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ABSTRACT

This study focuses on formulation of hybrid backward differentiation methods with
power series as basis function through interpolation and collocation approach for
solving initial value problems of first order ordinary differential equations. The step
numbers for the derived hybrid methods are k = 5 and 6. The schemes are analysed
using appropriate theorems to investigate their consistency, stability, convergence and
the investigation shows that the developed schemes are consistent, zero stable and hence
convergent. The stability property of the methods was also investigated and findings
reveal that the methods are A-stable which make them suitable for solving the class of
problems considered in this project such as linear and non-linear problems, oscillatory
problems and stiff system. The implementation results on these problems show that the
methods are of higher accuracy and have superiority over some other existing methods
considered in the literature.
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CHAPTER ONE
1.0 INTRODUCTION
1.1 Background to the Study

In many technological knowhow disciplines, problems are normally modeled
mathematically. These models give rise to differential equations which requires answers

that inadvertently resolve the problems.

The norm turned to remedy these problems, was the use of analytical or
exact methods which give rise to solutions that provide insight into the behaviour of
some of these problems. However, there are certain differential equations that
are tough to solve by the use of analytical methods, apart from the application of

numerical methods. (Abdullahi, 2017).

This research aims to derive some backward differentiation formulas that could be used
to solve ordinary first order differential equations. The off grid points used in their
formulation give them the name hybrid. A backward differentiation formula is termed
extended when there is the presence of more than one function evaluation at the
collocation point. Primarily numerical methods are used to find approximate solutions
to problems. Software innovation has made numerical solutions for Ordinary
Differential Equations (ODEs) the focus of numerical researchers. A differential
equation is an equation involving a relationship between an unknown function and one
or more of its derivatives. With  as the dependent variable, and as a function of the

independent variable ,the and differential equation is expressed as

= () (1.1



In present times, numerical methods have been efficient tools used in the solution of

first order ordinary differential equations
yyzf(xsy)e y(a)zyo’ anSb (12)

Such differential equations occur in many fields of engineering science and in particular,

they appear in electrical circuit, vibrations, chemical reactions, kinetics etc.

Developing methods for solving (1.2) still remains a challenge in modern numerical
analysis. Many authors like Lambert (1973) and Musa et al. (2012) have written on the
block extended backward differentiation formula that approximates the solution of (1.2)

and is given by

5
Zaj,iyn+j72 =hp ;s fork T hBris oo sk =1=123. (1.3)
=0

It was developed for higher order A-stable block methods for stiff initial value
problems. An acceptable linear multistep method (LMM) must be convergent.
Consistency and zero stability are the necessary and sufficient conditions for

convergence of a LMM.

Akinfenwa et al. (2020) stated clearly that the numerical solutions of stiff systems have
been one of the major worries for numerical analysts. A numerical method that is
potentially good for solving systems of stiff ODEs must have some reliability in terms

of'its region of absolute stability and good accuracy.

According to (Gear, 1967), consistency controls the magnitude of the local truncation
error while zero stability controls the manner in which the error is propagated at each
step of the calculations. A method which is not both consistent and zero stable is

rejected outright and has no practical interest. In this research work, some hybrid

2



backward differentiation formulas are developed and applied to solve first order

ordinary differential equations.
1.3 Statement of the Research Problem

In this research work, some five and six step hybrid and extended hybrid backward
differentiation formulas with one off grid point will be developed to solve first order
ordinary differential equations of the form (1.1). The order, error constant, zero stability
and convergence will be analyzed. Numerical experiments will also be shown with all

the newly derived schemes.
1.4  Aim and Objectives

The aim of this research work is to construct some k — step (k=5, 6) hybrid backward
differentiation formulas and an accompanying extended hybrid backward differentiation

formula for solving first order ordinary differential equations.
The objectives are to:

1. construct the continuous formulation of five and six step hybrid and six step extended

hybrid backward differentiation formulas with one off step point at interpolation using

power series as basis function;

i1. derive some new schemes that can be used to solve first order stiff ordinary
differential equations of the form "= (, );

iii. analyze the order, error constant, consistency and zero stability of all the proposed

schemes;
iv. put the derived schemes to use in numerical experiments and
v. compare the results of the proposed methods with some existing methods found in

the literature.



1.5 Significance of the Study

Real life phenomena such as earth sciences, saturation and diffusion problems,
demographic models, fluid mechanics, and budgeting could lead to the study of First
Order Ordinary Differential Equations (ODEs). The developed methods are useful to

solve these problems and yield results with decreased computing time.
1.6 Scope of the study

The study is restricted to solving first order initial value problems in ordinary
differential equations (ODEs) of the form (1.1). The schemes are derived to be effective

in terms of accuracy and stability.
1.7 Limitations of the Study

In this study, five and six step hybrid backward differentiation formulas and also six
step extended hybrid backward differentiation formulas with one off grid point shall
only be considered to derive implicit schemes. These schemes can only be used to solve

problems of first order ordinary differential equation.
1.8 Basic Definitions
i Linear Multistep Method

The general form of linear multistep method (LMM) for first order differential equation

that can solve equation (1.1) as presented by Oyelami (2018) is given as
=0 + = 2 =0 + (14)

The equation is explicit if = 0 and implicitif # 0



ii. Hybrid Linear Multistep Method

A k — step hybrid linear multistep method is defined by Lambert (1973) as

+ =+ ) (1.5)

oand  are both not zeros, {0,1,..., }. (Lambert, 1973)

iii. Collocation Method

The collocation method can be defined simply as a method involving the determination
of an approximate solution with a suitable set of functions, sometimes referred to as the
trial or basic function called power series in this research. It is a form of projection to
solve integral and differential equations, in which the approximate solution is calculated

on condition that the equation is satisfied at certain points. Fairweather (1989)

iv. Stability

One practical prerequisite for a good method to be efficient is that it has fulfilled the
stability condition. If no theoretical solution to a problem is known, numerical solutions
can only be sought for, given initial or limit values. But for all initial values of a certain
equilibrium point in the neighborhood one needs information on the stability behaviour
of the solution. The equilibrium points are again shifted to the center and established by

it (Frazer et al., 1937).



V. Ordinary Differential Equations (ODE)

An Ordinary Differential Equation (ODE) is a differential equation that includes one or
more independent variable functions and the derivatives of those functions. It is an

equality which contains a function and its derivatives.

vi. Partial Differential Equation (PDE)

A Partial Differential Equation (PDE) is a mathematical equation containing two or
more independent variables, an unknown function (depending on those variables), and

partial unknown function derivatives in addition to the independent variables.

vii.  Linear Ordinary Differential Equation (Linear ODE)

A Linear Ordinary Differential Equation is a differential equation, described in the
unknown function and its derivatives by a linear polynomial. It is a first degree equation,
when the expression equated to zero is assumed to be a component of the dependent
variable and its differential coefficients. If it can be written as a linear combination, then

the differential equation is linear.

viii.  Nonlinear Ordinary Differential Equation (Nonlinear ODE)

A Nonlinear Differential Equation is a differential equation which is not a linear
equation between the unknown function and its derivatives. There are very few methods
of specifically solving nonlinear differential equations, those typically known rely on
the equation which has unique symmetries. A nonlinear ordinary differential equation is

that which cannot be written as a linear combination.

ix. Order of an Ordinary Differential Equation.

Given F a function of x, y and derivatives of y. Then an equation of the form



F(xayayya'“a y(n_l)):y(n) (16)
Is called an explicit ordinary differential equation of order .
X. Initial Value Problem

In the field of differential equations, an Initial Value Problem (also named by some
writers as Cauchy Problem) is an Ordinary Differential Equation along with a defined
value, called the initial condition, of the unknown function at a given point in the

solution domain.
xi. Boundary Value Problem

A boundary Value Problem is a differential equation with a number of external
restrictions, called boundary conditions. A solution to a Boundary Value Problem is a

differential equation solution which also satisfies the boundary conditions.
xii.  Backward Differentiation Formula

Backward Differentiation Formulas are especially useful in solving stiff differential
equations and algebraic differential equations. These are formulas that provide a
derivative estimate of a vector at a time ¢ in terms of its function values at # and earlier
periods. (Hence the word “Backward”). It is a family of implicit methods for the
integration of ordinary differential equations in numerical form. They are Linear
Multistep Methods which estimate the derivative of that function for a given function
and time using information from already determined time points, thereby improving the

approximation accuracy.



xiii. Maple Software Package

Maple is a graphical and numerical computation framework, and is also a tool of multi-
paradigm. Maple also includes many areas of scientific computing, including simulation,
data analysis, matrix computation, and networking, developed by Maplesoft. It
manipulates algebraic sets, unbounded variables, exact rational numbers, mathematical
formulas, real numbers (with accuracy), polynomials, list tables, matrices and vectors. It

can solve structures of equations and can discern expressions and combine them.



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Linear Multistep Methods

Linear Multistep Methods (LMMs) numerical methods for solving Initial Value
Problems (IVPs) of first order. Conceptually, from an initial point, a computational
process starts and then takes a step forward in time to find the next solution point. The
process continues with subsequent steps to visualize the solution. Through retaining and
using the knowledge from previous points and derivative values, multistep methods
attempt to achieve efficiency. A linear combination of the previous points and

derivative values is used for linear multistep methods (Abioyar ef al., 2015).

The methods are also used to solve higher order ODEs. LMMs are not self-starting
hence, need starting values from single step methods like Euler’s method and Runge
Kutta family of methods. According to Collatz (1960), the existing methods of deriving
the LMMs in discrete form include the interpolation approach, numerical integration,
Taylor series expansion and through the determination of the order of LMMs be

consistent.

Continuous technique of collocation and interpolation is now commonly used for
LMMs derivation, block methods and hybrid methods. Several continuous LMMs were
derived using different techniques and approaches: for second order ODEs; Abdullahi,
(2017) derived three step continuous hybrid implicit linear multistep block methods,
Oyelami (2018) derived a collocation technique based on orthogonal polynomial, Jator
et al., (2014) worked on blocked hybrid backward differentiation formula for solution

of large stiff systems, Mohammed and Yahaya, (2010) worked on fully implicit four



point block backward difference formulae for solving first order initial value problems;
also Muhammad and Yahaya, (2012) worked on fully A sixth order implicit hybrid
backward differentiation formulae for block solution of ordinary differential equations,
Musa et al. (2012) worked on the convergence and order of the 3 point block extended
backward differentiation formula, Odekunle et al. (2012) developed a continuous linear
multistep method using interpolation and collocation for the solution of first order ODE

with constant step size.

2.2 Discrete Method

Despite the fact that the discrete integration algorithm achieves satisfactory results, in
comparison with their continuous counterparts, they suffer from their limitations and
drawbacks. So there is an attempt to enlighten the reader about the importance of
continuous formulations of discrete methods by distinguishing between the discrete

methods and their continuous counterparts.

According to Adeyefa et al. (2014), discrete methods are methods that are used at each
grid point to achieve numerical approximation, and are not represented as independent
variable. Notwithstanding the simplicity and broad applicability, they involve some
setback inherent in discrete numerical integration algorithm. As such recent researchers
have provided interesting results for continuous integration through different
approaches in IVP’s numerical solution — Awoyemi, ef al. (2015). It was also found that,
for example, the continuous formulations of the discrete systems appear to possess some
features over their continuous equivalents. The continuous schemes can be used for

more analytical work such as ease in differentiation than the discrete schemes.

