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ABSTRACT

The need for numerical solutions of second order ordinary differential equations cannot
be over emphasized, as mathematical problems of it kind results from numerous filed
such as science, engineering among others. In this research, we focus on the derivation
of a k-step Block Hybrid Backward Differentiation Formulae of order (k+1) for the
general solution of second order ordinary differential equations. The new methods were
derived using the procedure of collocation and interpolation of power series at some
selected grid and off-grid points. The methods were used to compute the solution of
linear and nonlinear systems in a block by some discrete schemes obtained from the
continuous schemes which are combined and implemented. The methods were tested on
some classes of second order ordinary differential equations, the results indicated that
all the methods has a maximum error of 10−9 and as step number increases methods
give more accurate results with small errors.
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CHAPTER ONE

2.0 INTRODUCTION

1.1 Background to the Study

Numerical analysis has always been used in different fields such as in Sciences,

Medicines, Engineering, and in diverse facet of life. In recent times, the integration of

Ordinary Differential Equations (ODEs) are investigated using some kind of block

methods. Development of Linear Multi-Step Method (LMM) for solving ODE can be

generated using methods such as Taylor’s series, numerical interpolation, numerical

integration and collocation method, which are restricted by an assumed order of

convergence. Milne (1953) proposed block methods for solving ODEs. The Milne’s

idea of proceeding in blocks was developed by Rosser (1967).

The general second-order ordinary differential equation of the form

     , , , ,o oy f x y y y a y y a      (1.1)

where f satisfies a Lipschitz condition as given in Henrici (1962), is encountered in

several areas of engineering and science, such as circuit theory, control theory, chemical

kinetics, and biology. The approach in providing solution to (1.1) is to first convert the

problem to a system of first order ODE and then solves using numerical method like the

R-K method and liner multistep methods (Lambert, 1973 and 1991).

The studies on direct method for higher order ODEs reveal the advantages in speed and

accuracy. The objective of numerical analysis is to solve complex numerical problems

like stiff equation using only the simple operations of arithmetic, to develop and

evaluate methods for computing numerical results from given data. Mehrkanoon (2011)

and Ramos (2017) investigate the complicated computational work and lengthy

finishing time of numerical simulations. The backward differentiation formula (BDF) is
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a component of the family of implicit linear multistep methods for the numerical

integration of ordinary differential equations. They are characterized by a single

function evaluation point and region of absolute stability. They are linear multistep

method that, for a given function and point, approximate the derivative of that function

using information from already computed points, thereby increasing the accuracy of the

approximation. These methods can be recommended for the general solution of second

order ordinary differential equations.

Linear multi-step methods constitute a power class of numerical procedures for solving

first order ordinary differential equations. The multi-step methods employ idea that is of

different from that of one- step methods.

Solving ordinary differential equation arise as a result of the fact that certain differential

equation does not have a theoretical solution or the theoretical solution is very complex

to obtain. Numerical method provides approximate solution to such differential equation.

Numerical Solution of Ordinary Differential Equations (ODEs) is the most important

technique ever developed since the advent of computers. Especially methods for the

numerical solutions of the special order ordinary differential equations.

1.2 Statement of the Research Problem

Numerical analyst are usually faced with the challenge of obtaining starting or initial

values for Linear Multistep Methods (LMM) at step number 2k  . Prior before now,

one step methods like Runge-Kutta and trapezoidal methods were used to obtain the

starting values for such methods. The hybrid method is not exempted from this problem

as it shares the same standard methods. In order to solve ordinary differential equations

using the generalized Adams method. Adamu et al. (2019) introduced some additional

schemes which do not have direct link to the main discrete schemes. Such a
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combination may lead to stability problem and poor results. since these additional

schemes introduced were not from the same continuous schemes.

1.3 Scope and Limitation of the Study

This research focuses majorly on the developing k-step of block hybrid backward

differentiation formulae(BHBDF) for solving some classes of second order ordinary

differential equations (ODEs) by incorporating two off-grid collocation points for the

solution. The performance of these schemes in the solution of differential equations

shall be verified and it is limited to numerical solutions of 2,3, 4k  with the two off

grid points using the numerical scheme obtained.

1.4 Aim and Objectives of the Study

The aim of this study is to develop block hybrid backward differentiation formulae for

solving some classes of second order ODEs. Hence the following objectives:

1. Construct block hybrid BDF for step numbers k=2,3,4 incorporating 2-off-grid

points at interpolation.

2. Perform convergence analysis on the proposed methods in terms of order, error

constant, zero stability, consistency and convergence.

3. The applications of the developed methods to solve some numerical problems.

1.5 Significance of the Study

Certain numerical problems arise in science and engineering in the form of differential

equations which may not be solvable analytically. Hence, BDF is recommended for

approximate numerical solutions of such problems, because of their infinite region of

absolute stability which allows them to take larger step sizes that would be with explicit

methods.
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1.6 Justification of the Study

The research would contribute to numerical analysis through the formulation of new

classes of efficient consistent block hybrid backward differentiation formulae for the

direct solution of ordinary differential equations.

1.7 Definition of Terms

1.7.1 Linear Multistep Method (LMM): Let ny be an approximation to  ny x and

let  ,n n nf x y .If a computational method or determining the sequence  ny takes the

form of the linear relationship between
0 0

, .
k k

n j n j j n j j n j
j j

y f i e y h f    
 

  (1.2)Then

(1.2) is a linear multistep method (LMM) of step number k.

1.7.2 Order of LMM: The differential operator      
0

:
k

j n j n
j

L y x h y x jh h y x jh 


        

and the associated LMM are said to be of order p if 1 2 1... 0, 0O p pC C C C C     

1.7.3 Error Constant: The term 1pC  is called error constant and it implies that the

local truncation error is given by    1 1 2
1 0p p p

n k p nE C h y x h  
  

1.7.4 Consistency of LMM: A Linear Multistep Method is said to be consistent if it

has order 1p 

1.7.5 Zero stability of Hybrid Block Method: The Hybrid Block Method is said to

be zero stable if the roots of R of the characteristic polynomial   det op R RA A   

satisfies 1R  and every root with 1oR  has multiplicity not exceeding two in the

limit as 0h

1.7.6 Absolute Stability: The linear multi-step method is said to be absolutely stable

for a given h and for all h the root sr of
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     ,r h p r h r   satisfy 1 1,2,3,...,sr s k  and it is absolutely unstable for that

h otherwise

1.7.7 Convergence of LMM: The linear Multistep Method is said to be convergent if

and only if it is both consistent and zero stable.

1.7.8 Collocation Point: Collocation point is a point at which a derivative function is

evaluated.

1.7.9 Interpolation Point: Interpolation point is a point at which the solution function

is evaluated.
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Review of Existing Methods

Differential equations first came in to existence with the invention of calculus by

Newton and Leibniz. Isaac Newton (1671) listed three kinds of differential equations:

( )dy f x
dx

 (2.1)

( , )dy f x y
dx

 (2.2)

1 2
1 2

y yx x y
x x
 

 
 

(2.3)

In all the three classes, y is an unknown of x (or of 1x and 2x ),and f is a given

function. He solves these equations using infinite series and discusses the non-

uniqueness of solutions.

The first two classes contained only ordinary derivatives of one or more dependent

variables, and are called ordinary differential equations (ODE). The third class involved

the partial derivatives of one dependent variable which is known as system of partial

differential equations (PDEs). Jacob Bernoulli proposed the Bernoulli differential

equation in 1695. This is an ordinary differentiation of the form    1 ny p x y Q x y  .

In 17th century, Newton, Leibinitz and Bernoulli solved simple differential equations of

first and second order arising from geometry and mechanics, Newton (1967).

Differential equations are among the most important mathematical tools used in

producing models in physical sciences, Biological sciences, and Engineering. Over the

years, several researchers developed methods in finding analytical solutions of IVP in

ODEs of the form.

     '' ' ' '
0 0 0 0, , , ,y f x y y y x y y x y   (2.4)
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The improvement of numerical methods for the solution of Initial Value Problems (lVPs)

in ODEs of the form (2.4) gave mount to two major discrete variable methods namely:

single step (one step) methods and multistep methods, most especially the linear

multistep method. The single step methods are very low order of accuracy and they are

suitable for first order IVPs of ODEs. Such as Euler’s methods, Runge-kutta methods

etc.

