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ABSTRACT

This thesis considered the analysis of melting heat transfer on magnetohydrodynamics flow of
a nanofluid in a porous medium with heat generation and second order slip. The work
considered two separate cases with the first case being the classical nanofluid with magnetic,
porosity, heat generation and viscous dissipation and the second case introduce melting
parameter and second order slip parameter, in addition to the first case. Similarity
transformations are introduced to reduce the equations that govern the flow to a system of
coupled nonlinear ordinary differential equations. The problems are solved using the Adomian
decomposition method. The results obtained for skin frictions  / / 0f are compared with the

existing literatures and a good agreement is established. Graphical analysis is done to study the
implication of emerging physical parameters such as Inverse Darcy number, Magnetic
parameter, Eckert number, Prandtl number, Schmidt number, Melting parameter. The first
order slip is taken to be 1  while the second order is 1   throughout the work. The
Inverse Darcy number ( 1Da =1, 2, 4), Prandtl number ( rP =0.4, 0.3, 0.1), Schmidt number
( SC =0.3, 0.2, 0.1) are seen as reduction agents of the fluid velocity, fluid temperature and
concentration profile respectively. While the Melting parameter ( Me =0.3, 0.2, 0.1), Eckert
number ( Ec =0.3, 0.2, 0.1) and Brownian motion ( Nb =0.2, 0.4, 0.6) are found to enhance the
fluid velocity, fluid temperature and concentration profile respectively.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Boundary layer theory is an important aspect in the study of a continuously stretching

surface into a quiescent fluid, a flow scenario that has garnered much attention over

several decades. Some of the applications that involve this scenario include hot rolling,

paper production, metal spinning, drawing plastic films, glass blowing, continuous

casting of metals, and spinning of fibres. In all of these applications, the quality of the

final product depends on the rate of heat transfer at the stretching surface, which is

greatly influenced by the rate of stretching and the properties of the cooling fluid

(Mabood and Mastroberardino, 2015).

Sakiadis (1961) was one of the first researchers to study two dimensional boundary

layer flows over a moving surface in a fluid at rest. The results of this study were later

extended by Crane (1970) who included an exact analytical solution for the case of a

linearly stretching sheet. It is worth mentioning that both of these studies consider a

Newtonian fluid in the analysis. Since the pioneering works of Sakiadis and Crane, a

large amount of research has been devoted to the stretching sheet problem mentioned

above in which various effects such as suction/injection, porosity, magnetic field

parameter, variable material properties, thermal radiation, have been included with

consideration of either a Newtonian or non-Newtonian fluid. In recent years, research

on boundary layer flow and heat transfer involving nanofluids has received increased

attention due their growing importance in numerous industrial and biomedical

applications.

Nanofluids are fluids in which nanometer-sized solid particles and/or fibers have been

suspended in order to enhance the heat transfer characteristics of the base fluid (Choi,



xii

1995). The nanoparticles typically made of metals, oxides, carbides, or carbon

nanotubes come in the form of a powder in which the particles have a diameter ranging

between 1 and 100 nm. The thermal conductivities of fluids with suspended particles

are expected to be higher than that of common fluids for the following reasons

(Khanafer et al., 2003):

i. The suspended nanoparticles increase the surface area and the heat capacity of the

fluid.

ii. The suspended nanoparticles increase the effective (or apparent) thermal

conductivity of the fluid.

iii. The interaction and collision among particles, fluid and the flow passage surface are

intensified.

iv. The mixing fluctuation and turbulence of the fluid are intensified.

v. The dispersion of nanoparticles flattens the transverse temperature gradient of the

fluid.

According to Yusuf et al. (2018), Nanofluid is a new kind of heat transfer medium,

containing nanoparticles (1–100 nm) which are uniformly and stably distributed in a

base fluid. These distributed nanoparticles, generally a metal or metal oxide greatly

enhance the thermal conductivity of the nanofluid, increases conduction and convection

coefficients, allowing for more heat transfer.

Nanofluids have been considered for applications as advanced heat transfer fluids for

decades. However, due to the wide variety and the complexity of the nanofluid systems,

no agreement has been achieved on the magnitude of potential benefits of using

nanofluids for heat transfer applications (Yusuf et al., 2019).
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1.2 Statement of the Research Problem

Mabood and Mastroberardino (2015) investigated the effects of viscous dissipation and

second order slip on MHD boundary layer flow of an incompressible, electrically

conducting water-based nanofluid over a stretching sheet. The governing momentum

boundary layer and thermal boundary layer equations with the boundary conditions are

transformed into a system of nonlinear ordinary differential equations which are then

solved numerically by using the Runge–Kutta–Fehlberg method. The effects of the flow

parameters on the velocity, temperature, nanoparticle concentration, shearing stress, rate

of heat transfer, and rate of mass transfer are analyzed, and illustrations are provided by

the inclusion of figures and tables for various values of different parameters.

