deficiencies of the traditional radio access network such

as limited capacity, insufficient expendability, low utilization (Chen et al., 2015). C-RAN

allows for low latency and high-speed communication between base stations. In C-RAN the

BBUs are easily expandable since they are in the cloud.

BBU POOL

FRONTHAUL LINKS

RRH RRH RRH

Figure 2.1: Cloud RAN Architecture

2.3 Traditional Ran Architecture

In traditional RAN the radio functionalities and baseband processing are incorporated inside

a single base station. The antenna is just a few metres away from the radio module and is

connected to each other with a coaxial cable. This was used for 1G and 2G network

deployment. The traditional RAN architecture has a few disadvantages that the C-RAN is

going to improve such as limited capacity because the traditional RAN imposes a hard

capacity on the number of users in the network.

7

ANTENNA
E1

RRH
BACKHAULBACKHAUL BBU

Figure 2.2: Traditional RAN Architecture

Table 2.1: Comparison Between Traditional RAN and C-RAN

RESOURCES TRADITIONAL RAN C-RAN

RRH and BBU The RRH and BBU are located The RRH and BBU are

Location. together. separated by long distances.

Energy Requirement. There is a higher energy There is a lower energy

requirement due to the RRH requirement due to the

and BBU in the same location. separation of the RRH and

BBU.

Network Resource There is over-dimensioning of Network resources are optimally

Usage. network resources which leads utilized due to proper

to under-utilization. dimensioning.

Transportation Cost. Transportation cost are low. Transportation cost are high due

to the separation of RRH and

BBU.

8

There is also the problem of scalability, as the only way to increase the coverage area in a

traditional RAN system is to build new base station which imposes huge capital and

operating expenditures (Chen, 2011). Because network resources have to be provisioned

based on the busy period, the actual average network load is usually lower and this leads to

under-utilization of network resources (Chen et al., 2015).

A comparison between traditional RAN and C-RAN is presented in Table 2.1. As seen in

Figure 2.2, in traditional RAN the RRHs and BBUs are located together on the base station

site with the RRH and BBU just a few metres apart and these base stations are connected to

the mobile core network through the backhaul (Lehrmann et al., 2014).

Figure 2.3 shows that in 3G networks the fronthaul connection between the RRH and BBU

can be up to 40 km, the only limitation to this is processing and propagation delay. Optical

and microwave connections can be used here.

Mobile Bachaul Network

BBU BBU BBU

RRH RRH RRH

Figure 2.3: 3G Traditional RAN architecture

9

2.4 Advantages of Cloud Ran

There is reduction of operating cost due to less power consumption as a result of a less

complex RRH and reduction in cost of deployment due to reduced price of the RRH.

System throughput can be improved by a dense deployment of low power RRHs. It also

prevents network resource wastage by aggregating network resources from different base

stations.

2.5 Challenges of Cloud Ran

High bandwidth requirement, low latency and jitter and the high cost of the transportation

network. Effective clustering to prevent network overloading is also a major challenge

(Lehrmann et al., 2014). There is also the issue of security of the network, Due to the

centralization of BBUs in the cloud there is a higher possibility of a single point of failure

(Hossain et al., 2019).

2.6 Long Short-Term Memory (LSTM)

Long short term memory was first introduced by German researchers Sepp Hochreiter and

Juergen Schmidhuber as a solution to the difficulty in training certain networks (Hochreiter,

1997). This difficulty is referred to as the vanishing gradient problem. This problem is as a

result of a large sized input being forced into a small input space, when this occurs, the

gradients of the loss function begin to approach zero resulting in training difficulties. The

loss function is important because it a way to evaluate how well the model predicts the

given data.

Long short-term memory (LSTM) is a type of recurrent neural network (RNN), a RNN is a

network that takes input data one at a time and still maintain information from previous

10

inputs, it takes information from previous input in making new computations. LSTMs are

able to pick out similarities in sequences of data like time series data, handwriting, music,

stock market price. LSTMs are used for forecasting or prediction (Laptev et al., 2017).

LSTMs use the state of the last neuron from the last time step as a template to create an

output.

An important feature of the LSTM is a memory cell also called a memory block which can

preserve its state over a long period of time. An LSTM cell contains gates which controls

flow of data into and out of the cell (Greff et al., 2017).

Figure 2.4: Long Short Term Memory Block (Greff et al., 2017)

LSTMs have three (3) gates which can be seen in Figure 2.4:

i. Forget gate: This determines what information to remove from the cell.

11

ii. Input gate: This determines the number of new values that flows into the cell.

iii. Output gate: This determines what information to output due to the input and

memory of the cell.

Some applications of LSTMs are time series forecasting, sign language translation, image

caption generation, translation of text, handwriting generation.

2.7 Concept of Clustering

Clustering is a method of grouping data. It is used to sort data that have similar attributes

into groups (Subramaniyan et al., 2020). Clustering is commonly used for statistical data

analysis. Some applications of clustering are grouping of authors or music by genre,

customers based on purchases. An example of a clustering algorithm is the K-Means

clustering algorithm which is a popular algorithm, it is used to segment data into k groups

(Xia et al., 2020).

Step 1: In K-Means a number of k centroid (average) from the data is picked as the

first cluster centres.

Step 2: Assign each data to the closest centroid.

Step 3: The centroids are moved to the Centre of the data and finally step 2 and step

3 are repeated until the clusters do not change.

Another clustering algorithm is the hierarchical clustering algorithm which could either be

bottom-up (Agglomerative) or top-down (Divisive). Bottom-up assumes each data point as

a cluster in the beginning and then combines pairs of clusters until they become a single

cluster which comprises all the data points (Subramaniyan et al., 2020). In Gaussian

mixture models we identify the clusters by their mean, covariance and size of the cluster.

12

These parameters are identified for each data point and the probability that it belongs to a

cluster is estimated (Sridharan, 2017). These three algorithms were chosen for this work

because the K-Means is considered one of the best for clustering due to its efficiency and

simplicity (Xia et al., 2020). Hierarchical clustering algorithm is able to capture more

complex and intricate cluster structures (Subramaniyan et al., 2020) and the gaussian

mixture model is able to cluster both continuous and categorical data which is an advantage

over other algorithms (Rajabi et al., 2019).

2.8 Concept of Deep Learning

Deep Learning is a subset of Machine Learning that has been used to extract information

from data that are complex, have lots of noise where traditional machine learning

techniques have not been as effective (Wang et al., 2020). Deep learning can be used to

solve either classification, prediction or clustering algorithm problems. A classification

algorithm is used to bring out a particular feature from a set of data, for example if a set of

data is made up of furniture, a classification algorithm is able to tell which of the data is a

chair or a table compared to the total set of data. A prediction algorithm (Regression) takes

a time series data and outputs what that data will be in a future time step, and when the

predicted data is compared to the initial data, the difference helps in evaluating the

performance of the prediction algorithm (Längkvist et al., 2014). A clustering algorithm is

performed on data that are not properly labelled and brings out information by segmenting

data that are similar. Deep learning is of great importance in mobile networks because due

to increase in mobile devices, there is going to be commensurate increase in data produced

and deep learning performs better when there is a complex dataset, it is also used on

unlabeled data which are prevalent in mobile network data (Zhang et al., 2019).