The numerical solution of higher order single step methods such as Runge-kutta, in

terms of the number of function evaluation per step, is sacrificed since more function

evaluations are required. Hence, solving (2.4) using any single step methods, means

reducing it to an equivalent system of first order IVPs in ODEs which increase the scale

of the problem, thus increasing its size, reducing to first order is ineffective due to

computational burden and also uneconomical arising from computer time wastage and

gives results of low accuracy.

However, Linear Multistep Methods include methods such as Numerov method,

Adams-Bashforth method, Adam-Multon method. These methods give more accuracy

and are appropriate for the direct solution of (2.4) without necessarily reducing it to an

equivalent system of first order IVPs of ODES.

Ordinary Differential Equations of the form (2.4) are examined by some authors

including Awoyemi (1992), Lambert and Wastson (1976), Lambert (1973, 1991),

Fatunla (1988), Areo and Adeniyi (2014), Adamu et al. (2019) and Ra’ft et al.(2020)

among others, by first reducing them to an equivalent system of first order ordinary

differential equations and then using any appropriate numerical method to solve the

resultant system. The disadvantage of this is that it consumes more time, human efforts

and computer program to check the accuracy of these methods are usually complicated

(Adamuet al., 2019).
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More also, in consideration of these setbacks, we considered a method that can solve

LMM without reduction. Some prominent scholars have made efforts to solve higher

order initial value problems of second order ordinary differential equations by a number

of different methods, these includes the work Adesanya et al. (2008), Adeyefa et al.

(2014), Abdelrahim et al. (2016), Adamu et al. (2019) and Ibrahim, Sunday and Pius

(2020) among others. The direct methods are self-starting methods which are

formulated in terms of LMMs called block methods. The block method offers the

traditional advantage single step methods e.g. Rung-Kutta methods of been self starting

and allow easy change of step length. Another important attribute of the block method is

that all the discrete schemes are of uniform order and are obtained from a single

continuous formula unlike the non-starting predictor corrector technique.

Ibrahim et al. (2020) construct two-step second derivative hybrid block backward

Differentiation formula. The newly proposed scheme was derived based on

interpolation and collocation approach. The discrete schemes were obtained from the

continuous schemes. The derived method is applied to solve non-linear systems of stiff

ordinary differential equations. Numerical experiments show that the method is suitable

for stiff differential equations. In this research, we shall adopt the block method

approach to formulate a second order numerical scheme using power series

approximation as basis function.

Other numerical methods that are useful while solving ODEs are the collation methods

and hybrid methods. In mathematics, collocation method for ordinary differential

equation is a method for the numerical solution of ordinary differential equations,

partial differential equations and integral equations. Collocation methods were used

over the past decades in search of solution to a wide class of ordinary differential

equations, partial differential equations, Integro-differential equations and functional
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equations. The attractiveness of such methods is owing to their abstract simplicity and

also large applicability. The collocation is dates back to 1930s. According to Popov et

al. (2017), the method was first proposed by Frazer, Jones and Skan (1938). The work

of Frazer et al. was dedicated to the solution of PDEs. Collocation at the family of

orthogonal polynomials is often called orthogonal collocation. Orthogonal collocation is

the method for the numerical solution of partial differential equations. It uses

collocation at the zeros of some orthogonal polynomials to transform the partial

differential equation (PDE) to a set of ordinary differential equations (ODEs). The ODE

can then be solved by any method (Ramos, 2017).

Chebyshev orthogonal collocation methods are described by Fox and Parker (1968).

Special collocation methods are very much related to this form of collocation, Henrici

(1962). There is a quick improvement as reported in the literature on the use of

collocation methods on the use of numerical solutions of first order ODEs. The

multistep collocation techniques involve obtaining solution of a set of function of a

linear combination of a function known as the trial function. The analytical solution of

an IVP is assumed to be approximated by the basis function. The linear combination of

this basis is required to satisfy the approximation at some certain grid points called the

collocation points.

The hybrid method has been anticipated in the literature. The methods share the

property of utilizing data at other points other than the points the step points

 ;n j n j n jhx x x    while retraining uniqueness of the continuous linear multistep methods.

The Linear Multistep method me is helpful in reducing the step number of a method and

still remains zero stable. According to Lambert (1973), hybrid method was first

introduced by (Gragg and Shetter, 1964, as cited in Shchelchkov and Skrypnik, 2017).
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The Method involves the determination of an approximate solution in a suitable set of

functions, sometimes called basis function. According to Lambert (1973), hybrid

method is not a method in its own accurate since particular predictors were needed to

estimate the solution of the off-step point and the derivative function as well. In view of

the disadvantage mentioned above, many researchers focused on efforts in improving

the numerical solution of Initial Value Problems (lVPs) of ODEs. One of the outcomes

is the development of a class of methods called Block method. The contribution of

Bolaji (2017) also proposed for a family of Hybrid Backward Differentiation Formulae

and a three step Hybrid Linear Multistep method for a direct solution of second and

third order ODEs and the solution of second order IVPs.

2.2 Collocation method

A collocation method can simply be described as a method, which involves the

determination of an approximate solution in a suitable set of functions, sometimes

called basis function. The approximate solution is required to satisfy the initial or

boundary conditions along with the differential equations (2.4) at certain points called

the collocation points.

Collocation methods have been used to solve integral equation for more than sixty years.

More recently, the so-called h-,p- and hp versions of the standard finite Element Method

have attracted the interest of many investigators (Yahaya and Tijjani, 2015) The

accuracy of the h- inversion is achieved by refining the mesh size; and the p-version

improves its accuracy by increasing the polynomial degree.

Obviously, over the past years, collocation methods evolved as valuable methods for the

solution of abroad class of problems covering ordinary and partial differential equations,

functional equations and Butcher (2008) first proposed the collocation method,



11

specifically intended for the solution of partial differential equations in two variables,

with collocation being applied in two variables, with collocation being applied in one

variable for each fixed value of the second. This actually is a method of lines procedure.

The work of Kayode and Obarhua (2017) was dedicated to the solution of ODEs. While

the applicability of collocation method to the solution of partial differential equations

was mentioned in (Kayode and Obarhua, 2017), not only discussed collocation for both

ordinary and partial differential equations, but also provided some numerical examples.

These methods have in common the option of polynomial for the basis function.

2.3 Block Methods

The narrative property of the method that can be briefly discuss this chapter is that of

simultaneously producing approximations to the solution of initial value problem at k

points 1, 2,n n n Nx x x   . Although these methods will be formulated in terms of linear

multistep methods, it can be observed that they are equivalent to certain Runge- Kutta

method and preserve the traditional Runge – Kutta advantage of being self –starting and

permitting easy change of step length (Lambert,1973).Their advantage over

conventional Runge – Kutta method lies in the fact that they are less expensive in terms

of function evaluations forgiven order blocks method appear to have been first proposed

by Miln (1953),who advocated their use only as a means of obtaining starting values of

corrector of block method consists of a set of all new functions values which are

evaluated during each application of the relative formula to producek new set of values

of solution in each computational step. (Akinfenwa, 2011). Although these methods is

formulated in terms of linear multi-step methods, it can be observed that they are

equivalent to certain Runge- Kutta advantage of being self- starting and permitting easy

change of step length Lambert (1973) their advantage over conventional Runge – Kutta

method lies in the fact that they are less expensive in terms of function evaluations
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forgiven order method, appear to have been first proposed by Miln (1953), who

advocated their use only as a means of obtaining starting values for predictor – corrector

algorithms (Areo and Adeniyi, 2014).

2.4 Hybrid Methods

According to Kayode and Obarhua(2017) numerical analysis has over the years been

determined on solution at the grid points ignoring what happens at other points than the

grid points. Searching for higher order numerical methods has led to researchers

throwing in additional off-step points in the process of formulation. Methods formulated

using this approach are called hybrid methods, they preserve the self-starting property

of Runge-Kutta methods as well as being able to provide more solution at a single

application. They are also said to capable of overcoming Dalquist barrier theorem which

states that a linear multistep method cannot have order greater than k+1 for k odd and k

+ 2 for k even. There have been successful methods developed in this area too. Like the

methods in (Areo and Adeniyi, 2014; Badmus, Yahaya and Subair, 2014; Kuboye and

Omar, 2015 and Kayode and Obarhua, 2017).