10



2.3 Hybrid Method

Over the years, numerical research has concentrated on solution at grid points, with
little or no exposure to point other than the grid points. Chollom (2004) was upset about
this finding. Though more effective and efficient than the Runge Kutta methods, these
methods have the weak stability properties for a number of functions evaluation per step.
Notwithstanding the benefits of these approaches, they suffer the drawback of requiring
starting values and a special process to adjust the step length. Such difficulties can be
minimized by reducing the linear multistep method’s step number without automatically
reducing its size, but in so doing, the critical zero stability condition becomes difficult
to fulfill. It’s also a documented fact that if the zero stability condition is to be met, an
order (k+2) is even for k and (k+1) is odd. Gragg and Stetter (1964) worked together
with Butcher (1964) and Gear (1965) to overcome these difficulties by introducing a
modified linear multistep formula that incorporates a function evaluation at an off grid
point. The approach was called Hybrid because it maintains the properties of linear
multistep and Runge Kutta methods and lies between the method of extrapolation and
substitution. The work of Bryne and Lambert (1966) proposed a supposition of Runge
Kutta methods in which stage derivatives computed in earlier stages are used alongside
stage derivatives found in the current phase in the next step to determine the output
value. The iterations are examined in the same manner as the methods of Runge Kutta,

derivatives evaluated in the previous step, defined as

"1, i=1,2,..,sand the current step derivative by 7", | i=12,.,s.
Akinfewa et al. (2011).

Equations for a single step of the method were represented as

11



Y=y, +h2a[jTj"];” =f(x, +heY)y,

Jj=0

S A

=y, + h(iblz[n] + Zbl T;[nl]j
j=0

=0

2.1)

Such methods have been called methods of Pseudo Runge Kutta. Therefore a k-

step hybrid method is established as

k k
DMy =h Ay A (2:2)
7=0 =0

Where 4, =+1,and A, are both not zero, v € [0,1,....k] and f,,, € f(xw’yw)

2.4 Continuous Multi — Step Collocation Method (CMCM)

The continuous finite difference (CFD) approximation method by the idea of
interpolation and collocation which Lie and Norsett (1989) and Oyelami (2018) referred

to as the Multistep collocation (MC) is presented below. Adopting the notation
L_Z = (90 4 91 EARA 9(t+m—l))T > gD(X) = ((/)0 (x)’ ? (X),..., (p(mm—l) )T (23)

Where 6 ,r=0,1,..,t+m—1 are undetermined constants, ¢, (x) are specified basis
functions, denotes transpose of, denotes the number of interpolation point and m
denotes the number of distinct collocation points. A continuous approximation

(interpolant) ( ) to ( )as expressed by Zarina et al.(2008)was considered

t+m—1

Y(x)= D 6,0,(x)=60"p(x) (2.4)

r=0

12



Which is valid in the sub — intervals x, <x<x, , ,where n=0,k,..N—-K. The
quantities X, =6, x, =b,k,m,n,t and ¢ (x), r=0,l,...,t+m—1 are specified values.

The constant co — efficient a, of (2.4) can be determined using the conditions

y'(xj):fyprj) j:()al’"':m_l (25)
where
Joij =S (X0 5%,,) (2.6)

The distinct collocation points X,,...,X,, , can be chosen freely from the set [x, ,x ., ].

Equations (2.4), (2.5) and (2.6) are denoted by a single set of algebraic equations of the

form

DO=F 2.7)

E = (y"’yn+l’""yn+t—1’f;1’f;7+l’fn+m—l)T

(2.8)

where D is the non — singular matrix of dimension ( + ). Mohammed and Adeniyi

(2014).

13



(DO ('xn ) e §0t+m71 (xn )
Dy (xn+z—1 ) R /T (xn+t—1 )
D= (2.9)
¢O (XO) “. (Dt-#m—l (XO )
¢0 (xm—l ) T ¢t+m—l (xm—l )

By substituting (2.9) into (2.4), The MC formula was obtained

y(x)=F'CTp(x), X, <x<x,, n=0,k,..N—-k (2.10)
Where
C=D"=(c,), i j=l..,t+m—1 (2.11)
€ Cy Ciet " Claam
c e C C “oe C
C= ?1 : ?t 2§+1 : 2t:+m 2.12)
ct+ml ct+mt Ct+mt+l e ct+mt+m

with the numerical elements denoted by c, 7, j = 1,...,k + m . By expanding C"'p(x) in

(2.12) yields the following

() = Z(f Cr+2,+2¢r(x)>+m2h( i S (), 2.13)
Y0 = 3.0, (03, +h0 B, (0 @14

6, can be determined as follows:

14



t-1 m—=1
y(x) = {Z a_/,)'+1y11+_/ + hz ﬂj,rH n+j }q)r (x) (215)
r=0 j=0

15



CHAPTER THREE
3.0 MATERIALS AND METHODS
3.1 Construction of Proposed Hybrid Backward Differentiation Methods

A step by step description of the formulation of the proposed — step Hybrid Backward
Differentiation Formula for the solution of first order ordinary differentiation equations

is hereby given.

An approximate solution of the form (3.1) is sought for

r+s—1

Y(x)= Zijf (3.1)

where y; are unknown coefficients to be determined, k <rand s >0 are the number of

interpolation and collocation points respectively.

The continuous form of the numerical schemes is expressed as:
k-1

Y('x)zzaj('x)ywrj +ay(x)yn+,u +hﬂk(x)fn+k (32)
=0

where a,(x), f3,(x) and a,(x) are continuous coefficients.

3.2 Five Step Hybrid Backward Differentiation Method (SSHBDM) with One Off

Step Point at Interpolation.

To derive this method, (3.2) is used to obtain a continuous five step hybrid backward

differentiation method with the following specification: =6, =1, = 5as follows:

YX)=ayy, + @Y, t Y, T A Y, Y, T agng +hBsf.s (3.3)
2 "

16



Using power series as the basis function,

r+s—1

Y(x)= Z al.xj, X, <X, (3.4)
i=0

IA
=
A
=

Where » = grid point , n + p = interval of integration, p =r+s—1

Approximating the exact solution Y (x) by a polynomial of degree 6 of the form:

Y(x)=>ax’, x,<x<x,, (3.5)

Y(x)=a, +ax+a,x’ +a,x’ +a,x* +a,x’ +a x° (3.6)
Taking the first derivative of (3.6) yields
Y (x)=a, +2a,x+3a,x* +4a,x’ +5a,x* +6a,x’ (3.7)

Interpolating equation (3.6) at x = x,,x,,,,X,,,,X,,5,X,.4-X o, and collocating equation

n+=
2

n+2°""n+3°" n+4-°

37)at x=x ives the system of equation in which the coefficients a . s are found
n+5 g y q J

Y (h)=a, +2a,x,, +3a,x.  +4a,x  +5a,x) +6a,x . = f,.s (3.8)
Y(x,)=a, 3.9)
Y(x,,)=a,+ax,, +a xn+1 +a xn+l +a,x n+l +a xn+l +a xn+1 (3.10)
Y(x,,)=a,+ax,,+a xn+2 +asx n+2 +a,x n+2 +a xn+2 +a xn+2 (3.11)
Y(x,3)=a,+ax,;+a xn+3 +a ‘xn+3 +a 'xn+3 +a xn+3 +agx n+2 (3.12)
Y(x,.4,)=a +ax,,+a xn+4 +asx n+4 +a xn+4 +a xn+4 +a xn+2 (3.13)

17



Y(x ¢)=a,+ax ,+a,x
n+— n+—

2

The matrix

asp—| 1

The Column matrix

Multiplying the inverse of the matrix

2 3

9 +a3x
n+— n+— n+—
2 2 2 2

of the proposed method is expressed

xn xn xn xn xn X n
2 3 4 5 6
xn+1 xn+] xn+1 xn+1 xn+l xn+1
2 3 4 5 6
xn+2 xn+2 xn+2 xn+2 xn+2 xn+2
2 3 4 5 6
xn+3 xn+3 xn+3 xn+3 xn+3 xn+3
2 3 4 5 6
‘xn+4 xn+4 xn+4 xn+4 xn+4 xn+4
2 3 4 5 6
X 9 X X 9 X 9 X X 9
n+— n+— n+— n+— n+— n+—
2 2 2 2 2 2
2 3 4 5 6
xn+5 xn+5 xn+5 xn+5 xn+5 xn+5

coefficients in (3.3) is obtained as follows

ay(x)=1-

23095 x 131057 x> 20485 x” 15293 x*

4 5
o Ta,x’ g +asx
+ n

of the proposed method is given as:

with the column matrix

(3.14)

(3.15)

(3.16)

the values of the

49 x°

+ —+
9252 h 55512 h* 18504 h® 55512 h*

11430 x 34201 x N 118577 x° 16619 x*

a,(x) =

1799 h

18

— = —+
3598 h* 21588 n° 10794 h* 21588

—+ — (3.17

6168 h° 27756 h° )
121 x°

079450 18



2241 x 89457 x> 12211 x° 3813x 561 x> 79 «x*
a(X)=—— -+ T e T TR 5
257 h 5140 h*> 1028 h 1028 ht 1028 ° 2570 h
(3.19)
2390 x 93017 x> 46993 x> 24071x* 2537x° 227 x°
0{3()(?): —— —2+ i —4+ e Ty (320)
257 h 4626 h* 3084 h® 4626 h* 3084 h° 4626 h
9405 x 42211 x* 101287 x° 36917 x* 6227 x> 197 x°
a4(x)=— —+ - = - = -y — (321)
1028 & 2056 h 6168 h°> 6168 h* 6168 h° 3084 h
76288 x 2594432 x> 140480x° 156736x* 3008x 8768 x°
a, (X) = —— —2+ - vy - o (322)
2 16191/ 242865 h*> 16191 h* 48573 h 5397h 242865 h
p)=—108 | 249x" 415x° 80 x' 29 x° 1 x° (3.23)
° 2577 257 h 514K 257 H 514h° 257 K° '

Substituting (3.17) — (3.23) into (3.3) gives the continuous form of the five step implicit

method expressed as

23095 x X, 131057 x* 20485 x_3 15293 x_4

215 X°

49 x

y(x):(

N 11430 x 34201 x°

T2 3t 4
9252 h 55512 = 18504 h* 55512 h
118577 X 16619 x*

4537 x°

6168 i°
121 x

21588 17 10794 i*
122115 3813 x*

1799 h 3598 h2

2241 x 89457 x° 561 x°

+ —_
21588 1

79 x°

_+ —_
1028 #1028 #* 1028 h5

46993 X 24071 x" 2537 x°

+
257 h 5140 i

2570 K°
227 x

73 =t o5
3084 i 4626 h° 3084 h
101287 x> 36917 x*

6227 x°

4626 h°

6168 1
3008 x°

X

10794 7°

o)
)

197 x°
+ —_—
3084 4°
8768 x

j n+1

n+2

jyn+4 +

2390 x 93017 x°
+ —— —+
257 h 4626 h
9405 x 42211 x°
Pl e FE I
1028 4 2056 W* 6168 K 61638 h
76288 x 2594432 x* +140480 x_3 156736 x_4 N
16191 h 242865 i* 16191 /° 48573 h* 5397
108 2% 415° 80+ 290 1
257 257 h 514K 257K S14hK 257 W
Evaluating (3.24) at

19

5

.