13

In this section, a presentation is made on how various authors were able to achieve

multiplexing gains in C-RAN through clustering. The problems they were trying to solve,

methodologies used and results achieved.

2.9 Clustering Algorithms and Mobile Network Performance Metrics

C-RAN provides the means by which BBUs can be aggregated in a central location (pool)

and this allows for baseband resources to be shared and this leads to multiplexing gains. To

analyze the multiplexing gain which can be gotten from a BBU pool. Werthmann et al.

(2013) carried out a study using a computation resource model. To do this a model which

includes the user and traffic model, compute resource model and the radio network model

was used. The simulation showed that due to channel conditions compute resource

utilization was about 80% of the theoretical maximum. When more sectors were clustered

into a single BBU pool, multiplexing gain increased thereby saving compute resources.

This model could also be used for cell deployment. A user’s location has also been shown

to affect compute resource utilization. This model was tested on a limited size network

which does not truly reflect real life scenario. The authors advised that a heterogeneous

network to better represent a true urban environment should be used as an improvement on

the work.

Liu et al. (2016) proposed the use of a multi-dimensional Markov model to investigate the

statistical multiplexing gain of a BBU pool. This model captured the changes and

restrictions imposed by both the radio and computational resources. This model showed that

BBU pools can result in 75% multiplexing gains with 50 BBUs. The multiplexing gain was

more obvious with light traffic and a tight QoS requirement. There was no accommodation

for different types of data traffic burstiness which was a drawback. This

14

model could be further refined to accommodate for several resource usage patterns of two

data types like real-time and delay-tolerant traffic which are more likely to occur together

in real systems.

Chen et al. (2018) proposed a deep-learning-based framework shown in Figure 2.5 to

achieve statistical multiplexing gain of increased capacity and reduction in deployment cost.

Traffic patterns are random in time and locations and due to this they are hard to predict in

advance to create adequate clustering schemes, to alleviate this problem a Multivariate

LSTM (Long Short-Term Memory) model was used to forecast the traffic patterns of

Remote Radio Heads’ and these forecasted traffic patterns were used to form clusters of

similar Remote Radio Heads’ into BBUs. A DCCA (Distance-Constrained

Complementarity-Aware) algorithm was also proposed to create adequate clustering

schemes. Two months’ worth of real-world data from mobile networks in Milan and

Trentino, Italy was used to measure the performance of the proposed framework which

showed an increase in capacity by 83.4% in Milan and 76.7% in Trentino and a reduction in

deployment cost to 48.4% in Milan and 51.7% in Trentino of the traditional radio access

network. The datasets and traffic patterns used in this work were limited but further

improvements can be made by using different sizes of BBU capacity. More datasets can be

used to evaluate the framework and performance of the deep-learning based method can be

studied using different traffic patterns.

15

Figure 2.5: Deep Learning Framework Overview (Chen et al., 2018)

To address compute resource management, Bhaumik et al. (2012) proposed a Cloud IQ

framework that had two aims; the first aim was clustering a set of base stations based on

similar compute platform for a given statistical guarantee and the second aim was

scheduling a cluster of base stations to meet their real-time processing needs. Traffic logs of

21 cell sites of a WCDMA network in a dense urban area were used to calculate the

processing load and the result of resource pooling across several base stations. In this paper

the authors used the network load between 8:00 am and 10:00 pm to verify if there was a

reduction in the network load as a result of the pooling of different traffic across several

base stations. It was shown that for a probability of failure of one in a million, this

framework saved up to 19% of compute resources. It was also shown that by centralizing

the processing of signals from different base stations, there was a reduction in compute

resources by at least 22% due to the variations in network load across different base stations.

This resource management system was for a homogenous system and should be extended to

a heterogeneous system.

16

For the problem of User Association, which is determining which RRH users will connect

to, and the problem of RRH clustering, which is determining which RRH are going to be

grouped together to achieve statistical multiplexing gain, Taleb et al. (2018a) proposed a

solution which was a framework to jointly optimize the User association and RRH

clustering to reduce total time-response of the network and power demand of the network.

To achieve this framework a network cost function was first derived which is the weighted

sum of the total transmission delay and power consumption of the C-RAN network. After

the network cost function was found, an optimization problem to minimize the network cost

becomes the next step. It should be noted that the joint problem solution was complex. The

use of multiple centralized and distributed user association and RRH clustering solutions

should be explored for future works. In trying to achieve Delay reduction, Bhamare et al.

(2018); Wu and Ghosal, 2016) proposed different methods. Wu and Ghosal (2016)

analyzed the multiplexing gain of C-RAN compared to the traditional radio access network

by looking at how the aggregation of the baseband unit into the cloud would improve the

time-response of the system when there was a restrain on the capital expenditure of the

network. The main contribution of this paper was the development of an analytic model that

allowed for the use of a balanced fair (BF) resource allocation, which permitted adaptive

resource sharing. A time-response minimization framework with network cost constraint

was presented. When the multiplexing gain of C-RAN and the traditional RAN were

compared under this framework. There was significant multiplexing gain and optimum

average delay bound was obtained. The analytical and numerical results showed that these

gains were dependent on a number of factors like network size, traffic characteristics and

resource cost. This model provides some guidelines into the configurations of C-RAN

systems.

17

2.10 Clustering Algorithm for Optimizing Cost for Network Deployment Using

Clustering Techniques

Shehata et al. (2017) proposed an analytical model that showed how the geographical

location type and distribution of users determine the multiplexing gain that could be

achieved in a network. This analytical model captured the concentration of the RRHs and

concentration of users, users distribution, users to RRH association strategy, scheduling

algorithms for the resources of the RRHs and the computational effort model to calculate

Giga Operations Per Second (GOPS) for each user. The authors found out that a sub-urban

location provided the best multiplexing gain and lowest pooling cost and a higher

multiplexing gain could be achieved when the user is normally-distributed as opposed to

uniform distribution and when there is a higher cluster of RRH for a given location. Due to

large distance needed to be covered by fronthaul fibre, there is an increase in cost which is a

limitation to the lowered pooling cost achieved.

In trying to improve on the statistical multiplexing gain in C-RAN, Checko et al. (2014)

proposed a packet based architecture shown in Figure 2.6 which can adjust to dynamic

traffic patterns. Analytical and Modelling methods were used on the traffic patterns to

determine the best combination of base stations in a BBU pool. Multiplexing gain was

gotten by comparing the resources needed in a traditional RAN to that of C-RAN using

equation:

∑N PeakThroughput (n)

MultiplexingGain =

n=i RAN (2.1)
PeakThroughput

C−RAN

In their work it was shown that connecting 20-30% of office base stations and 70-80% of

residential base stations to the BBU pool increased the statistical multiplexing gain by a

18

factor of 1.6. The work also showed that by mixing of traffic profiles, the number of BBUs

required to provide coverage for an area can be reduced, leading to a reduction in cost. It

should also be taken into account that synchronization in packet based fronthaul has strict

requirements which is not easy to achieve. For future works the use of integer programming

for cost optimization for a scenario with multiple BBUs is advised by the authors.