2.7 TheBackward Differentiation Formula (BDF)

Backward differentiation formula (BDF) is a linear multistep method suitable for

solving differential equations and stiff initial value problems. The Backward

Differentiation Formula is an example implicit multistep method with a strange

uniqueness of function evaluation at a single point. Method was first introduced by

Curtiss and Hirschfelder (1952). Generally written as:

,
0

( )
v

j n j v n v n v
j

y h f x y   


 (2.5)
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 ,1, 0,1,...v 1v j j    and v are unknown coefficient to be exclusively determined

and h is the step sizes.

There are other modifications of this method such as the blended backward

differentiation formula and the extended backward differentiation formula. The

backward differentiation formula of order k is said to be A-stable up to order 2.
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CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Derivation of the Numerical Schemes

We present the derivation of some Hybrid Backward Differentiation Formula (HBDF)

for solving some classes of second-order ordinary differential equations of the form

�2� �
��2 = � �, �,

�� �
��

(3.1)

coupled with appropriate initial conditions

� �0 = �1,
�� �0

��
= �2 (3.2)

where� is a continuous function �: ℝ�+1 → ℝ� , �0 is the initial point, � ∈ ℝ is an

� −dimensional vector, � is a scalar variable, �1 and �2 are the initial values.

In this research, we seek to develop numerical schemes in the form of HBDF as:

� � =
�=0

�−1

��(�)��+� + ��(�)��+� + ℎ2��(�)��+�� (3.3)

where ℎ is the chosen step size and ��(�): � = 0,1,2, …, � , ��(�), ��(�) are unknown

continuous coefficients to be determined, �� = 1 and �� ≠ 0 . In this study, we will

derive HBDF for the step numbers � = 2,3,4 step numbers of the proposed method

using power series function as the basis function.
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3.2 Specifications of the Method

3.2.1 2-Step block hybrid backward differentiation formulae (2SBHBDF)

We seek an approximation of the form;

� � =
�=0

�+�−1

����� (3.4)

where � is the interpolation points, � is the collocation points and �� are unknown

coefficients to be determined. Then, we take

� � = ��+�, � = 0,1,2, …, � − 1 (3.5)

�'' ��+� = ��+� (3.6)

To derive 2SBHBDF, we take � = 4, � = 1and � ∈ [��, ��+2]. Therefore, (3.4) becomes;

� � = �0 + �1� + �2�2 + �3�3 + �4�4 (3.7)

Interpolating (3.5) at ��+�; � = 0, 1
2

, 1, 3
2
and collocate (3.6) at ��+�; � = 2. This results in

a system of equations;

�� = � (3.8)

where

� = �0, �1
2
, �1, �3

2
, �2

�
, � = ��, ��+1

2
, ��+1, ��+3

2
, ��+2

�
and the matrix � of the

proposed method is expressed as:
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2 3 4

2 3 4
1 1 1 1
2 2 2 2

2 3 4
1 1 1 1

2 3 4
3 3 3 3
2 2 2 2

2 2

1

1

1

1

0 0 2 6 12

n n n n

n n n n

n n n n

n n n n

n n

x x x x

x x x x

x x x xD

x x x x

x x

   

   

   

 

 
 
 
 
 
 
 
 
 
 
 
 

Solving (3.8) using matrix inversion approach with the aid of Maple 2017 software

package to obtain the values of the continuous coefficients as;

�0 =
16
35

�4

ℎ4 −
284
105

�3

ℎ3 +
184
35

�2

ℎ2 −
421
105

�
ℎ

+ 1

�1
2

=−
8
5

�4

ℎ4 +
44
5

�3

ℎ3 −
72
5

�2

ℎ2 +
36
5

�
ℎ

�1 =
64
35

�4

ℎ4 −
332
35

�3

ℎ3 +
456
35

�2

ℎ2 −
153
35

�
ℎ

�3
2

=−
24
35

�4

ℎ4 +
356
105

�3

ℎ3 −
136
35

�2

ℎ2 +
124
105

�
ℎ

�2 =
2

35
�4

ℎ2 −
6
35

�3

ℎ
+

11
70

�2 −
3
70

�ℎ

(3.9)

The values of the continuous coefficients are then substituted into the proposed method

in (3.3) to obtain;

� � = �0 � �� + �1
2

� ��+1
2

+ �1 � ��+1 + �3
2

� ��+3
2

+ �2(�)��+2 (3.10)

Expressing (3.10) further gives the continuous form of the 2SHBDF with 2-offstep

interpolation points as;
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� � =
16
35

�4

ℎ4 −
284
105

�3

ℎ3 +
184
35

�2

ℎ2 −
421
105

�
ℎ

+ 1 ��

+ −
8
5

�4

ℎ4 +
44
5

�3

ℎ3 −
72
5

�2

ℎ2 +
36
5

�
ℎ ��+1

2

+
64
35

�4

ℎ4 −
332
35

�3

ℎ3 +
456
35

�2

ℎ2 −
153
35

�
ℎ

��+1

+ −
24
35

�4

ℎ4 +
356
105

�3

ℎ3 −
136
35

�2

ℎ2 +
124
105

�
ℎ

��+3
2

+
2

35
�4

ℎ2 −
6

35
�3

ℎ
+

11
70

�2 −
3

70
�ℎ ��+2 (3.11)

Evaluating (3.11) at � = ��+2, gives the discrete scheme as

��+2 =−
11
35

�� +
8
5

��+1
2

−
114
35

��+1 +
104
35

��+3
2

+
3
35

ℎ2��+2 (3.12)

To obtain the sufficient schemes required, we obtain the first derivative of (3.11) and

evaluate the continuous function at � = ��, � = ��+1
2
, � = ��+1, � = ��+3

2
, � = ��+2 to

obtain;

ℎ�� =−
421
105

�� +
36
5

��+1
2

−
153
35

��+1 +
124
105

��+3
2

−
3
70

ℎ2��+2

ℎ��+1
2

= −
58
105

�� −
7
5

��+1
2

+
86
35

��+1 −
53
105

��+3
2

+
1

70
ℎ2��+2

ℎ��+1 =
23

105
�� −

8
5

��+1
2

+
19
35

��+1 +
88

105
��+3

2
−

1
70

ℎ2��+2

ℎ��+3
2

=−
34

105
�� +

9
5

��+1
2

−
162
35

��+1 +
331
105

��+3
2

+
3
70

ℎ2��+2

ℎ��+2 =−
17
21

�� + 4��+1
2

−
53
7

��+1 +
92
21

��+3
2

+
5

14
ℎ2��+2

(3.13)

where� is the first derivative of �.

Likewise, we further obtain the second derivatives of (3.11), thereafter, evaluating at

� = ��+1
2
, � = ��+3

2
to obtain;



18

��+1
2

=
11
21

�� +
3
7 ��+1 +

1
21

��+3
2

−
5

36
ℎ2��+1

2
−

1
252

ℎ2��+2

��+3
2

=
13
37

�� −
63
37

��+1
2

+
13
37

��+1 −
35

148
ℎ2��+3

2
−

11
148

ℎ2��+2

(3.14)

The equations (3.12) – (3.14) are the proposed2SBHBDF for solving second order

ordinary differential equations.