6
),

+
27756 h°

6
_jy 9
s

242865 h°

(3.24)

+5 yields the hybrid five step implicit method



4 75 40 100 300
yn+5 = __yn +

—_ [ +_ [
771 1799yn+1 257 yn+2 257 yn+3 257 yn+4
(3.25)
10240 60
Mol . L
5397 70l 257 s

Taking the first derivative of (3.24), thereafter evaluating the resulting continuous

polynomial solution at = 1, = 45, = 43, = 44 = and

I\)T@

rearranging give five additional methods generated as follows

74 370M 59 S194 312 5397
I = 100657 1827577 36557 T 36557 54825702 7310

h h 26
‘f;H’l 7310 f;1+5 ( )

1325 3275 6175 5425 40192 1285
Yo T B Yosa Y 9~
32724 63 63 2727 3636 57267 909

yn+2 = f;z+2 hf;z+5 (3 27)

S5 153 2403 o043 10688 771,
Y T 3 10607 404 7 T 5565 el 212

f;:+3 hﬁns (3 28)

61 1208 3564 328 403456 3084
_ . . 3, 084, 14, 3.29
Yrs = g3 T 1m0 T105357 3010 M aimas el 2107 T 2107 s 329)
8945 366525 1416933 3825675 31454325
Y02 259932167 12996608 " 12996608 12996608 " 25993216° " 430
, 80955 i 297675 , v '
2030722 " 6498304

2

33 Six Step Hybrid Backward Differentiation Method (6SHBDM) with One-off
Step Point at Interpolation.
To derive this method, (3.2) was used to obtain a continuous six step hybrid backward

differentiation method with the following specification:

V:7 ’{yn5yn+19yn+29yn+39yn+49yn+55y 9} S:L :6aS fOHOWS:

20



V(X)) =y, + QY T Y, T Y, 3t A Y, T A,

(3.31)
+a,y o +hB [,
T "
Using the power series function
r+s—1 )
Y(x)= Z ax’, x,<x<x,, (3.32)

The exact solution Y (x) is approximated by a polynomial of degree 7 of the form

Y(x)=>ax’, x,<x<x (3.33)

Y(x)=a, +ax+a,x’ +a,x’ +ax* +ax’ +ax’ +a,x’ (3.34)
Taking the first derivative of (3.34) gives

Y (x)=a, +2a,x+3a,x” +4a,x’ +5a;x* +6a,x’ +7Tax° (3.35)

Interpolating equation (3.34) at x = x,,X,,,,X,,55X,,3,X,.4 ,xn%,xn+5 and collocating
equation (3.35) atx = x, ¢ gives

Y (x) =a t+a,x, s+a xn+5 +a,x n+5 +asx n+5 t+a xn+5 +agx n+5 = fore (3.36)
Y(x,)=a, (3.37)
Y(x,,)=a,+axx,, +a xn+l +a xn+l +a xn+l +a xn+1 +a xn+1 +a xn+l (3.38)
Y(x,,)=a,+ax,,+a xn+2 +a xn+2 +a xn+2 +a xn+2 +a xn+2 +a xn+l (3.39)
Y(x,3)=ay +ax,;+a xn+3 Tasx n+3 ta,x n+3 Tasx n+3 Tagx n+2 +a xn+1 (3.40)

21



2 3 4 5 6 7

Y(X,00) =0+ QX + 05X, 03X, 04X, 4 + 05X, +acX,,, + 05X,
(3.41)
Y(x J)=a,+ax o+a,x" +ax ,+a,x" ,+ax ,+ax’,+ax 3.42
9/ — %o 1 9 2 9 3 9 4 9 5 9 6 9 7 9 ( . )
n+— n+— n+— n+— n+— n+— n+— n+—
Y(x,,)=a,+ax,,, +ax.,, +ax. , +a,x.  +ax, , +ax’  +ax (3.43)
n+5/ 7 Y1 17 n+4 2% n+4 3% n+4 4V n+4 5V n+4 67" n+2 7" n+1 .

The D matrix of the proposed method is expressed as

b, D, D, D, D; Dy D; Dy
D, Dy Dy, D, D, Dy D, Dy
Dy Dy, Dy Dy, Dy Dy Dy, Dy
D= D, Dy Dy Dy Dy Dy Dy Dy (3.44)
Dy, D5, D53 D5y Dss Dsg Dy, Dy
Dg Dy Dg Dy Dy Dy Dy De
D, Dy Dy Dy Dy Dy Dy Dy
Dy Dy, Dy Dy Dy Dyg Dy 3Dy

where the elements of D’s are expressed in appendix B. The Column matrix of the

proposed method is given as:

B= (3.45)

Multiplying the inverse of the matrix (3.44) with the column matrix (3.45) the values of

the coefficients in (3.33) were obtained as

22



o (o SA623x 20192327 2339871 47953x' 5191 x° 4823 x°
’ 293404 88020 h* 117360 h* 70416 h* 39120 h° 352080 h° (3 46

17 X’

29340 h’

8694x 163803x> 62254x° 117113x" 1247x° 13679x° 151 x’

oy (x)= —= —+ — = —+ —— —+ —(3.47
=815 A 8150 1 T 40750 195604° 978 i° 97800k 24450K )

() = 10665x  101697x* 45299x°  29786x" 13750x°  3205x° 37 x" 1)
’ 164 h 652 B> 326 h* 489 h* 978 B 1956h° 489h7

() = 3060x , 23411x° 203630x°  128917x" 47899x"  3941x° 143 x_7(3 49)
’ 163 489 h* 4401 h* 5868 h* 8802 h° 5868h° 4401n7

o (x)_193055_25413x_2+20497%c_3_307183x_4+80453x_5_10481x_6+ 19 x" (3.50)
YT 4s564n 228217 182561°  54768h'  54768h° 54768° 1956k

. () = 6102x  2973x" 16892¢° 41797« 7ll4x" 7759 x° 103 x' 51)
’ 8965h 1630n° 8965h™ 43032h" 26895k 2151600 53790K’

o () = 41156608 136904704c” 1377501184 123584512"  5816320x°
; 564795 b 770175 h* 8471925 h* 1694385 h* 338877 i

4 (3.52)
17186816x° 114688 x”

8471925 h° 12102754

491 x* 3121 x* 37 x* 95 x* 23 x6+ 1 X’

6
X)=—nx-— —+ e = =
Fe) 163 4890 h  29340h° 652 h° 5868h* 9780h°  7335h°

(3.53)

Substituting (3.46) — (3.53) into (3.33) gives the continuous form of the six step implicit

method expressed as
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_ 84623 x 291923 x’ 233987 ¥’ 47953 x' 5191 x°
20340 7 88020 A2 117360 K° 70416 A* 39120 A°
4823 x° 17 X’

352080 4° 29340 7

y(x)=

8694 x 163803 x* 62254 x” 117113 x* 1247 x*

| 815 h 8150 A* 4075 A 19560 h* 978 A’
13679 x° 151 x" "
97800 h° 24450 1"

10665 x , 101697 x* 45299 x* | 29786 x* 13759 x*

L 164 b 652 K 326 K 489 h' 978 i
L, 3205x° 37 ¥
1956 h° 489 1
3060 x | 23411 x° 203630 x° 128917 x* 47899 x*

L| 163k 489 h' 4401 B 5868 h' 8802 K’
L3041 143 o7 "
5868 h° 4401 1

19305 x 25413 x* , 204977 x* 307183 x* 80453 x*

| 4564 b 2282 k' 18256 b 54768 h' 54768 b’

10481 x° 19 ¥’ "
+ —_—

54768 h° 1956 1

_6102x 2973 x° 16892 x° 41797 x* 7114 x°

.| 8965k 1630 h* 8965 A 43032 h' 26895 A’

7759 x° 103 X7 "
215160 h° 53790 A’
41156608 x 136904704 x* 1377501184 x° 123584512 x*

| 564795 h 770175 h* 8471925 A 1694385 i’
, 5816320 x* 17186816 x° 114688 x™ "
338877 h* 8471925 h° 1210275 h’

6 491 x* 3121 x¥* 37 x' 95 X’
= -t PRI Py
163~ 4890 h 29340 h*> 652 h® 5868 h

+ 7 x](;l+6

23 x° 1 x
—_ _+ —_—
9780 h* 7335 A°

Evaluating (3.54) at x=x_,, yields the hybrid six step implicit method

24

(3.54)



_ S0 216 3375 2000 6750 = 5400
yn+6 489yn 163 yn+l 163 yn+2 163 yn+3 1141 yn+4 1793yn+5

(3.55)
1048576 60
S0y 4 —h
37653 7n 1637 e
Taking the first derivative of equation (3.54), thereafter, evaluating the resulting
continuous polynomial solution at
X=X, X=X, ,, X=X o, X=X,5,X=X,, and X=X,
n-+—Z
gives six additional methods generated as follows
__ 2750 120000 27787264 77500 36250 8625
i = 06937 20231 7 4673361 Tt 606937 14161777 2205417 .56
9780 40 '
W ———h
20231 Z 20231 Yo
_ 14 498 2350296 316 11l 118
Y2 167257 T 278757 21463757 2 33457 78057 613257 " 557
489 1 '
— 2 ——h
2230 7" 11150 s
_ 25050025 240604749 7383828375 1060549875
Y2 T 253137387527 12656869376 " 6328434688 " 6328434688 " 6.55)
547630875 2083725 564795 800415 '
+—yn+4 _—yn+5 f 9 —hf;7+6
25313738752 744521728 " 1545028 nv) 6328434688
__ 173 1539 27 342016 1377 1107
P T 203207 T 224007 T 1607 T 121275 70 62727 492807
ﬁhf;zH_th;Hé
224 1120 (3.59)
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2989 70952 52332 61865984 135632 156408

= + - + -
P 0560657 4267757 170717 T 1408357502 " 51213 2 938905
13692 392
A (I n+a +—h-f;l+6
17071 85355 (3.60)

17182 | 76593 1258400 12058624 2456300 3502950
Yis T s0343” " 2167817 2167817 1517467 “ e 650343 °"° 15174677

__B0,

216781 7"

(3.61)

34 Six Step Extended Hybrid Backward Differentiation Method (6SEHBDM)

with One Off Step Point at Interpolation.

To derive this method, (3.1) is used to obtain a continuous six step extended hybrid

backward differentiation method with the following specification:

r=1, [yn,ym,y“z,y“a,ym,y“s,yn J s=2, (froe>Sorr ) k=6

1
4
3

Expressed as follows:

V(X)) =0y, + Y, gt Y, Y, T Y, Ty, st Y

3 3

+ﬂ1hfn+6 + ﬂth;z+7 (3 62)
The D matrix of the proposed method is expressed as

Dll D12 D13 D14 DIS D16 D17 DIS D19

D21 D22\ D23 D24 D25 D26 D27 D28 D29

D3l D32 D33 D34 D35 D36 D37 D38 D39

D41 D42 D43 D44 D45 D46 D47 D48 D49
D = DSI DSZ D53 D54 DSS D56 D57 D58 D59 (363)

D61 D62 D63 D64 D65 D66 D67 D68 D69

D71 D72 D73 D74 D75 D76 D77 D78 D79

D8| D82 D83 D84 DSS D86 D87 D88 D89

D D D, D, D, D D Dy, D

Nl
o
[
Ne
b8}
el
=
o
[
o
(=2
h=}
2
o
o
o
N=l

N
(e)]



Where the elements of D’s are expressed in appendix C.