Figure 2.6: C-RAN with Packet Based Architecture (Checko et al., 2014)

Sigwele et al. (2015) proposed a green Intelligent Traffic and Resource Elastic Energy

(iTREE) scheme to achieve multiplexing gain. This scheme in Figure 2.3 was able to

reduce the amount of BBU needed by equating the right number of baseband processing

with traffic load and also able to switch off BBUs not in use to conserve energy. Results

show that there was a 97% reduction of BBUs during off peak period and 66% during peak

periods and energy reduction in the radio access network by 27% during off peak period

and 18% during peak period. This scheme can be improved by offloading traffic unto a

macro cell and switching of the RRH. From Figure 2.7 it can be seen that a number of

RRHs were connected to the network and served by a maximum number of BBUs denoted

19

by “BBU M” in such a way that the number of needed BBUs are reduced. The cloud

controller is made up of the BBU-RRH table and the RRH profile, The RRH profile

monitors the amount of traffic load in the RRH while the BBU-RRH monitors the BBU

usage.

Figure 2.7: iTREE Model Layout (Sigwele et al., 2015)

In C-RAN BBU functionalities are carried out on a virtual machine in the cloud, virtual

functions are these BBU functionalities built into software. Bhamare et al. (2018) proposed

a combined optimization model with two methods namely: branch-and-bound (BnB) and

simulated annealing (SA) for optimal placement of virtual functions to reduce delay, capital

expenditure and operating expenditure of C-RAN. The proposed solution also addresses

link delays, service migration delays and cost of cloud deployment by determining the

optimum number of clouds to be deployed. One drawback of this work is that the solutions

20

presented here relied solely on the reactive approach. The solution to this drawback, is the

use of machine learning to predict network load so as to respond proactively.

2.11 Clustering Benefit for Network Capacity Utility Improvement

One of the earliest works on multiplexing gain was carried out by Rish et al. (2001) they

used traffic simulation experiments to evaluate the multiplexing gains in a WiMAX base

station. Results of their experiment showed that multiplexing gain increased as the number

of base stations increased and when the traffic of these base station are bursty. The authors

advised the use of different mixes of traffic profiles for evaluation to see if there will be an

improvement on the multiplexing gains.

Pompili et al. (2015) proposed a Demand-aware Resource Provisioning to address the

problem of tidal effect, which is the change in network load of a base station due to the time

of the day and efficient utilization of network resources. A fixed resource allocation by a

base station for the worst-case scenario will lead to underutilization for that same base

station at some other time. The proposed Demand-aware Resource Provisioning exploits

one of the main components of C-RAN which is the centralization of the BBUs into the

cloud. These centralized BBUs can also be referred to as virtual base stations (VBS) which

can be virtually resized to handle the unstable network load. The Demand-aware Resource

Provisioning comprises a proactive and reactive component. In the proactive component the

variations in network load is known beforehand and network resources are provided

accordingly for a limited period. For the reactive component, it monitors the CPU, Memory

and Network utilization of the BBUs to compensate for either an over- or under-

provisioning in the network. As shown in Figure 2.8 during the day when people are at

work in Downtown, VBS #2 will have more computing resources since it has the largest

21

network load compared to those in residential area VBS #3 and at the football stadium VBS

#1. But at night when there is a game in the stadium more resources will be allocated to

VBS #1 to handle the network load and there will also be more resources provided to VBS

#3 to handle the load of users in the residential area.

Figure 2.8: Movement of Network Load over the Course of a Day (Pompili et al., 2015)

The methodology, Demand-aware Resource Provisioning was able to result in an optimum

usage of computational resources but the obtained results were not validated on real-time

emulation software. The Use of OpenBTS, OpenLTE which are open-source

implementations of software Base-station protocol stack to validate the methodology will

be used in future works.

Fronthaul capacity in C-RAN is finite and this becomes a major hurdle due to the large

amounts of data as a result of the explosion in mobile devices. Chaudhary et al. (2017) has

proposed the using of queueing theory and traffic model to achieve multiplexing gain which

is the reduction of the required fronthaul capacity. The multiplexing gain will depend

22

on the difference of the data traffic. Results showed that higher traffic difference led to

higher reduction in the required fronthaul capacity. In this paper an architecture where

several RRHs are clustered into an aggregation network and the traffic is sent to the BBU

through the FH segment II, and the connection between the RRHs and aggregation network

is FH segment I is presented in Figure 2.9.

Figure 2.9: C-RAN Network with 2 Fronthaul Segments (Chaudhary et al., 2017)

2.12 Chapter Summary

In Wu and Ghosal (2016), the proposed methodology could also provide some guidelines in

the configuration of C-RAN systems. The work done by Chen et al. (2018) can be

improved by using different sizes of BBU capacity. More datasets can be used to evaluate

the framework and performance of the deep-learning based method can be studied using

different traffic patterns. Pompili et al. (2015) in solving the problem of tidal effect their

23

results were not validated on software that emulated real-time conditions, this can be

addressed by the use of different implementations of software Base-station protocol stack to

validate the methodology. Bhamare et al. (2018) will be improved by the use of deep-

learning and machine learning to predict network load so as to respond proactively. The use

of multiple centralized and distributed user association and RRH clustering solutions can be

used to further the work in Taleb et al. (2018b). Checko et al. (2014) advised the use of

integer programming for cost optimization for a scenario with multiple BBUs in improving

their work. The use of heterogeneous network to better represent a true urban environment

will improve on the work done by Werthmann et al. (2013). The use of different mixes of

traffic profiles should be evaluated to find out if there was an improvement on the

multiplexing gains in the work done by Rish et al. (2001). Liu et al. (2016) proposed a

multi-dimensional Markov model which can be further refined to accommodate for several

resource usage patterns of two data types like real-time and delay-tolerant traffic which are

more likely to occur together in real systems. A cloud IQ framework that was proposed by

Bhaumik et al. (2012) should be extended to heterogeneous systems. The green Intelligent

Traffic and Resource Elastic Energy (iTREE) scheme in Sigwele et al. (2015) can be

improved by offloading traffic unto a macro cell and switching off the RRH.

24

CHAPTER THREE

3.0 MATERIALS AND METHODS

In this chapter, the methodology used to achieve improved capacity utility and cost

reduction by the use of deep learning technique and clustering algorithm is introduced and

elaborated.

3.1 Software

The software applied in this work is the python programming language with several

modules (libraries) for the deep learning technique and clustering algorithm.

3.2 Source of Dataset

Availability of telecommunication data for research is scarce because companies that

generate these data only provide them to researchers who sign non-disclosure agreements

(NDAs) and work for them. To aid the ease of research Telecom Italia in conjunction with

several companies arranged the “Telecom Italia Big Data Challenge”. The dataset used in

this work was extracted from the 2014 edition.

The dataset contains telecommunication activity for the city of Milan and Trentino but

focus is on the city of Milan. The description of the dataset used is shown in Table 3.1. The

dataset of the city of Milan comprises:

i. A grid dataset which is a geographical representation of the network cells in a grid

pattern over the city as shown in Figure 3.1.

ii. A telecommunication dataset which contains a time series data of Incoming and

Outgoing Calls, SMS and Internet traffic which is generated every 10 minutes.