3.2.2 3-Step block hybrid backward differentiation formulae (3SBHBDF)

To derive a 3SBHBDF, we take � = 5, � = 1 and � ∈ [��, ��+3] . Therefore, (3.4)

becomes;

� � = �0 + �1� + �2�2 + �3�3 + �4�4 + �5�5 (3.15)

Interpolating (3.5) at ��+�; � = 0, 1, 2, 5
2

, 11
4

and collocate (3.6) at ��+�; � = 3 . This

results in a system of equations;

�� = � (3.16)

where

� = �0, �1, �2, �5
2
, �11

4
, �3

�
, � = ��, ��+1, ��+2, ��+5

2
, ��+11

4
, ��+3

�
andthe matrix �

of the proposed method is expressed as

2 3 4 5

2 3 4 5
1 1 1 1 1

2 3 4 5
2 2 2 2 2

2 3 4 5
5 5 5 5 5
2 2 2 2 2

2 3 4 5
11 11 11 11 11
4 4 4 4 4

2 2 2

1

1

1

1

1

0 0 2 6 12 20

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

n n n

x x x x x

x x x x x

x x x x x
D

x x x x x

x x x x x

x x x

    

    

    

    

  

 
 
 
 
 
 
   
 
 
 
 
 
 
 
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We proceed by solving (3.16) using matrix inversion method with the aid of Maple

2017 software to obtain the continuous coefficients;

�0 =−
7

330
�5

ℎ5 +
109
440

�4

ℎ4 −
2963
2640

�3

ℎ3 +
2157
880

�2

ℎ2 −
3373
1320

�
ℎ

+ 1

�1 =
7

45
�5

ℎ5 −
233
140

�4

ℎ4 +
16613
2520

�3

ℎ3 −
3209
280

�2

ℎ2 +
1859
252

�
ℎ

�2 =−
79
90

�5

ℎ5 +
343
40

�4

ℎ4 −
21563

720
�3

ℎ3 +
3479
80

�2

ℎ2 −
1529
72

�
ℎ

�5
2

=
16
9

�5

ℎ5 −
84
5

�4

ℎ4 +
2522
45

�3

ℎ3 −
386
5

�2

ℎ2 +
1628

45
�
ℎ

�11
4

=−
512
495

�5

ℎ5 +
3712
385

�4

ℎ4 −
109376

3465
�3

ℎ3 +
16448

385
�2

ℎ2 −
13696

693
�
ℎ

�3 =
1

30
�5

ℎ3 −
11
40

�4

ℎ2 +
197
240

�3

ℎ −
83
80 �2 +

11
24 �ℎ

(3.17)

The values of the continuous coefficients are then substituted in to proposed method in

(3.3) to obtain

� � = �0 � �� + �1 � ��+1 + �2 � ��+2 + �5
2

� ��+5
2

+ �11
4

� ��+11
4

+ �3(�)��+3 (3.18)

The values of the continuous coefficients (3.17) are then substituted in to the proposed

method (3.3) to obtain (3.18).

Expressing (3.18) further gives the continuous form of the 3SHBDF with 2-step off-

step interpolation point as
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� � = −
7

330
�5

ℎ5 +
109
440

�4

ℎ4 −
2963
2640

�3

ℎ3 +
2157
880

�2

ℎ2 −
3373
1320

�
ℎ

+ 1 ��

+
7
45

�5

ℎ5 −
233
140

�4

ℎ4 +
16613
2520

�3

ℎ3 −
3209
280

�2

ℎ2 +
1859
252

�
ℎ

��+1

+ −
79
90

�5

ℎ5 +
343
40

�4

ℎ4 −
21563

720
�3

ℎ3 +
3479
80

�2

ℎ2 −
1529
72

�
ℎ

��+2

+
16
9

�5

ℎ5 −
84
5

�4

ℎ4 +
2522
45

�3

ℎ3 −
386
5

�2

ℎ2 +
1628

45
�
ℎ

��+5
2

+ −
512
495

�5

ℎ5 +
3712
385

�4

ℎ4 −
109376

3465
�3

ℎ3 +
16448
385

�2

ℎ2 −
13696

693
�
ℎ ��+11

4

+
1
30

�5

ℎ3 −
11
40

�4

ℎ2 +
197
240

�3

ℎ −
83
80 �2 +

11
24 �ℎ ��+3 (3.19)

Evaluating (3.19) at � = ��+3 gives the discrete scheme as

��+3 =
1

440
�� −

11
420

��+1 +
41
120

��+2 −
28
15

��+5
2

+
2944
1155

��+11
4

+
1
40

ℎ2��+3 (3.20)

To obtain the sufficient schemes required, we obtain the first derivative of (3.19) and

evaluate the continuous function at � = ��, � = ��+1, � = ��+2, � = ��+5
2
, � = ��+11

4
� =

��+3 to obtain;
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ℎ�� =−
3373
1320

�� +
1859
252

��+1 −
1529
72

��+2 +
1628

45
��+5

2

−
13696
693

��+11
4

+
11
24

ℎ2��+3

ℎ��+1 =−
119
880

�� −
461
280

��+1 +
1393
240

��+2 −
42
5

��+5
2

+
5056
1155

��+11
4

−
7

80
ℎ2��+3

ℎ��+2 =
1

88
�� −

71
420

��+1 −
299
120

��+2 +
68
15

��+5
2

−
2176
1155

��+11
4

+
1

40
ℎ2��+3

ℎ��+5
2

=−
13

3520
�� +

31
672

��+1 −
161
192

��+2 −
53
30

��+5
2

+
2054
385

��+11
4

+
77

2560
ℎ2��+3

ℎ��+11
4

=
133

28160
�� −

1507
26880

��+1 +
2079
2560

��+2 −
1463
240

��+5
2

+
2054
385

��+11
4

+
77

2560
ℎ2��+3

ℎ��+3 =
31

2640
�� −

337
2520

��+1 +
1207
720

��+2 −
74
9

��+5
2

+
23104
3465

��+11
4

+
47

240
ℎ2��+3

3.21

where� is the first derivative of �.

We further obtain the second derivatives of (3.19), thereafter, evaluating at � =

��+5
2
, � = ��+11

4
, � = ��+2 to obtain;

��+5
2

=
141

143968
�� −

617
45808

��+1 +
4727

13088
��+2 +

20512
31493

��+11
4

−
45

818
ℎ2��+5

2
+

21
13088

ℎ2��+3

��+11
4

=−
4641

1037312
�� +

26521
518656

��+1 −
654577

1037312
��+2 +

51359
32416

��+5
2

+
3465

32416
ℎ2��+11

4
−

41811
1037312

ℎ2��+3

��+2 =−
273

4961
�� +

3002
3157

��+1 −
1376
451

��+5
2

+
109568
34727

��+11
4

−
360
451

ℎ2��+2 −
3
41

ℎ2��+3

(3.22)
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The equations (3.20) – (3.22) are the proposed3SBHBDFfor solving second order

ordinary differential equations.

3.2.3 4-Step block hybrid backward differentiation formulae (4SBHBDF)

To derive 4SBHBDF, we take � = 6, � = 1and � ∈ [��, ��+3]. Therefore, (3.4) becomes;

� � = �0 + �1� + �2�2 + �3�3 + �4�4 + �5�5 + �6�6 (3.23)

Interpolating (3.5) at ��+�; � = 0, 1, 2, 3, 15
4

, 31
8
and collocate (3.6) at ��+�; � = 4 . This

results in a system of equations;

�� = � (3.24)

where

� = �0, �1, �2, �3, �15
4
, �31

8
, �4

�
, � = ��, ��+1, ��+2, ��+3, ��+15

4
, ��+31

8
, ��+4

�
andthe

matrix � of the proposed method is expressed as

2 3 4 5 6

2 3 4 5 6
1 1 1 1 1 1

2 3 4 5 6
2 2 2 2 2 2

2 3 4 5 6
3 3 3 3 3 3

2 3 4 5 6
15 15 15 15 15 15
4 4 4 4 4 4

2 3 4 5 6
31 31 31 31 31 31
8 8 8 8 8 8

1

1

1

1

1

1

0 0 2 6

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n

x x x x x x

x x x x x x

x x x x x x

x x x x x xD

x x x x x x

x x x x x x

x

     

     

     

     

     



2 2 2 212 20 30n n nx x x   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We proceed by solving (3.24) using matrix inversion method with the aid of Maple

2017 software to obtain the continuous coefficients;
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�0 = 352
130479