The Column matrix of the proposed method is given as:

Yn
y

ik

3
Yunt
B- “;z (3.64)
Ynia
Yss
W,

hf;z +7

Multiplying the inverse of the matrix in (3.63) with the column matrix (3.64) the values

of the coefficients in (3.62) as follows:

oy () =1 17638 x N 12020002 lx_2 62955 197)6_3 N 199606373x* 4095795 lx_5
’ 3165 h 11697840 A 7018704 1> 46791360 1* 350935204

(3.65)

L 4281743 x° 13381 x7 24457 x°
23395680h° 877338h"  467913604°

_ 81507303 x 322935956379£+ 10028967453 x° 652069991043£

a,(x)= —
&) 10398080 4 16013043200 #°> 500407600 A° 64052172800 h*

1
3

+9268337601x5 14890432257 x° 630636759 x’ 87438447 x*

—_— _|_ —_
3202608640 2> 32026086400 #° 16013043200 2" 64052172800 A® (3.66)

103825x N 438668555>c_2 34185829 N 12532404356_4 9576552 1x°

o (x) = N 2 73 4 25
30384 hn 28074816h~ 1754676 h  112299264h" 28074816k

(3.67)
(32261113x°  1411387x" 66757 x°
56149632:° 28074816 37433088
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2087x 48906173c2 37295351 49135279c4 275346 991689x°

o, (x)=

| 136579x" 3347 x°
24370500 162470048

o, (x) =

Co- s —— -
10554 4874100  2437050K° 48741004"  812354° 16247004

104885¢ | 507660823 77434435 | 237137513%" 64476553k

, 8220498 _ 11864969x" 603131 x*
149732359, 224598528 ' 299464704:°

13085x 257298037x 431936951  129849796%* 12421172%°

a,(x)=

81024/ 74866176K> 70187047°  299464704h* 224598528

50006939 x° X 157163 x7 132599 x_8
15441148%°  4825359h7  1029409924°

18773x+ 93051319x” 1985413’ +48975148%c_4_1613671]x_5
118160k 109179840 13647485 436719360 363932807

as(x) =

| 6740159x° 210587 x 57241 x°
72786560h° 21835968  1455731205°

25019 x> 130597x° 138329x* 42775x° 6287 x°

5
Bs(x) :ﬁ -

262 &7 61 x*
146223h° 7798564’

37 929923 x* 51031 x° 5265451 x* 110857 x°

ﬁ7(X)= 2 3 4
10128 467913604 14622301 1871654400 9358272

251609 x° 14543 x' 893 x°
93582720n°  46791360h° 623884804’

28

—+ —— —+ —
20880k  77205744%% 77205744k 308822976k 772057444°

—+ —+ =+
194964 i~ 584892k 779856k  584892h° 38992884°

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)



Substituting (3.65) — (3.73) into (3.62) gives the continuous form of the

extended hybrid method expressed as

17638 x 120200021 62955197 x° 199606373 x' _40957951x°
J=| 3165 A 11697840 1 T0IST04 B 46791360 ' 35093520 |
4281743 x° 13381 &7 24457 X "

+ —— —+ —
23395680 #° 877338 4" 46791360 i’

103825 x| 438668555 x* 34185829 x° | 1253240435 X' 95765521 x°
L| 30384 k28074816 W 1754676 B 112299264 h* 28074816 K’
| 32261113 x° 1411387 X' L 66757 X "
56149632 h° 28074816 1" 37433088 K*
81507303 x 322935956379 x* , 10028967453 X' 652069991043 x*
| 10398080/ 16013043200 1 500407600 /A 64052172800 A* y
| 9268337601 x° 14890432257 x° | 630636759 x' 87438447 x' "y
3202608640 /° 32026086400 /° 16013043200 /7 64052172800 /*
2087 x 48906173 x* | 37295351 X 49135279 x* | 275346 X 991689 x°
L| 1055k 4874100 W 2437050 /° 4874100 A* 81235 K° 1624700 /°
136579 X 3347 & "
2437050 K 1624700 B
10488str 507660823 x* 77434435 x* . 2371375135 x* 644765531 x°
| 81024 k- 74866176 K 7018704 K’ 299464704 K 224598528 I’
| 82204981 x° 11864969 x' 603131 ' "
14973235 h° 224598528 b7 299464704 K
13085 x 257298037 x* | 431936951 X' 1298497969 x* | 124211729 x
| 208897 77205744 W 77205744 B 308822976 h* 77205744 I
50006939 x° | 157163 X 132599 x° "
154411488 1° 4825359 1" 102940992 /*
18773 x 93051319 x° 1985413 x° 489751487 x* 16136711 x°
L| 118160/ 109179840 1364748 K 436719360 h* 36393280 A’
L 6740150 x° 210587 X 57241 i "
72786560 h° 21835968 A’ 145573120 A
5 25019 x* 130597 x° 138329 x' 42775 x° 6287 x°
L 211 194964 7 584892 W 779856 i 584892 B 3899288 K’ 7
262 ¥ 6l ¥ e
146223 b 779856 '
37, 929923 x* 51031 x° 5265451 x' 110857 x°
L| 10128 46791360 h 1462230 187165440 b° 9358272 h' y
251600 x° 14543 x' 893 o "
93582720 i 46791360 h° 62388480 1’

29

six step

(3.74)



Evaluating (3.74) atx=x and ¥ = X7 yields the hybrid six step extended method

n

_ 4335 29701647 217039 26877
Yo T 162477 400326087 wi! T 1949647 T 162477
L 1177675 1293275 984045~ BI6O . 1445
519904 7 T 536151 2 T 454916° " T 16247 V¢ 64088 ™
(3.75)

1675 53 1441 25375 2688 261625 37625

= +
D7 60637 816992 7w 278527 T 23217 " 2208167 765937

9525 3500 2765
n+5 + -f;1+6 + hf;a+7
9284 2321 9284 (3.76)

Taking the first derivative of equation (3.74), thereafter, evaluating the resulting

continuous polynomial solution at

X=X l’x:xn+l7‘x:xn+2’x:x+9’x:xn+3’x:xn+4 and x=X,.;

n+— n+—
3 4

gives seven additional methods generated as follows

6911212000 11809105000 607760384 3356381875
yng 1602058419 1602058419~ 178006491 1602058419 " 3.77)

1575700000 43703000 5199040 326480000 n 2935240 ’
n+6 n+7

y n+4 + y n+5 f 1
1602058419 178006491 1383681 “ 9078331041 534019473

684476 8263376109 13549824 2120591 1261564
Y1 = 71833357 564671800 Tnk T 916675 0 293336 ° 403337 " 578
S61137 2330568, 19M8 . 0883 '
12833457 " 183335 0" 183335 " 183335 "

_ 184475 475167303 1682125 = 46012375 = 1707625
Y2 = 007567 T 168172928 Yl " 273008 7 2" 6552192 7 750772 0 (3.79)
934475 243705 2125 2445 ;o

+ - h ., —— +—
1911056~ 34126 Vo 34126 o 273008
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1329632 1505336157 4094504 79171584 66931616
yn+3 = yn + y 1 yn+1 yn+2 - yn+4
31103657 " 1197490525 » 1866219 15551825 20528409 (3.80)
11627304 3119424 35712 24152 '
+ W . — b ="}
21772555 " 622073 Yo 622073 Voo 3110365 Vo
141977 907169787 1037531 5652306 28593653
n+4 = yn - y 1 + yn+1 - yn+2 —y/1+3
996335 " 2231790400 =+ 1594136 4981675 12753088 (3.81)
27581697 292446 7194 35079 '
- W o +—hf ———"
55794760 " " 199267 o 199267 Vo 7970680 Vo
2463412 202597119 3525375 5485312 196497175
yn+5 = yn+ y 1 yn+l yn+2 _—yn+4
18416163 540207448 “n+; 6138721 6138721 147329304 (3.82)
3899280 439600 43155 '
+ W o —————hf +——"}
6138721 Vos 6138721 Voss 6138721 Voo
3.5 Order and Error Constant

Following Skwame et al. (2018), Let y(x

n+j

differentiable, then y(x,,,) and y'(x,,;

X, to obtain

[Co +Chy )+Czh2y"(xn)+"']

where

k
0-Sa,

=0

k k
Cl:zjaj_zﬂj

Jj= Jj=0
c=izk: P Zk:'q_lﬂ
T N P 1T - R

), the solution to y ' (x

) be sufficiently

n+j

) can be expanded into Taylor’s about point

(3.83)

Definition 3.1: A linear multistep method is said to be of order of accuracy p if
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¢, =¢ =--=c, =0,

) #0.c,

cp+1 +1

is called the error constant.

3.5.1 Order and error constant of the proposed five-step hybrid backward

differentiation method (SSHBDM).

For the method in (3.25) @, = —— , @, =——>—, g, = 20
771 1799 257
100 300 10240
ay=———,0, =0 =1, Oy =————, fy =
257 257 0T 53970
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... 4 75 40 100 300 . 10240
771 1799 257 257 257 5397
c :(_ 75 j+2( 40 j_3[100)+4[300j+5(1)
1799 257 257 257
~ g 10240 60
5397 257
( 40 )_(3)2(1%]
1799 257 257 5( 60 ]_
300 (5)2(1)_(2j (10240)
257 2 5397
() (12
1799 257 257 -i(sz( 60 N_O
300 3(1)_(2J3(10240j 2! 257
257 2) 5397
( 40 j 34(100j
1799 257 257 1 53( 60) B
300 4(1)_(2)4(1024()) 3! 257 )]
2 5397
[ 40 ]_35(100j
1 1799 257 257 (5 ( 60 D
e = —
S (mj+ss<1>_(zf(1024oj 4l s
i 257 2) 5397
'(_ 75 j+26[40j 36(100j i
1 1799 257 257 (5 ( 60 D
c, = — e —
° 6! A (300j+56(1)_(gj“[10240j 51 257
i 57 2 5397 )|
(7572 (35)- (5]
! 1799 257 257 1 56( 60} B 5
ST (300}57(1)‘[2]7[10240] 61" \257)) 7 1799
57 2 5397 )|
Hence the method is of order p =6 with error constant ¢, = —%
For the method in (3.26) ao—ﬂ, a, =1,a, :w, a, :%
10965 18275 3655
38912 5397 441
_Oa 9 = L onmz? ﬂ1=_ ’ﬂSz
=~ 54825 7310 7310

2
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a, =-—

9



1274

37044 5929 5194 38912

Cy =

+
10965

37044

5929

{

J

18275

+
7310 7310
37044

3655
5397 441)__

j+4(_

5929

i)
! _42(
s

18275

5194
3655

37044
18275

)

37044

3?

)
)
(&)

[S62s

3655

38912
54825

5929
3655

) (2) (3

38912
54825

5929

o
0
o
e

18275

il

3655

37044
18275

5194
3655

37044

{
:
{

J+(5)

9

2

(2
250)

9

(35
(5625

3655

38912
54825

5929
3655

38912
54825

5929

o

18275
s
3655

37044

j+36

9

2

I

3655

38912
54825

o
"

(3.85)

18275

=

3655

Hence the method is of order p =6 with error constant ¢, | =

)<

9

2

I

J

38912
54825

=20

5929
3655

=20

18275 3655 3655 54825

5194

9

38912

Js

3655

5°(0)

g

2

ot
f
o
i

34

54825

j+5(0))

1

5!