However, the researchers did not put into consideration the porosity of the medium and

the effects of heat generation on the flow. The solutions obtained were not at all points

but mesh points.

1.3 Justification of the Study

The failure in the ordinary heat transfer fluid to meet up with today’s industrial cooling

rate, has resulted into the development of high thermal conductivity fluid, such as

nanofluid. Throughout any industrial facility, heat must be added, removed, or moved

from one process stream to another and it has become a major task for industrial

necessity. These processes provide a source for energy recovery and process fluid

heating/cooling (Yusuf et al., 2018).

To the best of the researchers’ knowledge, the analysis of melting heat transfer on

magneto hydrodynamics flow of a nanofluid in a porous medium with heat generation

and second order slip has not been attempted before.
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1.4 Aim and Objectives of the Study

1.4.1 Aim of the study

The aim of this study is to carry out the analysis of heat transfer on flow of a nanofluid

in a porous medium with heat generation.

1.4.2 Objectives of the study

The objectives of this present study are to:-

i. Transform the Partial differential equation (PDE) formulated to non-linear ordinary

differential equations (ODE) using the similarity equations.

ii. Solve the set of transformed nonlinear, coupled, ordinary differential equations (ODE)

using the Adomian Decomposition Method (ADM).

iii. Present results for validation with existing methods in the literature.

iv. To draw the graphs from the solution obtain for analysis.

v. Study the effects of the various dimensionless parameters that appears in the solutions.

1.5 Scope and Limitation of the Study

The problems formulated are presented in their rectangular coordinate system. An

appropriate similarity transformation is employed to transform the partial differential

equations to non-linear coupled ordinary differential equations. The nonlinear coupled

ordinary differential equations derived, correspond to velocity, temperature, and

nanoparticle concentration equations. These equations are solved using Adomian

Decomposition Method. The effect of various parameters that appears are analyzed with

the help of graphs. This work is limited to steady parts of an incompressible nanofluid

dynamics.
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1.6 Definition of Terms

Fluid: A substance which deforms continuously when shear stress is applied to it no

matter how small, such as liquid or gas which can flow, has no fixed shape and offers

little resistance to an external stress.

Prandtl number: the relationship between the thickness of two boundary layers at a

given point along the plate depend on the dimensionless prandtl number which is the

ratio of the momentum diffusivity � or �
�

to the thermal diffusivity ∝ or �
���

.

Boundary Layers:- boundary layer is defined as that part of moving fluid in which the

fluid motion is influenced by the presence of a solid boundary. As a specific example of

boundary layer formation, consider the flow of fluid parallel with a thin plate, when a

fluid flows at high Reynolds number past a body, the viscous effects may be neglected

everywhere except in a thin region in the vicinity of the walls . This region is termed as

the boundary layer.

Magnetohydrodynamics: Is the study of magnetic properties and behavior of

electrically conducting fluids.

������������ �����: change in density of fluid with time

0
t




(1.1)

Incompressible flow: fluid motion with negligible changes in density �

0


t
 (1.2)

Skin Friction: Is the contact between the moving fluid and solid body.
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Reviews on Fluid Dynamics

Recent investigations of boundary layer flow and heat transfer have included the

consideration of nanofluids in order to enhance the thermal conductivity

(Sheikholeslami and Ganji, 2015). Khan and Pop (2010) investigated boundary layer

flow of a nanofluid over a stretching sheet, a work which was then extended by

Makinde and Aziz (2012) who considered the effects of convective surface boundary

conditions. Rana and Bhargava (2012) performed a similar analysis for a nonlinearly

stretching sheet using finite difference and finite element methods. Gbadeyan et al.

(2011) extended the work of Makinde and Aziz (2012) by including the effects of a

magnetic field and thermal radiation. Mabood et al. (2015) provided a numerical study

of MHD boundary layer flow with viscous dissipation over a nonlinearly stretching

sheet and compared the results with those of previous work.

The heat transfer characteristics of a nanofluid depend on the size, volume fraction,

shape and thermal properties of nanoparticles as well as the base fluid properties.