�6

ℎ6 − 94388
1957185

�5

ℎ5 + 682219
1957185

�4

ℎ4 − 5070023
3914370

�3

ℎ3

+ 5060234
1957185

�2

ℎ2 − 1127893
434930

�
ℎ

+ 1

�1 =− 6896
354959

�6

ℎ6 + 116406
354959

�5

ℎ5 − 1549923
709918

�4

ℎ4 + 461407
64538

�3

ℎ3

− 4075758
354959

�2

ℎ2 + 2558430
354959

�
ℎ

�2 = 1984
29463

�6

ℎ6 − 52536
49105

�5

ℎ5 + 968068
147315

�4

ℎ4 − 1889777
98210

�3

ℎ3

+ 1285926
49105

�2

ℎ2 − 245799
19642

�
ℎ

�3 =− 1936
9821

�6

ℎ6 + 259850
88389

�5

ℎ5 − 2961029
176778

�4

ℎ4 + 7939457
176778

�3

ℎ3

− 4903190
88389

�2

ℎ2 + 723850
29463

�
ℎ

�15
4

= 237568
324093

�6

ℎ6 − 51426304
4861395

�5

ℎ5 + 282386432
4861395

�4

ℎ4 − 66307072
441945

�3

ℎ3

+ 872353792
4861395

�2

ℎ2 − 125833216
1620465

�
ℎ

�31
8

=− 12320768
21007119

�6

ℎ6 + 295108608
35011865

�5

ℎ5 − 4839440384
105035595

�4

ℎ4

+ 4149280768
35011865

�3

ℎ3 − 4945870848
35011865

�2

ℎ2 + 427032576
7002373

�
ℎ

�4 = 16
1403

�6

ℎ4 − 218
1403

�5

ℎ3 + 2281
2806

�4

ℎ2 − 2833
1403

�3

ℎ
+ 6579

2806
�2 − 1395

1403
�ℎ

(3.25)

The values of the continuous coefficients are then substituted in to the proposed method

in (3.3) to obtain

� � = �0 � �� + �1 � ��+1 + �2 � ��+2 + �3 � ��+3 + �15
4

� ��+15
4

+

�31
8

� ��+31
8

+ �4 � ��+4(3.26)

The values of the continuous coefficients (3.25) are then substituted in to the proposed

method (3.3) to obtain (3.26).

Expressing (3.26) further gives the continuous form of the 4SHBDF with 2-off step

interpolation point as;
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� � =
352

130479
�6

ℎ6 −
94388

1957185
�5

ℎ5 +
682219
1957185

�4

ℎ4 −
5070023
3914370

�3

ℎ3 +
5060234
1957185

�2

ℎ2

−
1127893
434930

�
ℎ

+ 1 ��

+ −
6896

354959
�6

ℎ6 +
116406
354959

�5

ℎ5 −
1549923
709918

�4

ℎ4 +
461407
64538

�3

ℎ3

−
4075758
354959

�2

ℎ2 +
2558430
354959

�
ℎ

��+1 + (
1984

29463
�6

ℎ6 −
52536
49105

�5

ℎ5

+
968068
147315

�4

ℎ4 −
1889777

98210
�3

ℎ3 +
1285926
49105

�2

ℎ2 −
245799
19642

�
ℎ

)��+2 + (

−
1936
9821

�6

ℎ6 +
259850
88389

�5

ℎ5 −
2961029
176778

�4

ℎ4 +
7939457
176778

�3

ℎ3 −
4903190

88389
�2

ℎ2

+
723850
29463

�
ℎ

)��+3 + (
237568
324093

�6

ℎ6 −
51426304
4861395

�5

ℎ5 +
282386432

4861395
�4

ℎ4

−
66307072
441945

�3

ℎ3 +
872353792

4861395
�2

ℎ2 −
125833216

1620465
�
ℎ

)��+15
4

+ −
12320768
21007119

�6

ℎ6 +
295108608
35011865

�5

ℎ5 −
4839440384
105035595

�4

ℎ4

+
4149280768
35011865

�3

ℎ3 −
4945870848
35011865

�2

ℎ2 +
427032576
7002373

�
ℎ ��+31

8

+
16

1403
�6

ℎ4 −
218
1403

�5

ℎ3 +
2281
2806

�4

ℎ2 −
2833
1403

�3

ℎ
+

6579
2806 �2

−
1395
1403

�ℎ ��+4 (3.27)

Evaluating (3.27) at � = ��+4 gives the discrete scheme as

��+4 =−
83

652395
�� +

40
32269

��+1 −
326

49105
��+2 +

1256
29463

��+3 −
180224
147315

��+15
4

+
76546048
35011865

��+31
8

+
12

1403
ℎ2��+4 (3.28)

To obtain the sufficient schemes required, we obtain the first derivative of (3.27) and

evaluate the continuous function at � = ��, � = ��+1, � = ��+2, � = ��+3, � =

��+15
4
, � = ��+31

8
� = ��+4 to obtain;
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ℎ�� =−
1127893
434930

�� +
2558430
354959

��+1 −
245799
19642

��+2 +
723850
29463

��+3

−
125833216

1620465
��+15

4
+

427032576
7002373

��+31
8

−
1395
1403

ℎ2��+4

ℎ��+1 =−
11803
85095

�� −
46875
30866

��+1 +
3179
915

��+2 −
39391
7686

��+3

+
452608
30195

��+15
4

−
53346304
4566765

��+31
8

+
11
61

ℎ2��+4

ℎ��+2 =
5201

260958
�� −

102060
354959

��+1 −
308381
294630

��+2 +
12460
4209

��+3

−
2277376
324093

��+15
4

+
80740352
15005085

��+31
8

−
105
1403

ℎ2��+4

ℎ��+3 =−
2891

652395
�� +

34083
709918

��+1 −
2349
7015

��+2 −
27873
19642

��+3

+
1386496
231495

��+15
4

−
149815296
35011865

��+31
8

+
63

1403
ℎ2��+4

ℎ��+15
4

=
25487

41753280
�� −

274365
45434752

��+1 +
5247

157136
��+2 −

128975
538752

��+3

−
3621812
540155

��+15
4

+
6918912
1000339

��+31
8

−
3465

179584
ℎ2��+4

ℎ��+31
4

=−
3479

5809152
�� +

185535
31606784

��+1 −
14911
468480

��+2 +
558155

2623488
��+3

−
73501
8052

��+15
4

+
40836448
4566765

��+31
8

+
3255

124928
ℎ2��+4

ℎ��+4 =−
4909

3914370
�� +

4326
354959

��+1 −
19129
294630

��+2 +
36230
88389

��+3

−
49278976
4861395

��+15
4

+
1027342336
105035595

��+31
8

+
169
1403

ℎ2��+4

(3.29)

where� is the first derivative of �.

We further obtain the second derivatives of (3.27), thereafter, evaluating at � =

��+2, , � = ��+3� = ��+15
4
, � = ��+31

8
to obtain;
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��+2 =−
13643
433269

�� +
2438765
4059891

��+1 −
54635

433269
��+3 +

14501888
4765959

��+15
4

−
917504
369081

��+31
8

−
49105
96282

ℎ2��+2 +
4445

96282
ℎ2��+4

��+3 =
215551

41563715
�� −

4164615
67842709

��+1 +
720603
1340765

��+2 +
2791424
14748415

��+15
4

+
314966016
955965445

��+31
8

−
88389
268153

ℎ2��+3 −
5103

268153
ℎ2��+4

��+15
4

=−
2842763

6898264832
�� +

84349755
20472269824

��+1 −
10370943

445049344
��+2

+
161178325
890098688

��+3 +
519683472
619765981

��+31
8

−
4861395

111262336
ℎ2��+15

4

+
8201655

890098688
ℎ2��+4

��+31
8

=
177976967

249813835776
�� −

1409110115
203552014336

��+1 +
170473309

4626182144
��+2

−
115328331095
499627671552

��+3 +
12883055113
10734188256

��+3 +
35011865

433704576
ℎ2��+31

8

−
2401195055

55514185728
ℎ2��+4

(3.30)

The equations (3.28) – (3.30) are the proposed4SBHBDF for solving second order

ordinary differential equations.

3.3 Analysis of Basic Properties

In this section, we address the order, error constants, consistency, stability and

convergence of the developed methods.