§

1

5397

5397 441

7310 7310
5397 s 441
7310 7310
5397 g 441
7310 7310
5397 s ( 441
1L 7310 7310

441

7310

5397

7310

g
d

7310

441
7310

)

14
1075

)-
)
)-
-

14

1075




1325 3275

For the method in (3.27) «, = - a, = a, =1
32724 6363
6175 5425 B 40192 1285
a3 == a, = > aS_O’ Ay =—"_— > ﬂzz_—
2727 3636 > 57267 909
50
fs == 909
. 1325 3275 | 6175 5425 40192
° 32724 6363 2727 3636 57267
3275+2(U—3(6175j+4(5425)
6363 2727 3636
c = =
e 2)(40192) _@_ﬂ
2 )\ 57267 909 909
3275 £22(1)-3 6175
116363 2727 1285 5( 50 jj
c = — =
P2l » (5425) 9) 40192 909 909
3636 ) \ 2 57267
3275 2 (6175
1 6363 2727 1285j 5 (50 D
c, =— _— =
>3l » (5425)__.2 3(40192 909 909
3636 ) \ 2 57267
3275-%24(1) 6175
116363 2727 1285} 5 ( 50 )J
cC, = — _— =
o4l +44(5425j___g 40192 909 909
3636 ) \2 57267
aer-s(5)
1 1285 50
C. = — 5 _— =
s +45(5425j___g 5 40192 909 j (909]J
3636 ) \ 2 57267
3275 2 (6175 |
1 6363 2727 1 55 (1285) 55 ( 50 )
c, =— —_—— = _— =
‘6! 4 [5425j_(2j6(40192j 5! 909 909
3636) \2) \ 57267 )
3275 L2 (1)- (6175] ]
L] 6363 2727 1 ( (1285) ( 50 jj 1385
7T 4 7 e — |~ =
7! 6! 909 909 152712
L[ 5425 _(9) (40192 (3.86)
3636) \2) (57267 )]
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Hence the method is of order p = 6 with error constant ¢

1385

0{3:

7152712
For the method in (3.28) &, = —2 @, =12 4, = 220
1272 371 1060
10688 771 27
’ 275565 0 212 o212
. 55 153 2403 | 2403 10688
"T1272 3711060 | 424 5565
—@+2(—2403j+3(1)
371 1060 ( 77, 27)
C, = _- —— _— =
‘ 4(2403j+(gq(19§§§j 212 212
424 5565
153, [2403} 3 (
3717 1060 771 27
c2= —| 3] — |+5| —|=
210 5[ 2403 ( (10688] 212 212
5565
153+23(24 j+33(1)
1| 371 1060 L( (771 o 27
Cy == , ——| =3 — [+5°| —=—||=0
3! g 2403 . 97 (10688 2! 212 212
424 2 )\ 5565
153 4[2403 +3'(1)
1| 371 1060 L[ (771 5 27
€, =— . ——| -3 — |+5| —||=0
4! g8 2403 N 97 (10688 3! 212 212
424 2) \ 5565
2w
cs—i s 1 _34(7_71j+54(2_7j =0
5! _45(2403J'F(2J (19§§§j 4! 212 212
i 424 2 ) \ 5565
1 26(2403j+36(1)
1| 371 1060 L[ s( 771 s 27
Co = p ——| 3| == |+5|—1||=0
6!_4ﬁ(2403j+ g} (19§§§j 5! 212 212
i 424 2) \ 5565 )|
_153 27(2403j+37@)
1| 371 1060 1 6(771} 6( 27 j
C; == | 3 == |+5° = | |=
7! _47(2403j4__2j (19§§§j 6! 212 212
| 424 2) {5565 )]
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8480

2043
o, =——-
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Hence the method is of order p =6 with error constant ¢, = - 123

8480
. 61 1208
For the method in (3.29) ¢, =——— o =—-
6321 14749
3564 328 403456 3084
a, = a, = o, =1a.=0g,=——— B =——"""
> 10535 0 301 ¢ ’ 2 221235 Fi="5007 P =
. __ 61 1208 3564 328 . 403456 _
6321 14749 10535 301 221235
1208 (3564) (328)
-2 +3
| 14749 10535 301 ( 3084 144}
= 200
2107 2107
+4(1)_(g 403456
2 221235
1208 (3564 328
1| 14749 10535 301 3084 5[ 144 D
C2 = — =
2! 2107 2107
+42(1)_(2j (403456
2) (221235
1208 _23[ 3564 328
1114749 10535 301 3084j 52 (144 D
;== — | |=
3! 2107 2107
+43(1)_(gj (403456
2 ) 221235
[ 1208 4( 3564 328
1| 14749 10535 301 3084j 5 ( 144 D
Ccy=— — | |=
41 2107 2107
+44(1)_(g) (403456
| 2) (221235
| 1208 _25( 3564 328
1| 14749 10535 301 3084J 5 [144 D
CS = —_— —_— =
5! 2107 2107
4 (1)- 9 403456
i 2 221235
[ 1208 Y (3564 328 ]
1114749 10535 301 1 4 (3084j 53 ( 144 j
c, = — —_—— —_— =
©oel 9\ (403456 5! 2107 2107
+H (D) -| = | | —=—
| 2 ) \ 221235
1208 _27[ 3564 j+37 (%j
. _i 14749 10535 301 _L _46(3084j_56( 144) _ 317
T ; 9Y (403456 6! 2107 2107 73745
+47(1)-| =
| 2 ) 221235
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. . 317
Hence the method is of order p =6 with error constant ¢, | = ——

73745

For the method in (3.30)

89425 366525 1416933 3825675 | 31454325

a, =— a, = a, = a, = o, =
® 25993216 ' 12996608 > 12996608 ° 12996608 = 25993216
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2203072 6498304
89425 ] 360525 1416933 3825675 31454325

.

25993216 12996608 12996608 12996608 25993216

+q:0

366525 (1416933 j+ (3825675)
| 12996608 (12996608 )\ 12996608 ) | ( 80955 297675
- _{31454325}(2) (203072 6498304)
2593216 '\ 2
366525 22( 1416933 )+ 32( 3825675 j
1 12996608 12996608 12996608 9( 80955 297675
(2(203072) 5[6498304D:

6=
2! (31454325

“ 25993216) (2)

366525

1416933

3825675

112996608
03 -

_23(12996608}33(

3 (31454325) [gj
25993216

21

[ 366525 (1416933 431 3825675 |
1112996608~ \ 12996608 12996608 (
C, =—
b (31454325) (gj 3
| (25993216 |
[ 366525 (1416933 431 3825675 |
1112996608~ \ 12996608 12996608 (
=
! (31454325) (g) 3
| (25993216 |
[ 366525 25( 1416933 )+ 35( 3825675 ]
1112996608~ 12996608 12996608 1[(9
G=— S —Z
5] M2
45[31454325}(2)
(25993216 (2 |
366525 6( 1416933 j+ 6(3825675 j
1112996608~ | 12996608 12996608 (9
C. =— JRE— —
"6 (314543sz (g) 2
| (25993216 |
366525 7( 1416933 )+ 7(3825675 j
1] 12996608\ 12996608 12996608 ) | 1 (
T 7(31454325]{2)7 6!
25993216) (2

12996@8] 1 ((9

2

9
2

9
2

9
2

)

I

203072

I

203072

80955

80955

s (MJJO

297675

297675

I

80955

Fl
203072

297675

I

80955

80955

203072) - (
o

297675

297675

203072

Nl

=0
6498304)}
Jfe
(498304
o
(498304
=0
6498304)}

I

80955 | g 297675) 356065
203072) ~ \ 6498304 ) | 207945728
356265
207945728

Hence the method is of order p =6 with error constant c,,, =

39
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The same method was used for the 6SSHBDM and 6SEHBDM and the summary of the

order and error constants is presented below in Tables 3.1, 3.2 and 3.3

Table 3.1: Order and Error Constants for the Proposed SSHBDM

Equation Order P Error Constant C .,
3.25 6 _
1799
3.26 6 14
1075
3.27 6 1385
152712
3.28 6 123
8480
3.29 6 317
73745
3.30 6 356265
207945728
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Table 3.2: Order and Error Constants for the Proposed 6SHBDM

Equation Error Constant
3.55 225
9128
3.56 625
323696
3.57 89
1248800
3.58 307016325
3240158560256
3.59 549
1003520
3.60 1351
682840
3.61 134915
24279472

41



Table 3.3: Order and Error Constants for the Proposed 6SEHBDM

Equation Order Error Constant C
3.75 8 189295
24565464
3.77 8 325451500
43255577313
3.78 8 150277
7700070
3.79 8 6425
683424
3.80 8 3921524
587858985
3.81 8 987173
334768560
3.76 8 1775
167112
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3.6 Consistency

Definition: A linear multistep method is said to be consistent if the following conditions

are satisfied, Butcher, (1964).

(1) the order of accuracy p>1
.o k
(ii) ZO a,=0
=

(iii)  p'(1)=o(1), where p(r) and o(r), are respectively first and second
characteristic polynomials of the methods.

From section 3.5, conditions (i) and (ii) are satisfied for all the proposed methods, since

k
in each case the order p>1and C, = Zaj =0.
j=0

For the third condition, the first and second characteristic polynomials are obtained and
evaluated in what follows. For all the methods, conditions for consistency are satisfied.
Hence they are consistent with uniform order of accuracy p >1.

The summary of parameters for measuring consistency is presented in Tables 3.4, 3.5

and 3.6
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Table 3.4: Parameters for determining consistency for the proposed SSHBDM

Equation Order P Sa, o' (1) a(1)
325 6 0 60 60
257 257
3.26 6 0 236 236
257 257
327 6 0 267 267
257 257
3.8 6 0 248 248
257 257
3.29 6 0 269 269
257 257
330 6 0 7279 7279
8224 8224
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Table 3.5: Parameters for determining consistency for the proposed 6SHBDM

Equation Order P a, o) a(1)
355 7 0 60 60
163 163
3.56 7 0 491 491
489 489
3.57 7 0 2444 2444
2445 2445
3.58 7 0 814 814
815 815
3.59 7 0 2459 2459
2445 2445
3.60 7 0 467 467
489 489
3.61 7 0 667879 667879
667648 667648
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Table 3.6: Parameters for determining consistency for the proposed 6SEHBDM

Equation Order P a, o) a(1)
375 3 0 31195 31195
64988 64988
3.77 8 0 774401 774401
779856 779856
3.78 8 0 3721589 3721589
3691656 3691656
3.79 8 0 392839 392839
389928 389928
3.80 8 0 1930339 1930339
1949640 1949640
3.81 8 0 362137 362137
354480 354480
3.76 8 0 100081 100081
111408 111408
3.82 8 0 16765 16765
9284 9284
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3.7  Zero Stability

Following Akinfenwa et al. (2013), the derived Hybrid Backward Differentiation

Formula can be written in block form as follows

AVy

w+l

=AY | +hBF

o+l

whose first characteristic polynomial is given as

p(2)=det14") — 40|

(3.90)

(3.91)

Definition 3.3: The block method (3.138) is said to be zero stable if no root of the first

characteristic polynomial p(ﬂ) satisfies ‘/11.‘ <1,j=1273,--- and for those roots with

‘ﬂ_ /.‘ =1, the multiplicity must not exceed 1. (Anake 2011)