Generally speaking, numerical simulation of the velocity field, the temperature field and

the heat transfer rate of nanofluids can be performed using either a single-phase

approach Sheikholeslami et al. (2014) or a two-phase approach (Sheikholeslami and

Ganji, 2015). The former assumes that the base fluid and the nanoparticles are in

thermal equilibrium, and thus, move with the same velocity. The latter considers the

notion that slip velocity between the base fluid and the nanoparticles may not be zero, in

which case relevant slip mechanisms between solid and liquid phases such as Brownian

diffusion and thermophoresis may be included in the model.
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The no-slip condition at the surface of the sheet is a well-known assumption in fluid

mechanics that has been a basis for much of the theory that has been developed over the

last century. However, there are numerous situations in which the no-slip condition

leads to erroneous results, particularly when one is considering non-Newtonian fluids or

nanofluids. For such fluids, the motion is still governed by first principles, but the usual

no-slip condition at the boundary is replaced by a partial slip condition in which the

tangential components of the velocity and the stress are nonzero at the boundary. The

fluid flow in many applications of micro/nano systems such as hard disk drive, micro

pumps, micro-valves and micro-nozzles are characterized by slip flow at wall. One of

the first studies to discuss a partial slip boundary condition over a stretching sheet was

conducted by Yoshimura and Prudhomme (1988). A later study by Andersson (2002)

provided a closed form solution of the governing equations for magnetohydrodynamic

flow over a stretching sheet. Since then, numerous researchers have incorporated a

partial slip condition whenever it was deemed appropriate.

The Knudsen number a dimensionless number defined as the ratio of the molecular

mean free path length to a representative physical length scale—is often used as a basis

to determine when the no slip condition is no longer appropriate. In regard to the

applicability of partial slip, the first-order model deteriorates for Knudsen number

greater than, and therefore, a number of researchers have proposed second-order slip

flow model. Wu (2008) has proposed a second-order slip flow model for the flow of

rarefied fluid along the surface based on numerical simulation of linearized Boltzmann

equation. Zhang et al. (2008) validated the Navier–Stokes equation with second-order

slip in a transition region by using the homotopy analysis method. Fang et al. (2010)

studied the flow of a viscous fluid over a shrinking sheet with second-order slip.
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Nandeppanavar et al. (2012) considered second-order slip flow and heat transfer over a

stretching sheet with a non-linear Navier boundary condition.

In real world, most of the fluids such as water, kerosene oil, ethylene, glycol, and others

are poor conductors of heat due to their lower values of thermal conductivity. To cope

up with this problem and to enhance the thermal conductivity or other thermal

properties of these fluids, a newly developed technique is used which includes, addition

of nano-sized particles of good conductors such as copper, aluminum, titanium, iron and

other oxides to the fluids. Choi (1995) was the first one to come up with this idea and

also showed that the thermal conductivity of conventional fluids can be doubled by

adding nano particles to base fluids that also incorporate other thermal properties. These

enhancements can be used practically in electronic cooling, heat exchangers, double

plane windows. Buongiorno (2006) presented a more comprehensive model for the

nanotechnology based fluids that unveils the thermal properties superior to base fluids.

He discussed all the convective properties of nanofluids by developing a more general

model. After these developments in nanofluids, Khan and Pop (2010) were the first ones

to study boundary layer flow over a stretching sheet by using the model of Nield and

Kuznetsov (2009). Mustafa et al. (2011) presented first study on stagnation point flow

of a nanofluid. They presented both Brownian motion and thermophoresis effects on

transport equations by reducing them to a nonlinear boundary value problem. One can

easily find enough literature on nano fluid flows, however some of the studies are

reported in Nadeem and Haq (2013) and references therein. Study of electrically

conducting fluids hold importance due to applications in modern metallurgy and metal

working processes. Magnetic nanofluids are used to regulate the flow and heat transfer

by controlling the fluid velocity. Mahapatra (2002) studied MHD stagnation point flow

over a stretching sheet using numerical simulations. MHD stagnation point flow for
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nanofluid was presented by Ibrahim et al. (2013) employing fourth order Runge-Kutta

technique. Some others studies regarding magneto-nanofluids are presented in Nadeem

and Lee (2012) and references therein. In all presented studies, Soret and Dufour effects

were neglected. It is a well-known fact that the temperature and concentration gradients

present mass and energy fluxes, respectively. Concentration gradients result in Dufour

effect (diffusion-thermo) while Soret effect (thermal-diffusion) is due to temperature

gradients. Such effects play a significant role when there are density differences in the

flow. For the flows of mixture of gases with light molecular weights and moderate

weights, Soret and Dufour effects cannot be neglected. Thermo-diffusion effects on the

flow over a stretching sheet are examined by Awad et al. (2013).

Ramachandra et al. (1988) have investigated the mixed convection flow in the

stagnation flow region of a vertical plate. The steady stagnation-point flow towards a

permeable vertical surface was investigated by Ishak et al. (2008). Li et al. (2011)

introduced an analysis of the steady mixed convection flow of a viscoelastic fluid

stagnating orthogonally on a heated or cooled vertical flat plate. Makinde (2012)

examined the hydromagnetic mixed convection stagnation-point flow towards a vertical

plate embedded in a highly porous medium with radiation and internal heat generation.