25

Table 3.1: Dataset Description

NUMBER OF CELLID 10,000

NUMBER OF RRHS 182

MEAN OF TRAFFIC VOLUME 361.75

Figure 3.1: Milan Grid

The dataset is available at (https://www.kaggle.com/marcodena/mobile-phone-

activity#sms-call-internet-mi-2013-11-01.csv).

26

https://www.kaggle.com/marcodena/mobile-phone-activity#sms-call-internet-mi-2013-11-01.csv
https://www.kaggle.com/marcodena/mobile-phone-activity#sms-call-internet-mi-2013-11-01.csv
https://www.kaggle.com/marcodena/mobile-phone-activity#sms-call-internet-mi-2013-11-01.csv

3.3 Methodology for Objective 1

In achieving the first objective, clustering was employed. The details of the

implementations are spelt out below.

3.3.1 Clustering Algorithm

In the clustering phase, from Figure 3.2 the first step is to import the needed clustering

libraries after which the dataset is imported. Missing datapoints were dropped during

preprocessing to remove missing information in the dataset so as to avoid errors. During

preprocessing the specific features of the dataset to be clustered is chosen. The chosen

features are fit to the clustering algorithm to be used which performs the clustering on the

dataset. The membership of all clusters is displayed and the cluster graph plotted after

which individual cluster membership is displayed.

Start

Import Clustering Libraries

Import the Dataset

Preprocess The Data

Fit the data to the Algorithm

Display all Cluster membership

Plot The Cluster Graph

Display Individual Cluster Membership

End

Figure 3.2: Flowchart of the Clustering Algorithms

27

The python programming language was used with several modules (libraries) to implement

the clustering algorithm such as:

i. Sci-kit learn: This is a Python library that contains several unsupervised learning

algorithms such as clustering algorithms (Pölsterl, 2020).

ii. NumPy: This library in Python allows for numerical data to be structured into

arrays for easy numerical analysis (Harris et al., 2020).

3.3.2 Evaluation

The formula to calculate the capacity utility and cost is as shown below:

Utility(P) = meanCk U(Ck) (Chen et al., 2018) (3.1)

K

Cost (P) = Ck (3.2)
k =1

Where P={C1,….Ck} is the clustering scheme. (3.3)

mean f (C) −
in
mean f (C)

U(C) = (
B

(3.4)B)

Equation (3.4) is used to calculate the capacity utility of a BBU B connected to a Cluster C.

mean f (C)

Equation (3.5) is the mean aggregated traffic volume of cluster C and

capacity.

B

(3.5)

is the BBU

28

If the traffic volume of a base station is normalized, we can say that the BBU capacity of

that base station is 1 so that the number of base stations covering an area is also the BBU

capacity for that area.

To calculate the cost of deployment the BBU capacity required in each cluster is added up.

The BBU capacity of a cluster used in this work is based on empirical experiments carried

out by Chen et al. (2018).

3.4 Methodology for Objective 2

In achieving the second objective, deep learning was employed. The details of the

implementations is spelt out below.

3.4.1 Deep Learning

From Figure 3.3 the first step is to import the various deep learning libraries to be used after

which the training set is also imported. As is usually the case most datasets contain some

missing information or the entries are not properly formatted which can lead to errors. This

is fixed by preprocessing the data to remove such entries and avoid errors. For ease of

computation, feature scaling is done to scale the dataset between 0 and 1. A data structure

of 60 time-step and one output is created followed by the reshaping of the data into a 3-D

array because the NumPy library only uses a 3-D array. The next step is to build the LSTM

prediction model. A 4 stack LSTM model is used after which the test dataset is imported to

test the LSTM model that was built. A prediction graph is then plotted to show the

comparison between the ground truth and predicted data. To evaluate the performance of

the LSTM prediction model, the Mean Absolute Error (MAE) is calculated which is the

difference between the historic dataset used and the predicted dataset.

29

Figure 3.3: Architecture of the LSTM Model

Start

Import Deep Learning Libraries

Import the training set Data

Preprocess the data

Feature Scaling of the Data

Create the Data Structure

Reshape the Data

Build the LSTM Prediction Model

Import the Test Set Data

Plot the Prediction Graph

End

Figure 3.4: Flowchart of the Deep Learning LSTM Prediction

The python programming language was used with several modules (libraries) to implement

deep learning such as:

i. Keras: This is a Python library that allows for the creation of powerful networks in

deep learning (Ketkar, 2017).

30

ii. NumPy: This library in Python allows for numerical data to be structured into arrays

for easy numerical analysis (Harris et al., 2020).

iii. Pandas: This is a Python library for efficient data structuring and extracting features

from datasets in different fields like engineering and finance (Sapre and Vartak,

2020).

iv. Matplotlib: This is a Python library used in plotting of various types of graph (Sial

et al., 2021).

The Mean Absolute Error is Calculated using:

MAE = 1n Ai − Pi (Wang et al., 2016) (3.6)

where:

i. n is the number of test samples.

ii. Ai is the historic dataset or ground truth.

iii. Pi is the predicted dataset.

In this work, from the dataset the CellID is used to represent an area covered by a RRH and

Internet traffic as the mobile traffic volume. The first step is forecasting of mobile traffic

data of Remote Radio Heads (RRHs) using the LSTM deep learning technique from

previously known mobile traffic data. The purpose of this forecasting is to be able to

identify data traffic volume and pattern beforehand or in advance. From Figure 1.1 it is seen

that the traffic patterns change under different time (tidal effect), or circumstances, but deep

learning forecasting is able to track this change. The data is also clustered to a set of

Baseband Unit (BBU) pool using K-Means, Hierarchical and Gaussian Mixture Model

31

clustering algorithm to show which clustering algorithm achieves higher capacity at low

cost. The diagram of methodology is shown in Figure 3.5.

MOBILE NETWORK
HISTORIC DATA

CLUSTERING ALGORITHM

LONG SHORT TERM MEMORY

(LSTM)

CAPACITY UTILITY

COST OF DEPLOYMENT

Figure 3.5: Block Diagram of Methodology

32

YES

Is Gaussian
Mixture Models
better than

Hierarchical

YES

Choose
Gaussian

Mixture Models
Clustering

Start

Import
Data

Use Deep
Learning to

Forecast Traffic
Data

Is Gaussian
Mixture Models
better than K-

means

NO

Is K-means better
than Hierarchical

YES

Choose K-
means

Clustering

Use Chosen
algorithm to
Cluster RRH

End

NO

NO

Choose
Hierarchical
Clustering

Fig. 3.6: Flowchart of Cluster Algorithm Comparison

33

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Results of Clustering Algorithms

In this work the K-means cluster algorithm was used to cluster a mobile network of 10,000

cells by their data traffic. 10 clusters were formed and the graph in Figure 4.1 is a

representation of each cluster with the mean of its data traffic. It is clear that most of the

clusters in this clustering algorithm have similar number of cells in a cluster except the

fourth cluster which has a very high number of cells in its cluster. It is also notable that in

this cluster algorithm the mean of the data traffic is low. In Table 4.1 the number of cells in

a cluster and its mean data traffic is clearly presented.