3.7.1 Zero stability of the proposed SSHBDM with one off step grid point

Expressing the methods represented in (3.25), (3.26), (3.27), (3.28), (3.29) and (3.30) in

the form (3.90)

| 37044 5929 194
18275 3655 3655
3275 | 6175 5425
6363 2727 3636
153 2403 1 2043
A= 371 1060 424
1208 3564 328
14749 10535 301
366525 1416933 3825675 31454325
12996608 12996608 12996608 25993216
AN 40 100 300
1799 257 257 257
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38912

54825
40192

57267
10688

5565
403456

221235

10240

5397

(3.92)



0 0 0 0 0 LR
10965
0 0 0 0 0 )
2724
0 0 0 0 0 %
A(0)= o (3.93)
0 0 0 0 0 —
6321
0 0 0 0 0 M5
25993216
0 0 0 0 0 4
7
3397 0 0 0 0 hall
7310 7310
0 _% 0 0 0 — &
909 909
0 _ﬂ 0 0 i
o 212 . 21154 (3.94)
0 0 -—— 0 TS
2107 2107
0 0 0 80955 297675
203072 6498304
0 0 0 0 L0
257
P(2)=2.4(1)- 4(0)
1P(2)|= 2944667520675 5 2944667520675
4271133391016 4271133391016 (3.95)

A=[1 0 0 0 0 0]

Thus the method is zero stable.
3.7.2 Zero stability of the proposed 6SHBDM with one off grid point

Expressing the methods presented in equations (3.55), to (3.61) in the form (3.90)
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. 120000 27787264 77500 36250 8625
20231 4673361 60693 141617 220541
49 235929 316 111 118
27875 2146375 3345 7805 61325
1064749 T3RBRK3TS . 1060549875 547630875 2083725
12656869376 6328434688 6328434688 25313738752 744521728
1539 27 342016 : 1377 1107
22400 16 121275 272 49280
70952 5332 6186594 135632 . 156408
46775 17071 14083575 51213 938905
76593 1258400 12058624 2456300 3502950 .
216781 216781 1517467 650343 1517467
216 2075 2000 6750 5400 1048576
163 163 163 1141 1793 37653
000 0 2750
60693
00 00 14
16725
000 0 25050025
25313738752
A(0)={0 0 0 0 73
40320
000 0 2989
256065
00 0 0 17182
650343
00 0 0 0
489

49
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AL 0 0 0 0 _ 40
20231 30031
B 0 0 0 b
2230 11150
0 64795 0 800415
1545028 6328434688
163 |
B= 0 0 — 0 0 -
224 1120 (3.98)
0 0 o o B9 392
17071 85355
0 0 0 0 107580 4840
216781 216781
0 0 0 0 0 60
163

P(A)= A.A(1) — A(0)

‘ ( )‘: 82888780531925560500 154 82888780531925560500 L
6448797709348397843291 6448797709348397843291

A=[10 0 0 0 0 0] (3.99)

Thus the method is zero stable.
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3.7.3 Zero Stability of 6SEHBDM with one off grid point

Expressing the method presented in equations (3.75) to (3.82) in the form (3.90)

51

000 0 0 6911212000
1602058419
000000 084476
183335
0000000 L3475
204756
0000000 1329632
_ 3110365
0000000 _4097
996335
000000 2363412
18416163
00000 0 _ 1675
16247
0000000 1675
6963 )
| 11809105000 607760384 3356381875 1575700000 43703000
1602058419 178006491 1602058419 1602058419 178006491
8263376109 | 13549824 2129591 1261564 961137
564671800 916675 293336 403337 1283345
475167303 1682125 1 46012375 1707625 934475
168172928 273008 6552192 750772 1911056
1505336157 4094504 79171584 1 66931616 11627304
1197490525 1866219 15551825 20528409 21772555
907169787 1037531 5652306 28593653 1 27581697
2231790400 15%4136 4981675 12753088 5574760
202597119 3525375 5485312 196497175 119735700
540207448 6138721 6138721 147329304 67525931
29701647 217039 26877 1177675 1293275 984045
40032608 1494 16247 519904 536151 454916
531441 25375 2688 261625 37625 9525
816992 27852 2321 222816 76593 N4

(3.100)

0 0[(3.101)




5199040 0 0 326480000 2935240

0 0 0
1383631 9078331041 53401473
20568, 0 0 0 19248 2883
183335 183335 183335
0 ) s 0 0 2125 2445
34126 M6 273008
0 0 34 0 2 AR
. 2073 62073 3110365
0 0 0 , 26 7194 35079
199267 19267 7970680
0 0 0 0 330080 430600 43155
6138721 6138721 6138721
0 0 0 0 0 0 8l 148
16247 (1988 | (3.102)
0 0 0 3500 2765
321 9084
90862073436247366116369566269440000
p(a)=| 12916688928106356645526023608261 (3.103)

N 90862073436247366116369566269440000 46
12916688928106356645526023608261

A=[1 00 000 0 0]

Thus the method is zero stable.
3.8 Convergence

The necessary and sufficient condition for linear multistep method to be convergent is
for it to be consistent and zero stable (Lambert, 1973). Following this theorem, each of

the block methods developed are convergent.
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3.9 Region of Absolute Stability

Following Akinfenwa et al, (2020) the region of absolute stability is determined by

obtaining the stability polynomial of the form:
-1
o(z)=(4"-z8") (4) (3.104)

where z=Ah

The matrix o(z) has Eigen values {0,0,0,...,4,} , and the dominant Eigenvalue

A, :C—C is a rational function (called the stability function) with real coefficients

given by

A =P(2) (3.105)
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3.9.1 Stability region of SSHBDM with one off grid point:

The stability function is given as:
5 4 3 2
P(z)=- : 12z +598z +4?z +96Of +1260§+720 (3.106)
540z —1353z" +2573z" —3645z° + 3660z —2340z + 720

It is clear from the stability functions that for Re(z) <0, |/”Lk| <1.Below is the region

of absolute stability region of the proposed method.

Im{z) 0

04 06 08 1o 12 14 16
Figure 3.1: Stability Region of 58HBDM

Figure 3.1 shows the stability region of SSHBDM and found to be an A-stable method

since its region of absolute stability contains the left half-plane C™.
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3.9.2 Stability region of 6SHBDM with one off grid point:

The stability function is given as:
P(z)- 300z° +15302° +4471z* +8700z° +11300z> +9000z + 3360
108027 —31262° +72242° —13111z* +18060z° —17780z" +11160z —3360

(3.107)

It is clear from the stability functions that for Re(z)<0, |2,|<1.below is the region

of absolute stability region of the proposed method.

1.5 | -: ................. T ]
[ | N
l | I S A 50 O N A 0 O N . 0 A )|
[
[
05 ! 8 P 5 e S A R 5
Im(z) 0 .............. (I | ......
-1 .| Jod bbbl Bl B By bl P
|
-1.5 I .................. =
0.5 l 1.5 2 2.5 3

Figure 3.2: Stability Region of 65SHBDM
Figure 3.2 shows the stability region of 6SHBDM and found to be an A-stable method

since its region of absolute stability contains the left half-plane C™.

55



3.7.3 Stability region of 6SEHBDM with one off grid point:

The stability function is given as:
12(600z7+31zoz6 Y3 195727 4285257 +28350 +17430z+3040)

Z)=
P( ) 25202° —140942” +523362° —1384952" +267204*-3721201 +3578402” — 214200 +60480

(3.108)

It is clear from the stability functions that for Re(z) <0, |/1k| <1.below is the region

of absolute stability region of the proposed method.

Im{z)

o 1 2 3 4 5 &6 T & 9
Figure 3.3: Stability Region of 6SEHBDM

Figure 3.3 shows the stability region of 6SEHBDM and found to be an A-stable method

since its region of absolute stability contains the left half-plane C™.
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION
4.1 Numerical Experiments

In this section, the results of the hybrid methods developed in chapter three were

presented on some problems of first order differential equations.
Example 4.1

Consider the Initial Value Problem

y(x)=e~ (Mohammed et al. 2010)

Example 4.2

Consider the non-linear Initial Value Problem

y(0)=1, 0<x<1

Exact solution y(x) = 1 Source: (Musa et al. 2012)
Jl+x

Example 4.3

Consider the nonlinear problem given by
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y =-10(y -1 1(0) =2

With the exact solution y(x) =1+ (Sunday et al. 2014).

1+10x
Example 4.4
Consider the linear problem
y =-20y+20sin x + cos x y(0) =1,
With exact solution
y(x) =sinx + e (Mohamad et al. 2018).
Example 4.5
Consider the cosine problem
y =—=27xsin(27mx) - é(y — cos(27x)) y(0) =1,

The problem becomes increasingly stiff as £ ——>0 we choosee =107 .
The exact solution is given by

y =cos(2mx) . (Musa et al. 2013).

Example 4.6

Consider the system of nonlinear stiff initial value problem
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y=—("+2y -y y,(0)=1,
(Musa et al. 2012)

Vo =0 =1, (14 1,) y,(0)=1,
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Table 4.1: Comparing the exact solution with the solution of the proposed methods

for problem 4.1

X

Exact Solution

5SSHBDM

6SHBDM

6SEHBDM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00000000000000

0.90483741803596

0.81873075307798

0.74081822068172

0.67032004603564

0.60653065971263

0.54881163609403

0.49658530379141

0.44932896411722

0.40656965974060

0.36787944117144

1.00000000000000

0.90483743369648

0.81873076659355

0.74081823308749

0.67032005717511

0.60653066977675

0.54881165019586

0.49658531615421

0.44932897541052

0.40656966990721

0.36787945036129

1.00000000000000

0.90483741863555

0.81873075360897

0.74081822116118

0.67032004647336

0.60653066009888

0.54881163649042

0.49658532900886

0.44932898692854

0.40656968038062

0.36787945984945

1.00000000000000

0.90483741803798

0.81873075308081

0.74081822068373

0.67032004603791

0.60653065971415

0.54881163609659

0.49658530343599

0.44932896379614

0.40656965944978

0.36787944090855

Table 4.1 compares the result of the proposed methods with that of the exact solution.

The 6SEHBDM is closer to the exact solution than the 6SHBDM and SSHBDM.
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Table 4.2: Comparison between the proposed methods with Mohammed et al.