3.3.1 Order and error constants of the developed methods

Following the works of Lambert (1973) and Fatunla (1992),the Local Truncation Error

(LTE) for a block method of the form (3.3) is defined with the linear operator;

ℒ � � , ℎ =
�=0

�

��� � + �ℎ − �� � � � + �ℎ − �� � � � + �ℎ�

− ℎ2��(�)��+� (3.31)

We assume that �(�) is sufficiently differentiable such that the linear operator defined

above can be expanded as a Taylor’s series about the point �. Then,
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ℒ � � , ℎ = �0� � + �1ℎ�' � + �2ℎ2�'' � + … + ��ℎ��� � + … (3.32)

The method above will be consistent if ℒ � � , ℎ → 0 as ℎ → 0 . Therefore, we can

compare the coefficient to have

�0 = �0 + �1 + �2 + … + �� =
�=0

�

���

�1 = �1 + 2�2 + … + ��� − �0 + �1 + �2 + … + �� =
�=0

�

��� − ���

⋮

�� =
1
�!

�1 + 2��2 + … + ���� −
1

� − 2 !
(�1 + 2�−1�2 + … + ��−1��)

(3.33)

The method is consistent if �0 = �1 = … = ��+1 = 0,for ��+2 ≠ 0. The constant ��+2

is the error constant. After defining the concept of error constant, we shall obtain the

error constants of the proposed discrete hybrid block methods for � = 2 , � = 3 , and

� = 4.

From2SBHBDF, we developed the proposed method in (3.12) as

��+2 =−
11
35

�� +
8
5

��+1
2

−
114
35

��+1 +
104
35

��+3
2

+
3

35
ℎ2��+2

where;

�0 =
11
35

, �1
2

=−
8
5

, �1 =
114
35

, �3
2

=−
104
35

, �2 = 1, �2 =
3

35

Applying (3.33), we have
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�0 =
�=0

�

��� =
11
35

−
8
5

+
114
35

−
104
35

+ 1 = 0

�1 =
1
1!

01 11
35

+
1
2

1

−
8
5

+ 11 114
35

+
3
2

1

−
104
35

+ 2 1 1
= 0

�2 =
1
2!

02 11
35

+
1
2

2

−
8
5

+ 12 114
35

+
3
2

2

−
104
35

+ 2 2 1
−

3
35

= 0

�3 =
1
3!

03 11
35

+
1
2

3

−
8
5

+ 13 114
35

+
3
2

3

−
104
35

+ 2 3 1
− 2

3
35

= 0

�4 =
1
4!

04 11
35

+
1
2

4

−
8
5

+ 14 114
35

+
3
2

4

−
104
35

+ 2 4 1
−

1
2!

22 3
35

= 0

�5 =
1
5!

05 11
35

+
1
2

5

−
8
5

+ 15 114
35

+
3
2

5

−
104
35

+ 2 5 1
−

1
3!

23 3
35

=−
1

112

(3.34)

Since ��+2 = �5. The � = 3 implies the method is of order 3 with error constant �5 =−

1
112

For the first discrete method in (3.13);

�0 =
421
105 , �1

2
=−

36
5 , �1 =

153
35 , �3

2
=−

124
105 , �2 = 0, �2 =−

3
70 , �0 =− 1

Applying (3.33), we have
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�0 =
�=0

�

��� =
421
105

−
36
5

+
153
35

−
124
105

+ 0 = 0

�1 =
1
1!

01 421
105

+
1
2

1

−
36
5

+ 11 153
35

+
3
2

1

−
124
105

− −1 = 0

�2 =
1
2!

1
2

2

−
36
5

+ 12 153
35

+
3
2

2

−
124
105

+ 22 0
− 0 −1 − −

3
70

= 0

�3 =
1
3!

1
2

3

−
36
5

+ 13 153
35

+
3
2

3

−
124
105

+ 23 0
−

1
2!

02 −1 − 2 −
3
70

= 0

�4 =
1
4!

1
2

4

−
36
5

+ 14 153
35

+
3
2

4

−
124
105

+ 24 0
−

1
3!

03 −1 −
1
2!

22 −
3

70
= 0

�5 =
1
5!

1
2

5

−
36
5

+ 15 153
35

+
3
2

5

−
124
105

+ 25(0)
−

1
4!

04 −1 −
1
3!

23 −
3

70
=

19
1120

(3.35)

Since ��+2 = �5 . The � = 3 implies the method is of order 3 with error constant �5 =

19
1120

For the second discrete method in (3.13);

�0 =
58

105
, �1

2
=

7
5

, �1 =−
86
35

, �3
2

=
53
105

, �2 = 0, �2 =
1
70

, �1
2

=− 1

Applying (3.33), we have
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�0 =
�=0

�

��� =
58

105
+

7
5

−
86
35

+
53

105
+ 0 = 0

�1 =
1
1!

01 58
105

+
1
2

1 7
5

+ 11 −
86
35

+
3
2

1 53
105

− −1 = 0

�2 =
1
2!

1
2

2 7
5

+ 12 −
86
35

+
3
2

2 53
105

+ 22 0
−

1
2

−1 −
1
70

= 0

�3 =
1
3!

1
2

3 7
5

+ 13 −
86
35

+
3
2

3 53
105

+ 23 0
−

1
2!

1
2

2

−1 − 2
1

70
= 0

�4 =
1
4!

1
2

4 7
5

+ 14 −
86
35

+
3
2

4 53
105

+ 24 0
−

1
3!

1
2

3

−1 −
1
2!

22 1
70

= 0

�5 =
1
5!

1
2

5 7
5

+ 15 −
86
35

+
3
2

5 53
105

+ 25(0)
−

1
4!

1
2

4

−1 −
1
3!

23 1
70

=−
31

6720

(3.36)

Since ��+2 = �5. The � = 3 implies the method is of order 3 with error constant �5 =−

31
6720

For the third discrete method in (3.13);

�0 =−
23
105 , �1

2
=

8
5 , �1 =−

19
35 , �3

2
=−

88
105 , �2 = 0, �2 =−

1
70 , �1 =− 1

Applying (3.33), we have



31

�0 =
�=0

�

��� =−
23
105

+
8
5

−
19
35

+
88
105

+ 0 = 0

�1 =
1
1!

01 −
23
105

+
1
2

1 8
5

+ 11 −
19
35

+
3
2

1

−
88

105

− −1 = 0

�2 =
1
2!

1
2

2 8
5

+ 12 −
19
35

+
3
2

2

−
88

105
+ 22 0

− 1 −1 − −
1
70

= 0

�3 =
1
3!

1
2

3 8
5

+ 13 −
19
35

+
3
2

3

−
88
105

+ 23 0
−

1
2!

12 −1 − 2 −
1

70
= 0

�4 =
1
4!

1
2

4 8
5

+ 14 −
19
35

+
3
2

4

−
88

105
+ 24 0

−
1
3!

13 −1 −
1
2!

22 −
1

70
= 0

�5 =
1
5!

1
2

5 8
5

+ 15 −
19
35

+
3
2

5

−
88
105

+ 25(0)
−

1
4!

14 −1 −
1
3!

23 −
1
70

=
1

280

(3.37)

Since ��+2 = �5 . The � = 3 implies the method is of order 3 with error constant �5 =

1
280

For the fourth discrete method in (3.13);

�0 =
34
105 , �1

2
=−

9
5 , �1 =

162
35 , �3

2
=−

331
105 , �2 = 0, �2 =

3
70 , �3

2
=− 1

Applying (3.33), we have
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�0 =
�=0

�

��� =
34

105
−

9
5

+
162
35

−
331
105

+ 0 = 0

�1 =
1
1!

01 34
105

+
1
2

1

−
9
5

+ 11 162
35

+
3
2

1

−
331
105

− −1 = 0

�2 =
1
2!

1
2

2

−
9
5

+ 12 162
35

+
3
2

2

−
331
105

+ 22 0
−

3
2

−1 −
3

70
= 0

�3 =
1
3!

1
2

3

−
9
5

+ 13 162
35

+
3
2

3

−
331
105

+ 23 0
−

1
2!

3
2

2

−1 − 2
3
70

= 0

�4 =
1
4!

1
2

4

−
9
5

+ 14 162
35

+
3
2

4

−
331
105

+ 24 0
−

1
3!