Figure 4.1: K-Means Clustering Algorithm

34

In this work the Agglomerative Hierarchical cluster algorithm was used to cluster a mobile

network of 10,000 cells by their data traffic. 10 clusters were formed and the graph in

Figure 4.2 is a representation of each cluster with the mean of its data traffic. In

Hierarchical cluster, there is a higher mean of the data traffic and number of cells in each

cluster when compared to the K-means.

Figure 4.2: Hierarchical Clustering Algorithm

35

In this work the Gaussian Mixture Models cluster algorithm was used to cluster a mobile

network of 10,000 cells by their data traffic. 10 clusters were formed and the graph in

Figure 4.3 is a representation of each cluster with the mean of its data traffic. In Gaussian

Mixture Models when compared with the Hierarchical clustering algorithm the difference in

number of cells and mean of data traffic in each cluster is not so obvious but the higher the

number of cells the higher the mean data traffic. The clusters with the highest Data traffic

have cells of more than 1,000.

Figure 4.3: Gaussian Mixture Model Clustering Algorithm

36

Figure 4.4 is a comparison of the 3 clustering algorithms used in this work. From the graph

it can be seen that the Gaussian Mixture Models has a cluster with the lowest mean data

traffic while the K-means has a cluster with the lowest number of cells. The Hierarchical

clustering algorithm has the highest mean data traffic. Across the 3 clustering algorithms,

most clusters have cells in the range of 500-1600.

Figure 4.4: A Comparison of the Cluster Algorithms

37

Figures 4.1, 4.2 and 4.3 show the number of cells in a cluster and its mean data traffic for

each cluster algorithm. Table 4.1. shows the results of the 3 clustering algorithms used in

this work. From the Table 4.1 it is clear how each clustering algorithm performed across the

10 clusters and easy comparisons can be made.

Table 4.1: Results of Cluster Algorithms

CLUSTER CLUSTER ALGORITHMS
K-MEANS HIERARCHICAL GAUSSIAN MIXTURE

MODELS
NUMBER MEAN OF NUMBER MEAN OF NUMBER MEAN OF

OF INTERNET OF INTERNET OF INTERNET
CELLS TRAFFIC CELLS TRAFFIC CELLS TRAFFIC

0 278 99.82 897 226.82 969 778.88

1 304 69.17 1068 863.92 1441 266.54

2 254 81.40 1298 383.33 1242 107.91

3 276 114.26 1099 316.25 494 372.35

4 7893 434.07 895 313.21 1591 655.26

5 119 96.97 865 528.19 883 535.81

6 293 113.47 843 719.93 1491 82.49

7 294 92.38 1192 96.76 1143 358.17

8 27 81.81 923 133.66 657 163.65

9 272 59.68 920 68.98 99 52.24

Table 4.2 shows the results for the various clustering algorithms and how they performed

based on capacity utility and cost of deployment, 10 clusters was formed for each clustering

algorithm and the BBU capacity is 8 for each cluster. From the Table 4.2, it is seen that

38

there was a reduction in capacity utility and cost after clustering was done, it is also

noticeable that hierarchical clustering algorithm performed best in comparison to the other

used clustering algorithms. The cost of deployment reduced from 182 to 80 which means

that the area covered by 182 RRHs can be effectively covered by 80 RRHs.

Table 4.2: Results of Capacity Utility and Cost of Deployment

CLUSTERING CAPACITY UTILITY COST OF DEPLOYMENT
ALGORITHM

BEFORE CLUSTERING 0.63 182
K-MEANS 0.0044 80

HIERARCHICAL 0.0012 80
GAUSSIAN MIXTURE 0.0035 80

MODEL

4.2 Cluster Calculations for Capacity Utility and Cost of Deployment

i. Before Clustering
mean f(c)−lnmean f(c)

U(C) = () |B|

|B|

= (361182.75)− ln(361182.75)

= 0.63
K

Cost(P) = ∑|{Ck}|
k=1

= 182

ii. K-Means Clustering
mean f(c)−lnmean f(c)

U(C) = () |B|

|B|

39

cluster 0= (998.82)− ln(998.82)
= 0.0017

cluster 1= (698.17)− ln(698.17)
= 0.0095

cluster 2= (818.40)− ln(818.40)
= 0.0046
114.26− ln(114.26)

cluster 3= () 8

8
= 0.0008

434.07− ln(434.07)
cluster 4= () 8

8
= 0.00000012

cluster 5= (968.97)− ln(968.97)
= 0.0020
113.47− ln(113.47)

cluster 6= () 8

8
= 0.00088

cluster 7= (928.38)− ln(928.38)
= 0.0025

cluster 8= (818.81)− ln(818.81)
= 0.0045

cluster 9= (698.17)− ln(698.17)
= 0.0176

CAPACITY UTILITY = meanck U(Ck)

= 0.0044

40

K
Cost(P) = ∑|{Ck}|

k=1

= 8*10
= 80

iii. Hierarchical Clustering
mean f(c)−lnmean f(c)

U(C) = () |B|

|B|

cluster 0= (2268.82)− ln(2268.82)
= 0.000014

863.92− ln(863.92)
cluster 1= () 8

8
= 0.00000000030

383.33− ln(383.33)
cluster 2= () 8

8
= 0.00000031

316.25− ln(316.25)
cluster 3= () 8

8
= 0.0000013

313.21− ln(313.21)
cluster 4= () 8

8
= 0.0000014

528.19− ln(528.19)
cluster 5= () 8

8
= 0.0000000024

719.93− ln(719.93)
cluster 6= () 8

8
= 0.0000000016

cluster 7= (968.76)− ln(968.76)
= 0.0020

41

133.66
− ln(133.66)

cluster 8= () 8

8
= 0.00036

cluster 9= (688.98)− ln(688.98)
= 0.0096

CAPACITY UTILITY = meanck U(Ck)

= 0.0012
K

Cost(P) = ∑|{Ck}|
k=1

= 8*10
= 80

iv. Gaussian Mixture Models Clustering.
mean f(c)−lnmean f(c)

U(C) = () |B|

|B|
778.88− ln(778.88)

cluster 0= () 8

8
= 0.00000000079

266.54− ln(266.54)
cluster 1= () 8

8
= 0.0000046

107.91− ln(107.91)
cluster 2= () 8

8
= 0.0012

372.35− ln(372.35)
cluster 3= () 8

8
= 0.00000039

cluster 4 = (6558.26)− ln(6558.26)
= 0.0000000037

cluster 5 = (5358.81)− ln(5358.81)

42

= 0.000000021
cluster 6= (828.49)− ln(828.49)

= 0.0043
358.17− ln(358.17)

cluster 7= () 8

8
= 0.00000053

163.65− ln(163.65)
cluster 8= () 8

8
= 0.00011

cluster 9 = (528.24)− ln(528.24)
= 0.0296

CAPACITY UTILITY = meanck U(Ck)

= 0.0035
K

Cost(P) = ∑|{Ck}|
k=1

= 8*10
= 80

4.3 Result of Deep Learning

Figure 4.5 shows the LSTM prediction of Milan Traffic Volume and the mean absolute
error (MAE) which shows that the accuracy of the prediction model is 5.75 × 10−4. The
MAE is an automatically generated output in the python code used for the prediction. Due
to its low MAE, it validates its capacity for accurate prediction, and this will help mobile
network operators in proper dimensioning of network resources due to a pre-knowledge of
the data traffic volume.