(2010) for problem 4.1

X SSHBDM 6SHBDM 6SEHBDM Mohammed and
Yahaya, (2010)
0.0 0 0 0 0
0.1 1.56E-08 5.99E-10 2.07E-12 2.52E-06
0.2 1.35E-08 5.31E-10 2.90E-12 2.09E-06
0.3 1.24E-08 4.79E-10 2.11E-12 0.04E-06
0.4 1.11E-08 4.37E-10 2.33E-12 1.61E-06
0.5 1.01E-08 3.86E-10 1.55E-12 3.16E-06
0.6 1.86E-08 3.96E-10 2.66E-12 2.73E-06
0.7 1.64E-08 6.87E-10 3.56E-12 2.55E-06
0.8 1.49E-08 6.16E-10 2.19E-12 2.17E-06
0.9 1.35E-08 5.56E-10 1.47E-12 3.10E-06
1.0 1.22E-08 5.06E-10 1.59E-12 2.72E-06

The table shows that the proposed methods performed better than those found in the

literature.
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Table 4.3: Comparing results of the proposed hybrid methods and the exact

solution. h=0.1 for problem 4.2

X

Exact Solution

SSHBDM

6SHBDM

6SEHBDM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00000000000000

0.95346258924555

0.91287092917530

0.87705801930706

0.84515425472853

0.81649658092772

0.79056941504206

0.76696498884739

0.74535599249992

0.72547625011002

0.70710678118654

1.00000000000000

0.95346607404119

0.91287385239118

0.87706064586272

0.84515658939020

0.81649868354160

0.79057162051442

0.76696699079590

0.74535783298632

0.72547794581749

0.70710835109019

1.00000000000000

0.95346333786536

0.91287157303250

0.87705858928920

0.84515476865000

0.81649703478199

0.79056986892131

0.76696544011202

0.74535640615649

0.72547663150077

0.70710713449674

1.00000000000000

0.95346260520907

0.91287095035505

0.87705803473186

0.84515427107951

0.81649659248620

0.79056943243178

0.76696497397092

0.74535597859437

0.72547623741120

0.70710676936891

It is observed from the table that the 6SEHBDM performed better than the 6SHBDM

and 5SSHBDM.
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Table 4.4: Comparison of the proposed methods with Musa ez al (2012) for

problem 4.2
X SSHBDM 6SHBDM 6SEHBDM Musa et al (2012)
0.0 0 0 0 0
0.1 3.5E-06 7.4E-07 1.5E-8 3.2E-04
0.2 2.9E-06 6.4E-07 2.1E-8 2.6E-04
0.3 2.6E-06 5.6E-07 1.5E-8 1.3E-03
0.4 2.3E-06 5.1E-07 1.6E-8 5.6E-05
0.5 2.1E-06 4.5E-07 1.1E-8 1.5E-03
0.6 2.19E-06 4.5E-07 1.7E-8 -
0.7 2.01E-06 4.4E-07 1.5E-8 -
0.8 1.86E-06 4.1E-07 3.6E-8 -
0.9 1.7E-06 3.7E-07 0.4E-8 -
1.0 1.58E-06 3.4E-07 2.9E-8 -

Table 4.2 shows that the proposed methods produces results that are closer to the exact

solution than those found in the literature.
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Table 4.5: Comparing the exact solution with the solution of the proposed methods

for problem 4.3

X

Exact Solution

SSHBDM

6SHBDM

6SEHBDM

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1.9090909090909

1.8333333333333

1.7692307692308

1.7142857142857

1.6666666666667

1.6250000000000

1.5882352941176

1.5555555555556

1.5263157894737

1.5000000000000

1.909104965956

1.833344593696

1.769240503263

1.714294043570

1.666673911780

1.625007405843

1.588241813111

1.555561380916

1.526321012852

1.500004713280

1.909094123383

1.833335977179

1.769233017437

1.714287669892

1.666666832836

1.625001644650

1.588236857237

1.555556947903

1.526317038961

1.500001128256

1.909090979989

1.833333425922

1.769230832614

1.714285780734

1.666666709781

1.625000069938

1.588235212927

1.555555613059

1.526315840715

1.500000046530

The table shows that the 6SEHBDM is better than the 6SHBDM and SSHBDM
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Table 4.6: Comparison Between the Proposed Methods with Sunday ez al. (2014)

for Problem 4.3
X SSHBDM 6SHBDM 6SEHBDM Sunday et al.
(2014)

0.01 1.4057E-05 3.21438E-06 7.0989E-08 3.41458E-06
0.02 1.12607E-05 2.64418E-06 9.2922E-08 2.7493E-06
0.03 9.73426E-06 2.24844E-06 6.3614E-08 1.34292E-05
0.04 8.32957E-06 1.95589E-06 6.6734E-08 9.09062E-05
0.05 7.24478E-06 1.65836E-07 4.2781E-08 7.96972E-05
0.06 7.40584E-06 1.64465E-06 6.9938E-08 6.99489E-05
0.07 6.51911E-06 1.56324E-06 8.1073E-08 6.27004E-05
0.08 5.82492E-06 1.3919E-06 5.7059E-08 6.01715E-05
0.09 5.22385E-06 1.24996E-06 5.1715E-08 5.41126E-05
0.10 4.71328E-06 1.12826E-06 4.653E-08 4.88098E-05

The table compares the proposed methods with those found in the literature. The

proposed methods performed better than those found in the literature.
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Table 4.7: Comparing the Exact Solution with the Solution of the Proposed

Methods for Problem 4.4
X Exact Solution 5SHBDM 6SHBDM 6SEHBDM
0.01  0.2351686998834  0.235148199426231 0.234912416385453 0.235180254529486
0.02  0.2169849696838  0.216916588179879 0.215763389645848 0.217031405831369
0.03  0.2979989588380  0.297879965300621 0.297325064893373 0.298034633122212
0.04  0.3897538049366  0.389584969422429 (0.388096171002468 0.389842560523135
0.05  0.4794709385340  0.479253897145130 0.476164958355442 0.479610093807347
0.06 0.5646486176074  0.564385532859160 0.563132685473904 0.564732224849823
0.07  0.6442185187664 0.643912018597408 0.641276739676042 0.644379489975150
0.08  0.7173562034347  0.717009350210699 0.712256964508480 0.717576048013345
0.09  0.7833269248575 0.782943184212025 0.781103804043485 0.783451050864750
0.10  0.8414709868691  0.841054193010872 0.837507766722072 0.841689801949880

The table shows that the 6SEHBDM is better than the other methods proposed.
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Table 4.8: Comparison of errors between the proposed methods for problem 4.4

x 5SHBDM 6SHBDM 6SEHBDM
0.01 0.000020500457210 0.000256283497988 0.000011554646045
0.02 0.000068381503916 0.001221580037947 0.000046436147574
0.03 0.000118993537385 0.000673893944633 0.000035674284206
0.04 0.000168835514124 0.001657633934085 0.000088755586582
0.05 0.000217041388835 0.003305980178523 0.000139155273382
0.06 0.000263084748228 0.001515932133484 0.000083607242435
0.07 0.000306500169002 0.002941779090368 0.000160971208740
0.08 0.000346853223999 0.005099238926218 0.000219844578647
0.09 0.000383740645438 0.002223120813978 0.000124126007287
0.10 0.000416793858179 0.003963220146979 0.000218815080829

The table shows that the SEHBDM has less

5SSHBDM
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Table 4.9: Comparing the Maximum error (MAXE) of the Proposed Methods with

Existing Methods for Problem 4.4

METHOD MAXE
5SSHBDM 1.48E-3
6SHBDM 9.56E-3

6SEHBDM 1.69E-4

Mohammad et al. (2018) 1.83E-2

The table shows the maximum errors in the proposed methods with that found in the

literature. The proposed methods have less error compared to that found in the literature.
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Table 4.10: Comparing the exact solution with the solution of the proposed

methods for problem 4.5

X Exact SSHBDM 6SHBDM 6SEHBDM

0.01 1.00 0.999999999999753 1.0000000000000397737 1.0000000000000002795 Th
0.02 1.00 0.999999999999753  0.9999999999999852279 1.0000000000000000381 ©
tabl

0.03 1.00 0.999999999999753 1.0000000000009905037 0.9999999999999987331
e

0.04 1.00 0.999999999999756  1.0000000000000397737 0.999999999999999442 1
co

0.05 1.00 0.999999999999756  0.9999999999999852279 0.9999999999999998686
mp
0.06 1.00 0.999999999999756  1.0000000000009905022 1.0000000000000001603 are
0.07 1.00 0.999999999999753 1.0000000000000397737 1.0000000000000139048 S
the

0.08 1.00 0.999999999999756  0.9999999999999852278 1.0000000000000002796
ana

0.09 1.00 0.999999999999756 1.0000000000009905031 1.0000000000000000381
lyti
0.10 1.00 0.999999999999756  1.0000000000000397737 0.9999999999999987332 I
ca

solution with the solutions of the proposed methods. The 6SEHBDM performed better

than the 6SHBDM and 5SSHBDM.
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Table 4.11: Comparison of errors between the proposed methods for problem 4.5

x SSHBDM 6SHBDM 6SEHBDM
0.01 2.47E-13 3.97E-14 2.79E-16
0.02 2.47E-13 1.47E-14 3.81E-17
0.03 2.47E-13 9.91E-13 1.26E-15
0.04 2.44E-13 3.98E-14 5.58E-16
0.05 2.44E-13 1.48E-14 1.31E-16
0.06 2.44E-13 9.91E-13 1.60E-16
0.07 2.47E-13 3.98E-14 1.39E-14
0.08 2.44E-13 1.48E-14 2.79E-16
0.09 2.44E-13 9.91E-13 3.81E-17
0.10 2.44E-13 3.98E-14 1.26E-15

The table shows that the 6SEHBDM having higher order performs better than the

6SHBDM and SSHBDM.
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Table 4.12: Comparing the Maximum Error MAXE of the Proposed Methods with

Existing Method for Problem 4.5

Methods Number of Iteration MAXE
SSHBDM 1000 9.0563E-12
6SHBDM 1000 1.00440586E-12
6SEHBDM 1000 7.925235E-14
Musa et al (2013) 472 3.19856E-9

The table compares results of the proposed methods with that found in the literature.

The proposed methods performed better than that found in the literature.
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Table 4.13: Comparison of errors between the proposed methods for problem 4.6

X 5SHBDM 6SHBDM 6SEHBDM
B4 Y2 N Y2 g Y2
0.01 1.86E-13 3.67E-1 4.20E-17 3.67E-1 1.19E-20  3.67E-1
0.02 5.07E-14 1.35E-1 1.13E-17 1.35E-1 3.41E-21 1.35E-1
0.03 1.02E-14 4.97E-2 2.27E-18 4.97E-2 6.87E-22 4.97E-1
0.04 1.85E-15 1.83E-2 4.11E-19 1.83E-2 1.32E-22  1.83E-3
0.05 3.11E-16 6.73E-3 6.98E-20 6.73E-3 2.22E-23  6.73E-3
0.06 5.06E-17 2.47E-3 1.13E-20 2.47E-3 3.62-24 2.47E-3
0.07 8.02E-18 9.11E-4 1.78E-21 9.11E-4 6.24E-25 9.11E4
0.08 1.24E-18 3.35E4 2.76E-22 3.35E-4 8.87E-26 3.35E-4
0.09 1.89E-19 1.23E-4 4.19E-23 1.23E-4 1.35E-26 1.23E-4
0.10 2.84E-20 4.53E-5 6.30E-24 4.53E-5 2.01E-27 4.53E-5

The table shows that the 6SEHBDM performed better than the 6SHBDM and SSHBDM
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Table 4.14: Comparing the Maximum Error (MAXE) of the Proposed Methods

with that Found in the Literature for Problem 4.6

Methods Number of Iteration MAXE
B2 ) Vi )

5SHBDM

20 20 2.90E-13 2.72E-13
6SHBDM

20 20 6.18E-17 5.89E-17
6SEHBDM

20 20 4.98E-20 1.84E-20
Musa et al (2013)

169 118 2.94E-10 8.11E-7

The table shows that the proposed method performed better than that in the literature.

4.2 Discussion of Results

In this research, the construction of a new class of hybrid backward differential methods
that are capable of solving initial value problems of first order differential equations has
been the central of concern. The power series was employed to develop the schemes
using the interpolation and collocation technique, with the incorporation of one off grid
point in the derivation process of the methods. Five-step and six-step methods and an
extended-six-step method were derived to provide approximate solutions to initial value
problems of first order ODEs. The schemes were implemented as block method and
therefore the continuous forms of each schemes have the capacity to generate

simultaneous solutions at different points in a single application of the methods; hence,
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the methods are self-starting and take care of the problems associated with the

predictor-corrector methods.