Mabood and Khan (2014) introduced an accurate analytic solution (series solution) for

MHD stagnation-point flow in a porous medium for different values of the Prandtl

number and the suction/injection parameter. An unsteady boundary layer plays

important roles in many engineering problems like a start-up process and a periodic

fluid motion. An unsteady boundary layer has different behaviors due to extra time-

dependent terms, which will influence the fluid motion pattern and the boundary-layer

separation. Kumari et al. (1992) have studied the unsteady mixed convection flow of an

electrically conducting fluid at the stagnation point of a two-dimensional body and an
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axisymmetric body in the presence of an applied magnetic field. Seshadri et al. (2002)

studied the unsteady mixed convection in the stagnation-point flow on a heated vertical

plate where the unsteadiness is caused by the impulsive motion of the free stream

velocity and by sudden increase in the surface temperature (heat flux). Hassanien et al.

(2004) analyzed the problem of unsteady free convection flow in the stagnation-point

region of a rotating sphere embedded in a porous medium. The unsteady flow and heat

transfer of a viscous fluid in the stagnation region of a three-dimensional body

embedded in a porous medium was investigated by Hassanien et al. (2006). Hassanien

and Al-Arabi (2008) studied the problem of thermal radiation and variable viscosity

effects on unsteady mixed convection flow in the stagnation region on a vertical surface

embedded in a porous medium with surface heat flux. Fang et al. (2011) investigated

the boundary layers of an unsteady incompressible stagnation-point flow with mass

transfer. Shateyi and Marewo (2014) have numerically investigated the problem of

unsteady MHD flow near a stagnation point of a two-dimensional porous body with

heat and mass transfer in the presence of thermal radiation and chemical reaction. Rosali

et al. (2014) discussed the effect of unsteadiness on mixed convection boundary-layer

stagnation-point flow over a vertical flat surface embedded in a porous medium.

Vasu and Manish (2015) studied the problem of two-dimensional transient

hydrodynamic boundary-layer flow of an incompressible Newtonian nanofluid past a

cone and plate with constant boundary conditions. Gireesha et al. (2015) introduced a

numerical solution for hydromagnetic boundary-layer flow and heat transfer past a

stretching surface embedded in a non-Darcy porous medium with fluid-particle

suspension. The unsteady forced convective boundary-layer flow of an incompressible

non-Newtonian nanofluid over a stretching sheet when the sheet is stretched in its own

plane is investigated by Gorla and Vasu (2016). Gorla et al. (2016) investigated the
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transient mixed convective boundary-layer flow of an incompressible non-Newtonian

quiescent nanofluid adjacent to a vertical stretching surface. The unsteady flow and heat

transfer of a nanofluid over a contracting cylinder was studied by Zaimi et al. (2014).

Srinivasacharya and Surender (2014) studied the effects of thermal and mass

stratification on natural convection boundary-layer flow over a vertical plate embedded

in a porous medium saturated by a nanofluid.

During the past decade, the study of nanofluids has attracted enormous interest from

researchers due to their exceptional applications to electronics, automotive,

communication, computing technologies, optical devices, lasers, high-power X-rays,

scientific measurement, material processing, medicine, and material synthesis, where

efficient heat dissipation is necessary. Nanobiotechnology is also a fast-developing field

of research and application in many domains, such as in medicine, pharmacy, cosmetics

and agro-industry. Nanofluids are prepared by dispersing solid nanoparticles in base

fluids such as water, oil, ethylene glycol, or others. According to Yacob et al. (2011),

nanofluids are produced by dispersing the nanometer-scale solid particles into base

liquids with low thermal conductivity such as water and ethylene glycol. Nanoparticles

are usually made of metal, metal oxide, carbide, nitride, and even immiscible nanoscale

liquid droplets. Congedo et al. (2009) compared different models of nanofluids

(regarded as a single phase) to investigate the density, specific heat, viscosity, and

thermal conductivity, and discussed the water–Al2O3 nanofluid in detail by using CFD.

Hamad et al. (2011) introduced a one-parameter group to represent similarity reductions

for the problem of magnetic field effects on free-convective nanofluid flow past a semi

infinite vertical flat plate following a nanofluid model proposed by Buongiorno (2006).

Hady et al. (2012a) studied the radiation effect on viscous flow of a nanofluid and heat

transfer over a nonlinearly stretching sheet with variable wall temperature. Also, Hady
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et al. (2012b) studied the problem of natural convection boundary-layer flow past a

porous plate embedded in a porous medium saturated with a nanofluid using

Buongiorno’s model. Further, Abu-Nada and Chamkha (2010) presented the natural

convection heat transfer characteristics in a differentially heated enclosure filled with

CuO–ethylene glycol (EG)–water nanofluids for different variable thermal conductivity

and variable viscosity models. Rudraswamy and Gireesha (2015) studied the problem of

flow and heat transfer of a nanofluid over an exponentially stretching sheet by

considering the effect of chemical reaction and thermal radiation. Besthapu and Bandari

(2015) presented a study on the mixed convection MHD flow of a Casson nanofluid

over a nonlinear permeable stretching sheet with viscous dissipation. A numerical

solution of the natural convection flow of a two-phase dusty nanofluid along a vertical

wavy frustum of a cone is discussed by Siddiqa et al. (2016a). The bioconvection flow

with heat and mass transfer of a water-based nanofluid containing gyrotactic

microorganisms over a vertical wavy surface is studied by Siddiqa et al. (2016b).