43

Figure 4.5: Milan Traffic Volume Prediction
The Mean Absolute Error (MAE) = 5.75 × 10−4

Chen et al. (2018) in their work had a Mean Absolute error of 0.074 and were able to

reduce the number of base stations from 182 to 88. It is important to note that in their work,

the type of feature scaler used was not stated and the number of LSTM stack used are not

the same with this work but for comparison’s sake, Chen et al. (2018) was the closest in

terms of objectives. A comparison of this work and Chen et al. (2018) is presented in Table

4.3.

Table 4.3: Comparison of Methodology

Authors Mean Absolute Error (MAE) Cost of Deployment

Chen et al. (2018) 0.074 88

This Work 5.75 × 10−4 80

44

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

As a result of increase in personal devices and data-hungry mobile applications, the demand

for an efficient and always available high data rate radio access network has increased. The

radio access network part of a base station is one of the most important and about 80% of

the capital expenditure is spent on it. Mobile network Operators are looking for ways to cut

down this cost.

Cloud Radio Access Network (C-RAN) is an architecture to solve the problem of increase

in CAPEX and OPEX. In C-RAN there is the centralization of baseband processing of

statistically varying traffic loads from different base stations, these loads are multiplexed

and the processing resources are also shared. These multiplexed loads, lead to considerable

gains such as reduction in cost and energy consumption.

This work used K-means, Hierarchical and Gaussian Mixture Models clustering algorithms

to develop effective clustering techniques for base station clustering to achieve multiplexing

gains such as improved capacity utility and reduced cost in C-RAN. The K-Means had a

capacity utility of 0.0044, Hierarchical had 0.0012 and the gaussian mixture models had

0.0035. From these results the hierarchical has the best capacity utility out of these 3

algorithms.

Mobile network operators over-dimension network resources due to lack of pre-knowledge

of the data traffic volume. Network operators are able to provide network resources

proactively if they are able to predict changes in network load before it happens.

45

An LSTM prediction algorithm was used in this work to provide pre-knowledge to mobile network
operators for proper dimensioning of the network. The LSTM used was a 4-stack layer and a Mean
Absolute Error of 5.75 × 10−4 was obtained. This low MAE shows that the predicted data traffic is
very close to the actual data traffic.

5.2 Recommendations

In the future this work can be enhanced by the use of different prediction algorithms and

clustering algorithms. The use of different datasets to verify the performance of the

prediction model and clustering algorithms is also advised. The creation of open-source

databases containing mobile network datasets for research should be looked into. The

multiplexing gains of improved capacity utility and cost of deployment reduction achieved

in this work could lead to the exploration of other multiplexing gains such as reduced

energy consumption.

5.3 Contribution to Knowledge

This work has contributed to knowledge as follows:

1. Comparative analysis on clustering algorithms to determine the better C-RAN

clustering algorithm based on the following evaluation metrics: Capacity Utility and

Cost of Deployment. This was done using the K-Means, Hierarchical and Gaussian

Mixture Model clustering algorithm, with the Hierarchical clustering algorithm

outperforming the others.

2. Prediction of Data Traffic Volume to enable proper dimensioning of network

resources. This was done using the deep learning LSTM model.

46

REFERENCES

Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2018). Toward an Efficient C-RAN Optical
Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements,
Challenges, and Solutions. IEEE Communications Surveys and Tutorials, 20(1), 708–
769. https://doi.org/10.1109/COMST.2017.2773462

Bhamare, D., Erbad, A., Jain, R., Zolanvari, M., & Samaka, M. (2018). Efficient virtual
network function placement strategies for Cloud Radio Access Networks. Computer
Communications, 127, 50–60. https://doi.org/10.1016/j.comcom.2018.05.004

Bhaumik, S., Chandrabose, S. P., Jataprolu, M. K., Kumar, G., Muralidhar, A., Polakos, P.,
Srinivasan, V., Woo, T., & Berkeley, U. C. (2012). CloudIQ : A Framework for
Processing Base Stations in a Data Center. 125–136.

Bihnam, A. N. (2021). Performance evaluation of 5g cloud radio access networks using
new fading channel models. April.

Chaudhary, J. K., Bartelt, J., & Fettweis, G. (2017). Statistical multiplexing in fronthaul-
constrained massive MIMO. EuCNC 2017 - European Conference on Networks and
Communications. https://doi.org/10.1109/EuCNC.2017.7980774

Checko, A., Holm, H., & Christiansen, H. (2014, May). Optimizing small cell deployment
by the use of C-RANs. In European Wireless 2014; 20th European Wireless
Conference (pp. 1-6). VDE.

Chen, C. (2011). C-RAN: The road towards green radio access network. White Paper, 0.
http://ss-mcsp.riit.tsinghua.edu.cn/cran/C-RAN ChinaCOM-2012-Aug-v4.pdf

Chen, L., Yang, D., Zhang, D., Wang, C., Li, J., & Nguyen, T. M. T. (2018). Deep mobile
traffic forecast and complementary base station clustering for C-RAN optimization.
Journal of Network and Computer Applications, 121, 59–69.
https://doi.org/10.1016/j.jnca.2018.07.015

Chen, M., Zhang, Y., Hu, L., & Taleb, T. (2015). Cloud-based Wireless Network :
Virtualized , Reconfigurable , Smart Wireless Network to Enable 5G Technologies.
https://doi.org/10.1007/s11036-015-0590-7

Common Public Radio Interface. (2015). CPRI Specification V7.0. Standard Document
Specification, 0, 128.

Greff, K., Srivastava, R. K., Koutn, J., & Steunebrink, B. R. (n.d.). LSTM : A Search Space
Odyssey. 1–12. https://doi.org/10.1109/TNNLS.2016.2582924

47

Harris, C. R., Millman, K. J., Walt, S. J. Van Der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., &
Kerkwijk, M. H. Van. (2020). Array programming with NumPy. Nature, 585(June),
357–362. https://doi.org/10.1038/s41586-020-2649-2

Hochreiter, S. (1997). Long Short-Term Memory. 1780, 1735–1780.

Hossain, M. F., Mahin, A. U., Debnath, T., Mosharrof, F. B., & Islam, K. Z. (2019). Recent
research in cloud radio access network (C-RAN) for 5G cellular systems - A survey.
Journal of Network and Computer Applications, 139(April), 31–48.
https://doi.org/10.1016/j.jnca.2019.04.019

Kalor, A. E., Agurto, M. I., Pratas, N. K., Nielsen, J. J., & Popovski, P. (2017). Statistical
multiplexing of computations in C-RAN with tradeoffs in latency and energy. 2017
IEEE International Conference on Communications Workshops, ICC Workshops 2017,
1, 772–777. https://doi.org/10.1109/ICCW.2017.7962752

Ketkar, N. (2017). Deep Learning with Python. Deep Learning with Python, 95–109.
https://doi.org/10.1007/978-1-4842-2766-4

Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning
and deep learning for time-series modeling q. 42, 11–24.
https://doi.org/10.1016/j.patrec.2014.01.008

Laptev, N., Yosinski, J., Erran, L., & Slawek, L. (2017). Time-series Extreme Event
Forecasting with Neural Networks at Uber.