The convergence properties of the methods were investigated and findings from the
analysis of the basic properties of the methods show that they are consistent, zero —
stable and hence, convergent. The stability of the newly derived methods were obtained
using the boundary locus approach which involves finding the roots of the stability
functions of a rational complex function. The regions of absolute stability in the figures
3.1, 3.2 and 3.3 show that the methods are A-stable. This stability property makes the
methods suitable for stiff problems in the numerical experiments such as examples 4.1,
4.4, and 4.6. Similarly, the non-linear problems in examples 4.2, 4.3 and the oscillatory
problems considered in examples 4.4, and 4.5. Tables 4.1 and 4.2 show the accuracy
and stability of the methods on the stiff problem in example 4.1. Results show that the
6SEHBDM, 6SHBDM and 5SSHBDM respectively have greater accuracy. Furthermore,
the SSHBDM which is the least accurate of the proposed methods outperform the

method of Mohammed and Yahaya (2010).

The accuracy and stability of the derived methods are also demonstrated on the non-
linear initial values problems in examples 4.2 and 4.3. Results in Tables 4.3, 4.4, 4.5
and 4.6 show that the derived methods have greater accuracy that the methods of Musa
et al. (2012) and Sunday et al. (2014). Similarly, the oscillatory problems considered in
examples 4.4 and 4.5 are solved by the proposed methods and results in tables 4.7 — 4.8
show the superiority of our methods over that of Musa et al. (2013) and Mohammed et
al. (2018) It is obvious that the results of the proposed methods perfumed better than

those found in the literatures mentioned.
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CHAPTER FIVE
5.0 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions

Implicit five-step, six-step and six-step extended hybrid backward differentiation
methods with higher orders of accuracy have been developed using interpolation and
collocation techniques with the incorporation of one off — step point in the derivation
process for the approximation of the solutions of first order ordinary differential
equations. For this purpose, we used the power series as basis function. The basic
properties of numerical methods were carried out and found to be of higher order, zero
stable and consistent, therefore the methods are convergent. Also the stability property
of the methods was also obtained using the locus boundary method and the stability
region of the methods show and the methods are A-stable. Six problems which include
the stiff problems, stiff system, nonlinear problems and oscillatory problems were
considered and results compared with existing methods to test the effectiveness and
accuracy of the new methods show the superiority of our methods over some existing
methods in the literature. The extended hybrid method having higher function
evaluation is better than the other two. So the order of the method is proportional to the

accuracy.
5.2 Contribution to Knowledge

The incorporation of off-grid points in the derivation process of the new BDFs allows

the SSHBDM to have a order of accuracy of (6, 6, 6, 6, 6, 6, 6)T with very small error

5 14 1385 123 317 356265
1799 10757 152712 ° 8480° 73745 207945728

T
constants: (— j . Also the
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methods are applicable to solve both linear and non — linear problems the stiff problems

considered were solved with higher accuracy and maximum error of 1.84x107

compared with that of Musa et al. (2013) with maximum error of 8.11x107

5.3

Recommendations

Research in numerical analysis is a continuous process. Thus, future research can be

carried out in the following areas.

l.

The development of software for all the classes of block methods in this thesis
can be done;

The method may be extended to handle boundary value problems;

. reformulation of the methods to handle higher order ODE’s may also be

considered;
The method may be reformulated using a different basis function;

The number of off — grid point may also be increased.
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Appendix A: Maple Software code for the solution of problem 4.1 for SSHBDM

>

for nfrom O by 5 to N do
h = 0.1;y[0] == 1;

fIn+0] :=-y[n +0];
fln+1]=-y[n+1];
fln+2] =-y[n +2];
Sln+3]=-y[n+3];
Sfln+ 4] =-y[n +4];

f n+%] ==—y[n+%];

JTn+5]:=-y[n +5];

4= 4 L5 75 40 100 300
B 771 Yn 1799 Yo+1 7 257 Yn+2 257 Vo3 ™ 257 Yn+4

10240 N W L o2555 Jn 8145 Vs
5397 7, .9 " 257 s/ 9 TT 006064 h T 115136 h

"o 2
Yo 9
_ 22491 Ypyo | 12145 ui3 99855 Yuia4 203072 "ty
82240 & 16448 & 32896 80955k
L 945 oo 6L 2w 302 Yy | 297 Jasd | 574 Dnws
8224 In+5/nt4" 9252 p 5397 1285 & 771 h
Yo 9
_ 2107 Yata 100864 "TH 12 P - R}
3084 80955  h 257 /n+5n+3 " 4626 h
Yoo9
L 204 Fnwi 801 Fuwz 212 Vuws | 681 Ynwa 42752 7%
1799 h 1285  h 771 h 514 80955  h
L0y 265 P 655 Mpwy 909 Mayy 1235 Dayj
257 /n+5n+2 9252 b 1799 1285  h 771 K
Y o9
_ 1085 Ya4a4 |, 40192 "T3 10 pop o364 a0 Tug
1028 & 80955  h 2577n+nt 12313 h 5397k
Yo 9
3528 Yn42 _ 1694 Jn+3 . 1484 Jnia 77824 "% 21 7ol
1285  h 771 K 771 K 80955 A 257 /n+s

P = fsolve({4}); Q == eval([y[n + 1],y[n +2],y[n +3],y[n +4],y[n + 5]], P);y[n
+ 1] = O[1];y[n +2] = Q[2];y[n + 3] :== O[3];y[n + 4] := O[4];y[n + 5]
= Q[ 5]; end do:

>N :=10:
>for nfrom0 toNdo y, =y, end do;
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Vo = 1
v, :=0.904837433696604
v, :=0.818730766593666
v, = 0.740818233087546
¥, =0.670320057175161
ys = 0.606530669776725
Ve = 0.548811654699055
v, =0.496585320228867
Vg = 0.449328979097400
vy = 0.406569673243224
V1o = 0.367879453379803

>fornfromOtoNdox[n] := 0.1'n; Y[n] = exp( —xn) end do;

Xy = 0.
YO =1.
X, = 0.1

Y, :=0.904837418035960

xy =02

Y, :=0.818730753077982
x;:=0.3

Y, :=0.740818220681718
x, =04

Y, =0.670320046035639
x5:=0.5

Y, :=0.606530659712633
x5 :=0.6

Y, :=0.548811636094026
x;:=0.7

Y, :=0.496585303791410
xg :=0.8

Yg :=0.449328964117222
xo :=0.9

Yy :=0.406569659740599
X0 =10

Y, :=0.367879441171442

>for nfromO0toNdoE[n] := abs(Y[n] — y[n]) end do;
E. =0.
0
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E, ==1.566064410

E,=1351568410"
E, = 1.2405828 10"
E,=1113952210"
E, == 1.006409210™
E, = 1.860502910™

E, =1.643745710
=1.4980178 10
=1.350262510°

E,,=1.220836110

82



Appendix B: D’s for the DMatrix of 6SHBDM

D,=1 D,=x, D,=x, D,=x, Ds=x, Dg=x, D;=x,

1)18 ::‘xn

D, =1 D, =x D,=x’, D,=x, D.=x', D,=x., D,=x°
21 22 n+l 23 n+l 24 n+l 25 n+l 26 n+l 27 n+l
6

Dy =x,.,

D, =1 D, =2x Dy, =4x., D, =8x., D,=16x!, D, =32x

n+2 n+2 n+2 n+2 n+2
D, = 64x§+2 Dy = 128x;+2
D,=1 D,=3x,, D= 9x5+3 D, = 27x3+3 D, = 81xj+3 D, = 243x2+3
D, =729x°, D, =2187x],

D, =1 D, =4x,, Dg=16x, D, =64x), D, =256x!, D, =1024x]

n+4 n+4 n+4 n+4

D, = 4096x°

n+4

D, =16384x]

n+4

D, =1 D,=5x, Dg,=25x., Dg,=125x,, Dy, =625x', D, =3125x

n+5 n+5 n+5 n+5

Dy, =15625x° . D, =78125x]

n+5

9 81 729 6561 59049
D; =1 D, :an+6 D, :Exié 74 :szm 75 :Exjw 76 :m
D, - 531441 ¥ Dy = 4782969 .y
4096 16384

Dy, =0 Dy =x,, Dg=12x2, D, =108x', D, =864x'. D, =6480x

n+7 n+7 n+7

Dy, =46656x°., Dy =326592x]

n+7
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Appendix C: D’s for the D Matrix of 6SSEHBDM

D11:1 D12=‘xn Dl3=xn Dl4=xn D15=‘xn Dl6=‘xn Dl7:xn D18_'xn
DI9 = xn
17638 _ 81507303 103825 2087
20 = T oo X 2 Xl D23 = X4l 24 Xl
3165 10398080 30384 T 1055
104885 _ 13085 18773 5
25 = X4 2 X Dyy=——-x,, 28 = <1 X
81024 "~ 20889 118160 211
__ 37 .
29 10128 n+l
_ 120200021 322935956379 438668555
31 U S D32 = Xy D33 oo Xu
11697840 16013043200 28074816
48906173 _ 507660823 257298037
3 4874100 "2 3T 14866176 " 3 77205744 "2
93051319 25019 929923
37 T T oo X2 38 — X2 39 = X
~ 109179840 194964 46791360
62955197 10028967453 34185829
PSS — T D42 =X, D43 == X
7018704 500407600 1754676
_ 37295351 77434435 _ 431936951
“ = 5437050 " . 7018704 "% 6 = 19005744
1985413 130597 _ 51031 .
7 T 364748 ® = 584893 " ¥ 1462230 "7
_ 199606373 652069991043 _ 1253240435
T 46791360 > 64052172800 "+ S T 112299264
49135279 2371375135 1298497969
sS4 = T X4 Dss oo Xua D56 = X,
4874100 299464704 308822976
489751487 138329 5265451

57 = =

7S D, =——2" x D, =—"7""""
436719360 " ¥ 779856 " * 187165440 "

84



40957951 ~ 9268337601 95765521

= x D D, =—_"""""""
35093520 " 2 = 3502608640 " 28074816 "

275346 644765531 124211729
64 Xois 65 = X5 Dg = Xts
81235 224598528 77205744
16136711 42775 110857

= X D —_— D.=—"""x
7 36393280 "’ 7 = 584892 " % 93582727 "

4281743 14890432257 32261113
71 Xv6 =T X6 Dpy= Xps6
23395680 32026086400 56149632
991689 82204981 50006939
7% = Xv6 75 Xv6 76 = T Xps6
1624700 149732352 154411488

6740159 6287 251609

i — =———X D,y =———x
7 T 0786560 " 389928 " "*° ? 93582720 "

13381 630636759 1411387
81 = T ommang Yntl 8 = X7 Dyg=—"o——x,,
877338 16013043200 28074816
136579 11864969 157163
84 = X7 85 = Xpi7 86 ~ omemcn i+l
2437050 224598528 4825359

210587 262 14543

= x D, =—"% __ 1w
¥ 21835968 " 1462237 ¥ 46791360 "

2447 87438447 66757

"= 26791360 P2 T 62052172800 P T 37233088
3347 603131 132599
% T 1624700 T T 200464704 7% T T 102940992 "
57241 61 893

=—X =- X Dy =———x
7145573120 " % 779856 " ? 62388480 "

85