3
2

3

−1 −
1
2!

22 3
70

= 0

�5 =
1
5!

1
2

5

−
9
5

+ 15 162
35

+
3
2

5

−
331
105

+ 25(0)
−

1
4!

3
2

4

−1 −
1
3!

23 3
70

=−
17

2240

(3.38)

Since ��+2 = �5. The � = 3 implies the method is of order 3 with error constant �5 =−

17
2240

For the fifth discrete method in (3.13);

�0 =
17
21

, �1
2

=− 4, �1 =
53
7 , �3

2
=−

92
21

, �2 = 0, �2 =
5

14 , �1 =− 1

Applying (3.33), we have
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�0 =
�=0

�

��� =
17
21

± 4 +
53
7

±
92
21

+ 0 = 0

�1 =
1
1!

01 17
21

+
1
2

1

−4 + 11 53
7

+
3
2

1

−
92
21

− −1 = 0

�2 =
1
2!

1
2

2

−4 + 12 53
7

+
3
2

2

−
92
21

+ 22 0
− 2 −1 −

5
14

= 0

�3 =
1
3!

1
2

3

−4 + 13 53
7

+
3
2

3

−
92
21

+ 23 0
−

1
2!

22 −1 − 2
5
14

= 0

�4 =
1
4!

1
2

4

−4 + 14 53
7

+
3
2

4

−
92
21

+ 24 0
−

1
3!

23 −1 −
1
2!

22 5
14

= 0

�5 =
1
5!

1
2

5

−4 + 15 53
7

+
3
2

5

−
92
21

+ 25(0)
−

1
4!

24 −1 −
1
3!

23 5
14

=−
83

3360

(3.39)

Since ��+2 = �5. The � = 3 implies the method is of order 3 with error constant �5 =−

83
3360

For the first discrete method in (3.14);

�0 =−
11
21

, �1
2

= 1, �1 =−
3
7 , �3

2
=−

1
21

, �2 = 0, �2 =−
1

252
, �1

2
=−

5
36

Applying (3.33), we have;
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�0 =
�=0

�

��� =−
11
21

−
3
7

+ 0 + 1 −
1
21

= 0

�1 =
1
1!

01 −
11
21

+
1
2

1

1 + 11 −
3
7

+
3
2

1

−
1
21

+ 2 0
= 0

�2 =
1
2!

1
2

2

1 + 12 −
3
7

+
3
2

2

−
1
21

+ 22 0
− −

1
252

+ −
5

36 = 0

�3 =
1
3!

1
2

3

1 + 13 −
3
7

+
3
2

3

−
1
21

+ 23 0
− 2 −

1
252

+
1
2 −

5
36 = 0

�4 =
1
4!

1
2

4

1 + 14 −
3
7

+
3
2

4

−
1
21

+ 24 0
−

1
2!

22 −
1

252
+

1
2

2

−
5

36 = 0

�5 =
1
5!

1
2

5

1 + 15 −
3
7

+
3
2

5

−
1
21

+ 25(0)
−

1
3!

23 −
1

252
+

1
2

3

−
5
36 =

5
2688

(3.40)

Since ��+2 = �5 . The � = 3 implies the method is of order 3 with error constant �5 =

5
2688

For the second discrete method in (3.14);

�0 =−
13
37 , �1

2
=

63
37 , �1 =−

87
37 , �3

2
= 1, �2 = 0, �2 =−

11
148 , �3

2
=

35
148 ,

Applying (3.33), we have
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�0 =
�=0

�

��� =−
13
37

+
63
37

−
87
37

+ 1 + 0 = 0

�1 =
1
1!

01 −
13
37

+
1
2

1 63
37

+ 11 −
87
37

+
3
2

1

1 + 2 0
= 0

�2 =
1
2!

1
2

2 63
37

+ 12 −
87
37

+
3
2

2

1 + 22 0
− −1 + −

11
148

= 0

�3 =
1
3!

1
2

3 63
37

+ 13 −
87
37

+
3
2

3

1 + 23 0
−

3
2

35
148

+ 2 −
11
148 = 0

�4 =
1
4!

1
2

4 63
37

+ 14 −
87
37

+
3
2

4

1 + 24 0
−

1
2!

3
2

2 35
148

+ 22 −
11
148 = 0

�5 =
1
5!

1
2

5 63
37

+ 15 −
87
37

+
3
2

5

1 + 25(0)
−

1
3!

3
2

3 35
148

+ 23 −
11

148 =
145

14208

(3.41)

Since ��+2 = �5 . The � = 3 implies the method is of order 3 with error constant �5 =

145
14208

We follow similar procedure for cases � = 3 and � = 4 and present the Order and Error

constants for the proposed methods as follows;

Table 3.1 Order and Error Constants of the 2SBHBDF
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Method Order � Error Constants (��+�)

(3.12) 3 −
1

112

(3.13) 3
19

1120

(3.13) 3 −
31

6720

(3.13) 3
1

280

(3.13) 3 −
17

2240

(3.13) 3 −
83

3360

(3.14) 3 5
2688

(3.14) 3 145
14208
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Table 3.2 Order and Error Constants of the 3SBHBDF
Method Order � Error Constants ��+�

(3.20) 4 −
47

115200

(3.21) 4 −
4477

69120

(3.21) 4
2009

230400

(3.21) 4 −
167

115200

(3.21) 4
107

184320

(3.21) 4 −
5929

7372800

(3.21) 4 −
1489

691200

(3.22) 4 −
1649

691200

(3.22) 4 −
1309

172800

(3.22) 4 2557
345600
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Table 3.3 Order and Error Constants of the 4SBHBDF
Method Order � Error Constants ��+�

(3.27) 5 −
169

4714080

(3.28) 5
13175

179584

(3.28) 5 −
50017

4919040

(3.28) 5
131

44896

(3.28) 5 −
1741

1795840

(3.28) 5
30305

183894016

(3.28) 5 −
42439

255852544

(3.29) 5 −
20143

56568960

(3.30) 5 −
38551

6285440

(3.31) 5
35311

12570880

(3.32) 5 −
397857

160907264

(3.33) 5 −
8059557

3218145280
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3.3.2 Consistency

The sufficient conditions for a linear multistep to be consistent are;

i. � ≥ 1( i.e. the method has at least order of one).

ii. �=0
� �� = 0�

iii. �'' 1 = 2! �(1)

where� � and �(�) are the first and second characteristic polynomials respectively.

In section 3.3.1, we have established the conditions (i) where we have � = 3, � = 4,and

� = 5 for cases of 2SBHBDF, 3SBHBDF, and 4SBHBDFrespectively. Also in the

section, condition (ii) was fulfilled where �0 = �=0
� �� = 0� in all cases of 2SBHBDF,

3SBHBDF, and 4SBHBDF.

For condition (iii), we shall consider (3.12) and obtain the first and second characteristic

polynomials as;

� � = �2 +
114
35

� −
8
5

�
1
2 −

104
35

�
3
2 +

11
35

� � =
3

35
�2

Then,

�' � = 2� −
156
35

�
1
2 −

4
5

�−1
2 +

114
35

�'' � =−
78
35

�−1
2 +

2
5

�−3
2 + 2

Therefore,

�'' 1 =
6

35

and
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� 1 =
3

35

2! � � =
6

35

Hence, �''(1) = 2! � � this satisfied the condition (iii). Since the three conditions are

satisfied, it follows that (3.12) is consistent. We shall obtain the first and second

polynomials for the other methods in the table below;
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Table 3.4Condition for Consistency of the 2SBHBDF
Method �''(1) 2! � �

(3.12)
6
35

6
35

(3.14) −
72
35

−
72
35

(3.14) −
48
35

−
48
35
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Table 3.5Condition for Consistency of the 3SBHBDF
Method �''(1) 2! � �

(3.20)
1

20
1

20

(3.22) −
233
120

−
233
120

(3.22) −
299
240

−
299
240

(3.22) −
131
60

−
131
60
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Table 3.6Condition for Consistency of the 4SBHBDF
Method �''(1) 2! � �

(3.27)
24

1403
24

1403

(3.30) −
2552
1403 −

2552
1403

(3.30) −
2968
1403

−
2968
1403

(3.30) −
8857
5612

−
8857
5612

(3.30) −
83363
89792

−
83363
89792
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3.3.3 Zero Stability

According to Awari (2017),a linear multistep method is said to be zero-stable if no root

of the first characteristic polynomial has modulus greater than one, if every root with

modulus one is simple, i.e. 1r  and has multiplicity not greater than the order of the

differential equation.