Lehrmann, H., Stübert, M., Checko, A., Christiansen, H. L., & Yan, Y. (2014). Cloud RAN
for Mobile Networks - a Technology Overview.
https://doi.org/10.1109/COMST.2014.2355255

Lin, Y., Shao, L., Zhu, Z., Wang, Q., & Sabhikhi, R. K. (2010). Wireless network cloud:
Architecture and system requirements. IBM Journal of Research and Development,
54(1), 4:1-4:12. https://doi.org/10.1147/jrd.2009.2037680

Liu, J., Zhou, S., Gong, J., Niu, Z., & Xu, S. (2016). Statistical multiplexing gain analysis
of heterogeneous virtual base station pools in cloud radio access networks. IEEE
Transactions on Wireless Communications, 15(8), 5681–5694.
https://doi.org/10.1109/TWC.2016.2567383

Lorca, J., & Cucala, L. (2013). Lossless compression technique for the fronthaul of
LTE/LTE-advanced cloud-RAN architectures. 1–9.
https://doi.org/10.1109/wowmom.2013.6583374

Mcclean, S., & Morrow, P. (2020). Comparison of Analogue and Digital Fronthaul for 5G
MIMO Signals. June. https://doi.org/10.1109/ICC40277.2020.9148787

48

Peng, H., William, T., Fitzgerald, E., & Kihl, M. (2021). Is Cloud RAN a Feasible Option
for Industrial Communication Network ? 17(2), 97–105.

Peng, M., Wang, C., Lau, V., & Poor, H. V. (2015). Fronthaul-constrained cloud radio
access networks: Insights and challenges. IEEE Wireless Communications, 22(2), 152–
160. https://doi.org/10.1109/MWC.2015.7096298

Pölsterl, S. (2020). scikit-survival : A Library for Time-to-Event Analysis Built on Top of
scikit-learn. 21, 1–6.

Pompili, D., Hajisami, A., & Viswanathan, H. (2015). Dynamic provisioning and allocation
in Cloud Radio Access Networks (C-RANs). Ad Hoc Networks, 30, 128–143.
https://doi.org/10.1016/j.adhoc.2015.02.006

Rajabi, A., Eskandari, M., Jabbari, M., Li, L., & Zhang, J. (2019). A comparative study of
clustering techniques for electrical load pattern segmentation Symbolic Aggregate
approXimation Time of Use. August. https://doi.org/10.1016/j.rser.2019.109628

Ramalho, L., Fonseca, M. N., Klautau, A., Lu, C., Berg, M., Trojer, E., & Höst, S. (2017).
An LPC-based fronthaul compression scheme. IEEE Communications Letters, 21(2),
318–321. https://doi.org/10.1109/LCOMM.2016.2624296

Rish, I., Watson, T. J., & Heights, Y. (2001). IBM Research Report. Science,
22230(October), 1–10.

Sapre, A., & Vartak, S. (2020). Scientific Computing and Data Analysis using NumPy and
Pandas. 1334–1346.

Shehata, M., Elbanna, A., Musumeci, F., & Tornatore, M. (2017). C-RAN Baseband
Pooling : Cost Model and Multiplexing Gain Analysis. 3–6.

Sial, A. H., Yahya, S., & Rashdi, S. (2021). Comparative Analysis of Data Visualization
Libraries Matplotlib and Seaborn in Python. 277–281.

Sigwele, T., Pillai, P., & Hu, Y. F. (2015). iTREE : Intelligent Traffic and Resource Elastic
Energy Scheme for Cloud-RAN. 282–288. https://doi.org/10.1109/FiCloud.2015.104

Sridharan, R. (2017). Gaussian mixture models and the EM Algorithm (Lecture Notes - MIT
CSAIL). 11. https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf

Subramaniyan, M., Skoogh, A., Sheikh, A., Bokrantz, J., Johansson, B., & Roser, C. (2020).
A generic hierarchical clustering approach for detecting bottlenecks in manufacturing.
Journal of Manufacturing Systems, 55(February), 143–158.
https://doi.org/10.1016/j.jmsy.2020.02.011

Taleb, H., Helou, M. El, Lahoud, S., Khawam, K., & Martin, S. (2018a). An Efficient

49

Heuristic for Joint User Association and RRH Clustering in Cloud Radio Access
Networks. 2018 25th International Conference on Telecommunications, ICT 2018, 8–
14. https://doi.org/10.1109/ICT.2018.8464852

Taleb, H., Helou, M. El, Lahoud, S., Khawam, K., & Martin, S. (2018b). Multi-Objective
Optimization for RRH Clustering in Cloud Radio Access Networks. 2018
International Conference on Computer and Applications, ICCA 2018, 85–89.
https://doi.org/10.1109/COMAPP.2018.8460446

Visual, C., & Index, N. (2017). Cisco Visual Networking Index: Global Mobile Data About
the Cisco Visual Networking Index Q. Why did Cisco develop the Cisco Visual
Networking Index TM (Cisco VNI TM) Forecast? 2017–2022.
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/vni-forecast-qa.pdf

Wang, J., Yu, L., Lai, K. R., & Zhang, X. (2016). Dimensional Sentiment Analysis Using a
Regional CNN-LSTM Model. 225–230.

Wang, X., Zhao, Y., & Pourpanah, F. (2020). Recent advances in deep learning.
International Journal of Machine Learning and Cybernetics, 11(4), 747–750.
https://doi.org/10.1007/s13042-020-01096-5

Werthmann, T., Grob-Lipski, H., & Proebster, M. (2013). Multiplexing gains achieved in
pools of baseband computation units in 4G cellular networks. IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 3328–
3333. https://doi.org/10.1109/PIMRC.2013.6666722

Wu, J., & Ghosal, D. (2016). Cost-constrained delay minimization of C-RAN and its
multiplexing gain. 2016 IEEE International Conference on Communications, ICC
2016, 1. https://doi.org/10.1109/ICC.2016.7511576

Xia, S., Peng, D., Meng, D., Zhang, C., Wang, G., Giem, E., & Wei, W. (2020). Ball k -
means : Fast Adaptive Clustering with No Bounds. 8828(c), 1–13.
https://doi.org/10.1109/TPAMI.2020.3008694

Ye Li, G., Xiong, C., Yang, C., Zhang, S., Chen, Y., & Xu, S. (2011). Energy-Efficient
Wireless Communications: Tutorial, Survey, and Open Issues. IEEE Wireless
Communications, December, 28–35.