Kameswaran et al. (2016) studied convective heat transfer in the influence of nonlinear

Boussinesq approximation, thermal stratification, and convective boundary conditions

on non-Darcy nanofluid flow over a vertical wavy surface.

The effects of radiation on unsteady free convection flow and heat transfer problem

have become more important industrially. At high operating temperature, radiation

effect can be quite significant. Many processes in engineering areas occur at high

temperature and knowledge of radiation heat transfer becomes very important for design

of reliable equipment, nuclear plants, gas turbines and various propulsion devices or

aircraft, missiles, satellites and space vehicles. Based on these applications, Cogley et al.

(1968) showed that in the optically thin limit, the fluid does not absorb its own emitted

radiation but the fluid does absorb radiation emitted by the boundaries. Hossain and
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Takhar (1996) have considered the radiation effects on mixed convection boundary

layer flow of an optically dense viscous incompressible fluid along a vertical plate with

uniform surface temperature. Makinde (2005) examined the transient free convection

interaction with thermal radiation of an absorbing emitting fluid along moving vertical

permeable plate. Satter and Hamid (1996) investigated the unsteady free convection

interaction with thermal radiation of an absorbing emitting plate.

Flow of a nanofluid in a boundary layer in an inclined moving sheet at angle Θ is

considered analytically by Yusuf et al. (2019), the Mathematical formulation consists of

the Magnetic parameter, thermophoresis, and Brownian motion. Solutions to

momentum, temperature and concentration distribution depends on some parameters.

The non-linear coupled Differential equations were solved using the improved Adomian

decomposition method and a good agreement was established with the numerical

method (Shooting technique).

Abdullah et al. (2018) studies the effects of Brownian motion and thermophoresis on

unsteady mixed convection flow near the stagnation-point region of a heated vertical

plate embedded in a porous medium saturated by a nanofluid. The plate is maintained at

a variable wall temperature and nanoparticle volume fraction. The presence of a solid

matrix, which exerts first and second resistance parameters, is considered in the study.

A suitable coordinate transformation is introduced and the resulting governing equations

are transformed and then solved numerically using the local non-similarity method and

the Runge-Kutta shooting quadrature. The effects of various governing parameters on

the flow and heat and mass transfer on the dimensionless velocity, temperature, and

nanoparticle volume fraction profiles as well as the skin-friction coefficient, Nusselt

number, and the Sherwood number are displayed graphically and discussed to illustrate

interesting features of the solutions. The results indicate that as the values of the
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thermophoresis and Brownian motion parameters increase, the local skin-friction

coefficient increases whereas the Nusselt number decreases.

Moreover, the Sherwood number increases as the thermophoresis parameter increases,

and decreases as the Brownian motion parameter increases. On the other hand, the

unsteadiness parameter and the resistance parameters enhance the local skin-friction

coefficient, local Nusselt number, and the local Sherwood number.

2.2 Adomian Decomposition Method (ADM)

Begin with an equation    Fu t g t , where F represents a general nonlinear ordinary

differential operator involving both linear and nonlinear terms. The linear term is

decomposed into L R , where L is easily invertible and R is the remainder of the

linear operator. For convenience, L may be taken as the highest order derivative which

avoids difficult integrations which result when complicated Green’s functions are

involved Adomian (1994). Thus the equation may be written as:

Lu Ru Nu g   (2.1)

where Nu represents the nonlinear terms. Solving for Lu ,

Lu g Ru Nu   (2.2)

Because L is invertible, an equivalent expression is

1 1 1 1L Lu L g L Ru L Nu      (2.3)

If this corresponds to an initial-value problem, the integral operator 1L may be

regarded as definite integrals from 0t to t . If L is a second-order operator, 1L is a

twofold integration operator and      1 /
0 0 0L Lu u u t t t u t     . For boundary value

problems (and, if desired, for initial-value problems as well), indefinite integrations are

used and the constants are evaluated from the given conditions.

1 1 1u A Bt L g L Ru L Nu       (2.4)
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The nonlinear term Nu will be equated to
0

n
n
A




 , where the nA , are special

polynomials to be discussed, and u will be decomposed into
0

n
n
u




 , with 0u identified

as 1A Bt L g 

1 1
0

0 0 0
n n n

n n n
u u L R u L A

  
 

  

     (2.5)

Consequently, we can write to

1 1
1 0 0

1 1
2 1 0

1 1
1

.

.

.

n n n

u L Ru L A

u L Ru L A

u L Ru L A

 

 

 


  


  







   

The polynomials nA , are generated for each nonlinearity so that 0A , depends only on 0u ,

1A , depends only on 0u ,and 1u , 2A , depends on 0u , 1u , 2u , etc. All of the nu ,

components are calculable, and
0

n
n

u u




 . If the series converges, the n -term partial

sum
1

0

n

n i
i
u





 will be the approximate solution since
0

lim n in i
u u






  by definition.

It is important to emphasize that the nA can be calculated for complicated nonlinearities

of the form     /,  ,...  or .f u u f g u

Mabood and Mastroberardino (2015) Consider a two dimensional, incompressible

viscous flow of a water-based nanofluid past over a stretching sheet. The sheet is

extended with velocity uw = ax with fixed origin location, where a is a constant and x is

the coordinate measured along the stretching surface. The nanofluid flows at y = 0,

where y is the coordinate normal to the surface. The fluid is electrically conducted due
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to a constant magnetic field normal to the stretching sheet. The magnetic Reynolds

number is assumed small and so, the induced magnetic field can be considered to be

negligible. It is assumed that the temperature of the melting surface is Tm and the

temperature in free-stream is T∞ , where (T∞ > Tm), the nanoparticle fraction Cw is

assumed constant at the stretching surface. When y tends to infinity, the ambient value

of nanoparticle fraction is denoted by C∞ . The governing equations of momentum,

thermal energy and nanoparticles equations are given by:

0u v
x y
 

 
 

(2.6)

22 2
0

2 2
f

Bu u u uu v u
x y x y





     

            (2.7)

22 2

2 2

2

T
B

p

DT T T T C T C T T Tu v D
x y x y x x y y T x y

u
c y

 





                
                                

 
   (2.8)

2 2 2 2

2 2 2 2
T

B
DC C C C T Tu v D

x y x y T x y

         
                  

(2.9)

Subject to the boundary condition:

    00 : ,   ,  k = v ,0 ,C= C  

y : 0,  ,C C   

w slip m s m w
Ty u u u T T c T T x
y

u T T

 

 

 
         

    

(2.10)

The present work extends Mabood and Mastroberardino (2015) by in-cooperating the

porosity of the medium and heat generation. The analysis is also carried out analytically

using the Adomian decomposition method. From the available literatures, this

innovation is new.
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CHAPTER THREE

3.0 MATERIALSAND METHODS

3.1 Problem Formulation

Considering two dimensional, incompressible viscous flow of a water-based nanofluid

past over a stretching sheet. The sheet stretches with a velocity ax, where a is a constant

and x is the coordinate measured along the stretching surface. The fluid flow at y=0,

where y is the coordinate normal to the surface. The temperature of the melting surface

is taken as mT and at larger values, it is taken as T with mT T  . The nanoparticle

concentration wC is assumed constant on the stretching surface and C at larger values

of y. Following the formulation in Mabood and Mastroberardino (2015) in a porous

medium with heat generation, the governing equations of continuity, momentum,

temperature, and nanoparticle concentration are written as:

0u v
x y
 

 
 

(3.1)

22 2
0

2 2
f

Bu u u uu v u u
x y x y k

 


     
             (3.2)

 

22 2

2 2

2

T
B

m
p p

DT T T T C T C T T Tu v D
x y x y x x y y T x y

u Q T T
c y c

 






                
                                

 
   

(3.3)

2 2 2 2

2 2 2 2
T

B
DC C C C T Tu v D

x y x y T x y

         
                  

(3.4)

Subject to the boundary condition:



xxviii

    00 : ,   ,  k = v ,0 ,C= C  

y : 0,  ,C C   

w slip m s m w
Ty u u u T T c T T x
y

u T T

 

 

 
         

     (3.5)

According to Nanndepparavar et al. (2012), the velocity of slip is given by:

2

2slip
u uu A B
y y
 

 
 

(3.6)

Where

 
3 2

4 2 2
2

2 3 3 1 1 2 1,    1 ,  min ,1 ,
3 2 4n n n

l lA B l l l
k k k

  


      
          

     

 is the momentum accomodation coefficient with 0 1  and  is the molecular mean free path.   

In order to reduce the PDEs into ODEs, the following similarity variables are defined as

follows:

   /,   ,   , ,m

m w

T T C Ca y u axf v a f
T T C C

     




 

 
     

 

(3.7)

From the similarity equation in (3.7),
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
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

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(3.8)

Introducing equation (3.8) into (3.1) to (3.5), the equations reduces to

 

     
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(3.9)
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Where;

     
 

     

2 2 2
10

0

0
0

,   , , N , N ,Ec

,S , , A 0 ,and 0  .