Zhang, C., Patras, P., & Haddadi, H. (2019). Deep Learning in Mobile and Wireless
Networking: A Survey. IEEE Communications Surveys and Tutorials, 21(3), 2224–
2287. https://doi.org/10.1109/COMST.2019.2904897

50

APPPENDIX A

Python Code for Clustering Algorithms

i. K-Means Clustering Python Code

Importing Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy.cluster.hierarchy as sch

dataset = pd.read_csv('C:\\Users\\Nelson\\Desktop\\milan csv\\milan training\\sms-call-

internet-mi-2013-11-01.csv')

Making another data for clustering

clus_data = non_null_data.iloc[:10000, [1, 7]].copy()

clus_data.head(10)

Saving the clus_data dataframe into a csv file

clus_data.to_csv('cluster_data.csv')

Fitting K-Means to the dataset

no_cluster_k_means = 10

51

kmeans = KMeans(n_clusters = no_cluster_k_means, init = 'k-means++', random_state =

42)

y_kmeans = kmeans.fit_predict(clus_data)

This code will show you which column correspond to which cluster

clus_corresonding_data_kmeans =

clus_data.join(pd.DataFrame(y_kmeans)).fillna(method='ffill')

clus_corresonding_data_kmeans.head(100)

Save this dataframe

clus_corresonding_data_kmeans.to_csv('clus_corresonding_data_kmeans.csv')

#plotting the cluster graph

plt.scatter(clus_data.iloc[:,0],clus_data.iloc[:,1], c=y_kmeans, cmap='rainbow')

plt.title('K-MEANS CLUSTERING ALGORITHM')

plt.xlabel('Number of cell in a cluster')

plt.ylabel('Data Traffic')

print(f'There are {no_cluster_k_means} clusters')

this code will filter and give you the specific cluster data

from IPython.core.display import HTML

cluster = 0 # You can change this number

52

display(HTML(clus_corresonding_data_kmeans.loc[clus_corresonding_data_kmeans[0] ==

cluster].to_html()))

ii. Hierarchical Clustering Python Code

from scipy.cluster.hierarchy import dendrogram, linkage

from matplotlib import pyplot as plt linked =

linkage(clus_data, 'single')

Making Dendrogram for clustering algorithm

dendrogram = sch.dendrogram(sch.linkage(clus_data, method = 'ward'))

plt.title('Dendrogram')

plt.show()

Fitting Hierarchical Clustering to the dataset

no_cluster_hc = 10 # You can change this for experimentation

from sklearn.cluster import AgglomerativeClustering

hc = AgglomerativeClustering(n_clusters = no_cluster_hc, affinity = 'euclidean', linkage =

'ward')

y_hc = hc.fit_predict(clus_data)

This code will show you which column correspond to which cluster

clus_corresonding_data_hierarchical =

clus_data.join(pd.DataFrame(y_hc)).fillna(method='ffill')

53

clus_corresonding_data_hierarchical.head(100)

Save this datframe

clus_corresonding_data_hierarchical.to_csv('clus_corresonding_data_hierarchical.csv')

Plot the clustering

plt.scatter(clus_data.iloc[:,1],clus_data.iloc[:,2], c=y_hc, cmap='rainbow')

plt.title('HIERARCHICAL CLUSTERING ALGORITHM')

plt.xlabel('Number Of Cells In A Cluster')

plt.ylabel('Data Traffic')

print(f'There are {no_cluster_hc} clusters')

this code will filter and give you the specific cluster data

from IPython.core.display import HTML

cluster = 9 # You can change this number

specific_cluster =

display(HTML(clus_corresonding_data_hierarchical.loc[clus_corresonding_data_hierarchi

cal[0] == cluster].to_html()))

iii. Gaussian Mixture Models Clustering Python Code

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

54

from sklearn.mixture import GaussianMixture

clus_data = pd.read_csv('C:\\Users\\Nelson\\Desktop\\milan csv\\cluster_data.csv')

gmm = GaussianMixture(n_components=10).fit(clus_data)

labels = gmm.predict(clus_data)

plt.scatter(clus_data.iloc[:, 1], clus_data.iloc[:, 2], c=labels, s=40, cmap='viridis');

plt.title('GAUSSIAN MIXTURE MODELS CLUSTERING ALGORITHM')

plt.xlabel('Number of cells in a cluster')

plt.ylabel('Data Traffic')

This code will show you which column correspond to which cluster

clus_corresonding_data_GMM =

clus_data.join(pd.DataFrame(labels)).fillna(method='ffill')

clus_corresonding_data_GMM.head(1000)

clus_corresonding_data_GMM.to_csv('clus_corresonding_data_GMM.csv')

this code will filter and give you the specific cluster data

from IPython.core.display import HTML

cluster = 9 # You can change this number

display(HTML(clus_corresonding_data_GMM.loc[clus_corresonding_data_GMM[0] ==

cluster].to_html()))

55

APPENDIX B

Python Code for LSTM Prediction

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the training set

dataset_train = pd.read_csv('C:\\Users\\Nelson\\Desktop\\milan csv\\milan cellid and

internet.csv')

training_set = dataset_train.iloc[:8000, 1:2].values

from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler(feature_range = (0, 1))

training_set_scaled = sc.fit_transform(training_set)

Creating a data structure with 60 timesteps and 1 output

X_train = []

y_train = []

for i in range(60, 7999):

X_train.append(training_set_scaled[i-60:i, 0])

56

y_train.append(training_set_scaled[i, 0])

X_train, y_train = np.array(X_train), np.array(y_train)

Reshaping

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

Building the RNN

Importing the Keras libraries and packages

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

Initialising the RNN

regressor = Sequential()

Adding the first LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1],

1)))

regressor.add(Dropout(0.2))

Adding a second LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50, return_sequences = True))

regressor.add(Dropout(0.2))

57

Adding a third LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50, return_sequences = True))

regressor.add(Dropout(0.2))

Adding a fourth LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50)) regressor.add(Dropout(0.2))

Adding the output layer

regressor.add(Dense(units = 1))

regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')

Fitting the RNN to the Training set

regressor.fit(X_train, y_train, epochs = 100, batch_size = 64)

Making the predictions and visualising the results

Getting the real traffic volume of the city of milan

dataset_test = pd.read_csv('C:\\Users\\Nelson\\Desktop\\milan csv\\milan cellid and

internet.csv')

real_traffic_volume = dataset_test.iloc[8001:10000, 1:2].values

58

Getting the predicted traffic volume of the city of milan

inputs = real_traffic_volume

inputs = inputs.reshape(-1,1)

inputs = sc.transform(inputs)

X_test = []

for i in range(60, 1999):

X_test.append(inputs[i-60:i, 0])

X_test = np.array(X_test)

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

predicted_traffic_volume = regressor.predict(X_test) predicted_traffic_volume

= sc.inverse_transform(predicted_traffic_volume)

Visualising the results

plt.figure(figsize = (15, 5))

plt.plot(real_traffic_volume, color = 'red', label = 'Real traffic volume')

plt.plot(predicted_traffic_volume, color = 'blue', label = 'predicted_traffic_volume')

plt.title('Milan traffic volume Prediction')

plt.xlabel('Cell_id')

plt.ylabel('Milan traffic volume')

plt.legend()

plt.show()

59

APPENDIX C

Publication

Umasabor, N., Salihu, B., Salawu, N., & Zubair, S. (2020, March). Multiplexing Gains

Through Clustering in Cloud Radio Access Network. In 2020 International

Conference in Mathematics, Computer Engineering and Computer Science

(ICMCECS) (pp. 1-6). IEEE.

60