B w T
r b t m

f p m
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p B s m

D C CB D a xM Da P T T
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T TQ a BaQ Me
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      




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 
 

Are Magnetic parameter, inverse Darcy number, Prandtl number, Brownian motion,

thermophoresis parameter, Eckert number, Heat generation, Schmidt number, Melting

parameter, first and second order slip parameter respectively.

From equation (3.9), taking 0Me     with the assumption that m wT T T  , the

equations reduces to classical problem of nanofluid flow and heat transfer due to

stretching sheet given as:
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(3.10)

Let
3 2

1 23 2   and d dL L
d d 

  and from problem (3.10), we have
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(3.11)
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Introducing the operators into equations (3.11) we have
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Where    1 1
1 2   and    L d d d L d d             (3.13)

Introducing the Adomian polynomials into (3.12) we

have
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(3.15)

In order to obtain the solution to problem (3.9), the initial guesses for (3.15) are taking
as:

   
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 (3.16)

Where      / / / / / /
4 5 60 , 0   and = 0  f f    

Using maple18 to evaluate the integrals we have the final solutions as:
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(3.17)

Corresponding to: Appendix A

In order to obtain the solution to problem (3.10), the initial guesses for (3.15) are taking

as:
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Using maple18 to evaluate the integrals we have the final solutions as:
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Corresponding to: Appendix B
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Results

In this chapter, comparison of previous works in the literature with the present study is

presented in the Table 4.1 below. Also the graphs showing the effects of various

physical parameters that occur in the solutions are presented and discussed.

Table 4.1: Comparison of values of skin friction with existing solutions for
0Me    

M Present Results Mabood and Mastroberardino
(2015) Xu and Lee (2013)

0 -1.000008

1 1.3305610 1.4142135 1.41421

5 2.384890 2.4494897 2.4494

10 3.267599 3.3166247 3.3166

50 7.118200 7.1414284 7.1414

100 10.03333 10.049875 10.0498

500 22.375586 22.383029 22.38302

1000 31.633317 31.638584

4.2 Presentation of Graphical Results for the Solution of Classical Problem with

Melting and Second order Slip Parameters.

The graphical results for the problem of magnetic effect, Darcy number, slip parameter

and melting parameter are presented in this section. Throughout, the first order slip is

kept at 1 and second order slip is kept at -1 and while a parameter is varied, orders are
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kept constant.

.

Figure 4.1: Variation of inverse Darcy number on velocity profile with slip

Figure 4.2: Variation of inverse Darcy number on temperature profile with slip
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Figure 4.3: Variation of inverse Darcy number on concentration profile with slip

Figures 4.1 to 4.3 presents the variation of inverse Darcy parameter on velocity profile,

temperature and concentration profiles respectively. It is observe that as the inverse

Darcy number increases, the fluid velocity reduces while temperature and concentration

increases. The temperature is seen to be zero on the melting surface and started rising

after some distance.

Figure 4.4: Variation of magnetic parameter on velocity profile with slip
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Figure 4.5: Variation of magnetic parameter on temperature profile with slip

Figure 4.6: Variation of magnetic parameter on concentration profile with slip

Figures 4.4 to 4.6 are the variations of magnetic parameter on the velocity, temperature

and concentration profiles respectively. As the magnetic parameter increases, the

velocity profile reduces as a result of Lorentz force which is present while temperature

and concentration all increases with increase in magnetic parameter. The magnetic

parameter is a control parameter.
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Figure 4.7: Variation of Prandtl number on temperature profile with slip

Figure 4.7 present the effects of Prandtl number on temperature profile. It is observe

that as the Prandtl number increases, the fluid temperature reduces within the boundary

layer before attaining maximum temperature.

Figure 4.8: Variation of Brownian motion on temperature profile with slip
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Figure 4.9: Variation of Brownian motion on concentration profile with slip

Figures 4.8 to 4.9 are the variation of Brownian motion on temperature and

concentration profiles respectively. It is observe that as the Brownian motion increases,

the fluid temperature also rises slightly, and concentration is also enhanced.

Figure 4.10: Variation of thermopheric parameter on concentration profile with

slip

Figures 4.10 depict the variation of thermopheric parameter on concentration profile. It
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is seen that thermopheric parameter act as a reduction agent to the concentration profile.

Figure 4.11: Variation of Eckert number on temperature profile with slip

Figure 4.11 is the variation of Eckert number on temperature profile. It is seen that the

viscous term is an increasing agent of the temperature profile.

Figure 4.12: Variation of Schmidt number on concentration profile with slip

Figure 4.12 show the variation of Schmidt number on concentration profile. Schmidt

number is seen clearly as a reduction agent to concentration profile.
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Figure 4.13: Variation of heat generation parameter on temperature profile with

slip

Figure 4.13 depict the effects of heat generation parameter on the temperature profile.

The heat generation is seen to increase the fluid temperature.

Figure 4.14: Variation of melting parameter on velocity profile with slip

Figure 4.14 present the effect of melting parameter on the velocity profile. It is observe

that as the melting parameter increases, the fluid also rises on the melting surface before
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attaining the free stream.

4.3 Presentation of Graphical Results for the Solution of Classical Problem of

Nanofluid Flow

The graphical results for classical nanofluid with magnetic effects, porous medium,

viscous dissipation and heat generation are presented as follows:

Figure 4.15 to 4.17 presents the variation of inverse Darcy number on velocity,

temperature and concentration profile. As the inverse Darcy number increases, velocity

profile is observed to be a reduction agent while the temperature and concentration

appear as increasing agents.

Figure 4.15: Variation of inverse Darcy number on velocity profile



xliii

Figure 4.16: Variation of inverse Darcy number on temperature profile

Figure 4.17: Variation of inverse Darcy number on concentration profile
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Figure 4.18: Variation of Magnetic number on velocity profile

Figure 4.19: Variation of magnetic number on temperature profile
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Figure 4.20: Variation of magnetic number on concentration profile

Figures 4.18 to 4.20 display the variation of magnetic number on velocity, temperature

and concentration profile. As the magnetic increases, velocity profile is observed to

drop due to drag like force. The temperature and concentration appear to be increasing

as the magnetic parameter is enhance.

Figure 4.21: Variation of Prandtl number on temperature profile
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Figure 4.21 show the variation of Prandtl number on the fluid temperature. The

temperature of the fluid drops as the Prandtl number increases which can be use to

regulate the fluid temperature.

Figure 4.22: Variation of Brownian motion on temperature

profil

Figure 4.23: Variation of Brownian motion on concentration profile

Figures 4.22 to 4.23 are the graphs showing the variation of Brownian motion on

temperature and concentration respectively. As the Brownian motion increases, the fluid

temperature rises slightly and concentration also rises. On the concentration profile, as
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the concentration approaches free stream  2.5  no changes was observed.

Figure 4.24: Variation of thermopheric parameter on temperature profile

Figure 4.25: Variation of thermopheric parameter on concentration profile

Figures 4.24 to 4.25 depict the variation of thermopheric parameter on temperature and

concentration profiles. As the thermopheric parameter rises, temperature and concentra

tion profile all increases. No changes was observed on concentration profile at 2.5  .
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Figure 4.26: Variation of Eckert number on fluid temperature profile

Figure 4.26 is the variation of Eckert number on fluid temperature. It is seen that as the

Eckert number increases the temperature profile also increases. This shows that the fluid

temperature boundary thickness thickens as the fluid becomes more viscous.

Figure 4.27: Variation of Schmdt number on concentration profile

Figure 4.27 present the variation of Schmdt number on concentration profile. It shows

that the fluid concentration reduces as Schmdt number is enhanced.
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Figure 4.28: Variation of heat generation parameter on temperature profile

Figure 4.28 show the effects of heat generation on the temperature profile. As the heat

generation number increase, the fluid temperature continue to increase.

CHAPTER FIVE



l

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This present work considered the work of previous literatures by in cooperating the

porous medium and heat generation parameter. The problems formulated in rectangular

system were transformed to nonlinear coupled ordinary differential equations. The non-

linear coupled ordinary differential equations depends on some parameters such as

magnetic parameter, melting parameter, Schmidt number, heat generation parameter,

first and second slip parameters. The following observations were made:

i. The graphs presented in this work clearly satisfy the boundary conditions, which

show the efficiency of the method.

ii. The results presented in this work were compared with the results of the existing

literatures as seen in Table 4.1 and a good agreement was established which also

signify the efficiency of the method used.

iii. At free stream, dimensionless distance is choosing to be at 3 

iv. On the melting surface, the fluid velocity is not constant due to the slip

parameters.

v. The fluid temperature is zero on the melting surface and takes some distance

before it rises to maximum.

vi. This study present the results of the problems considered at all points

(analytically).

5.2 Recommendations

The following recommendations were made:

i. Researchers are encouraged to extend the present study by adding more

parameters and obtain the result of the problem using a different approach other

than ADM.
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ii. Subsequent studies are encouraged to consider the unsteady parts of the

problems.

5.3 Contributions to Knowledge

The following contributions were made to knowledge:

1. The present work extends the work of Mabood et al. (2015) by introducing the

porosity and heat generation terms and considered only the steady states of an

incompressible nanofluid dynamics.

2. This study presents the results of the problems considered at all points

(analytically) unlike the work of Mabood et al. (2015) which results were at

mesh points.

3. It also reveals that Inverse Darcy number (1,2,4), Prandtl number (0.4,0.3,0.1)

and Schmidt number (0.3,0.2,0.1) are seen as reduction agents to the fluid

velocity, fluid temperature and concentration profile respectively. While the

Melting parameter (0.3,0.2,0.1) are found to enhance the fluid velocity.
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