To obtain the zero-stability of HBDF, we shall express the proposed methods in matrix

difference equation form;

� 1 ��+1 = � 0 �� + ℎ2� 0 �� + ℎ2� 1 ��+1 (3.41)

Where

��+1 =

��+1
2

��+1
��+3

2
��+2

�� =

��−3
2

��−1
��−1

2
��

��+1 =

��+1
2

��+1
��+3

2

��+2

�� =

��−3
2

��−1
��−1

2

��

� 1 ,� 0 , � 1 , and � 0 are (� + 1) × (� + 1) matrices obtained from the combined

coefficients of the HBDF. The roots of the first characteristics polynomial � � is

obtained from;

� � = �� 1 − � 0 (3.42)

3.3.3.1 Zero Stability of 2SBHBDF

We express the schemes in 2SBHBDFin the form (3.41) and obtain the � 1 , � 0 ,

and� � as
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(1) (0)

3 1 111 0 0 0 0
7 21 21

2356 88 0 0 01 0
5719 57 ,
1363 87 0 0 01 0
5737 37
118 114 104 0 0 01
355 35 35

p p

       
   
      

    
   
   
   
    

  

� � =
1400
703

�4 −
1400
703

�3

Then, � = 0,0,0,1 , therefore 2SBHBDFis zero-stable since �� ≤ 1.

3.3.3.2 Zero Stability of 3SBHBDF

We express the schemes in 3SBHBDF in the form (3.41) and obtain the � 1 ,� 0 , and

� � as

(1) (0)

9751 2352 40448 8331 0 0 0 0 0
2766 461 15213

3002 1376 1095681 0
3157 451 34727
617 4727 20512 ,1 0
45808 13088 31493
26521 654577 51359 1 0518656 1037312 32416

294411 41 28 1
1155420 120 15

p p

    
 
   
 
   
 
 
  
 
  
 

10142
2730 0 0 0
4961
1410 0 0 0

143968
46410 0 0 0

1037312
10 0 0 0
440

 
 
 
  
 
 
 
 
 
 
 
 
 

� � =−
81648000

86141061787
�5 +

81648000
86141061787

�4

Then, � = 0,0,0,0,1 , therefore 3SBHBDFis zero-stable since �� ≤ 1.

3.3.3.3 Zero Stability of 4SBHBDF

We express the schemes in 4SBHBDF in the form (3.41) and obtain the � 1 ,� 0 , and

� � as
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(1)

1608574 9965923 20819968 1173618688
1 0

703125 2953125 2109375 152578125
2438765 54635 14501888 917504

1 0
4059891 433269 4765959 369081
4164615 720603 2791424 314966016

1 0
67842709 1340765 14748415 955965445
8434975

p

 

 

  



5 10370943 161178325 519683472

1 0
20472269824 445049344 890098688 619765981
1409110115 170473309 115328331095 128830551 13

1 0
203552014336 4626182144 499627671552 107341 88256

40 326 1256 1802244
32269 49105 29463 147315

 

 

  
76546048

1
35011865

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

5972318
65390625
13643
433269
215551
41563715
2842763

6898264832
177976967

249813835776
83

652395

p











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� � =
204665916687444982

11734781194060781358925
�6 −

204665916687444982
11734781194060781358925

�5

Then, � = 0,0,0,0,0,1 , therefore 4SBHBDFis zero-stable since �� ≤ 1.

3.3.4 Convergence

According to the Dahlquist theorem, the necessary and sufficient condition for a Linear

Multistep Method to be convergent is the methods to be consistent and zero-stable.

Since, the proposed Backward Differentiation Formulae are both consistent and zero-

stable, we conclude that the proposed methods are convergent.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Numerical Experiments

In this chapter, we shall perform some numerical experiments of linear, non-linear,

homogeneous, inhomogeneous and system of second-order ordinary differential

equations on the developed methods. The problems to be examined are;

Problem 1: Constant Coefficient Linear Type

�2�(�)
��2 = 8

�� �
��

− 17� �

� 0 =− 4, �' 0 =− 1

Exact Solution:

� � = 15�4� sin � − 4�4� cos �

Problem 2: Variable Coefficient Linear Type

�2 �2�(�)
��2 +

3
2

�
�� �

�� −
1
2

� � = 0

� 1 = 2, �' 1 = 5

Exact Solution:

� � =
14
3

� −
8
3�

Problem 3: Variable Coefficient Non-Linear Type

�2�(�)
��2 = �

�� �
��

2
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� 0 = 1, �' 0 =
1
2

Exact Solution:

� � = 1 +
1
2

ln
2 + �
2 − �

Problem 4: Linear System of Second Order IVP

�2�1

��2 =
��1

��
+

��2

��

�2�2

��2 =
��1

��
+

��2

��

�1 0 = 1, �1
' 0 = 2, �2 0 = 1, �2

' 0 = 2

Exact Solution:

�1 � = �2�, �2 � = �2�

Problem 5: Linear System of Second Order IVP

�2�1

��2 =
��1

��

�2�2

��2 = 2
��1

��
+ �

��1

��

�1 0 = 1, �1
' 0 = 1, �2 0 = 0, �2

' 0 = 1

Exact Solution:

�1 � = ��, �2 � = ��2�

Problem 6: Unstable System of Differential Equations

�2�1

��2 =
��1

��
+ 3

��2

��
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�2�2

��2 =− 4
��2

��

�1 0 = 1, �1
' 0 = 1, �2 0 = 1, �2

' 0 = 1
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Exact Solution: �1 � =− 3
4

+ 8
5

�� + 3
20

�−4�, �2 � = 5
4

− 1
4

�−4�

Table 4.1 Numerical Comparison of Exact Solution and the Proposed Methods for Problem 1 for � = �. ��
t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.1 -3.7034778030160408192 -3.7034755641322759679 -3.7034798867056725507 -3.7034776714217353697

0.2 -2.0925122227236628344 -2.0925000966640553986 -2.0925236008174516027 -2.0925115455233522165

0.3 2.030109209389152804 2.0301487983577830731 2.0300722536538230837 2.0301113722563448553

0.4 10.683845269066590998 10.683949066577541338 10.683748899088263213 10.683850806940311924

0.5 27.199505875092497766 27.199746188756227355 27.199284288647810704 27.199518451985474893

0.6 56.971023418029402204 56.971536525776565220 56.970554159242908582 56.971049733805448554

0.7 108.59874623264690931 108.59978066523090499 108.59780775157738221 108.59879830532412318

0.8 195.61048588874082725 195.61248311211900207 195.60868886176887767 195.61058450559692621

0.9 339.02641886363790146 339.03014608612282744 339.02309441350756297 339.02659949241168744

1.0 571.14336072001762703 571.15012652332059108 571.13737832906139126 571.14368234377884767
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The Table 4.1 shows the numerical results of problem 1. The results show that the

proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.

Table 4.2 Absolute Error �(�) − �(�) in prosed methods for Problem 1

This show the maximum errors for problem 1 at h=0.01, it is therefore observed that the

method is efficient and there is also an increase in accuracy as the step size increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 2.23888376485 × 10−6 2.08368963173 × 10−6 1.31594305450 × 10−7

0.2 1.21260596074 × 10−5 1.13780937888 × 10−5 6.77200310618 × 10−7

0.3 3.95889686303 × 10−5 3.69557353297 × 10−5 2.16286719205 × 10−6

0.4 1.03797510950 × 10−4 9.63699783278 × 10−5 5.53787372093 × 10−6

0.5 2.40313663730 × 10−4 2.21586444687 × 10−4 1.25768929771 × 10−5

0.6 5.13107747163 × 10−4 4.69258786494 × 10−4 2.63157760464 × 10−5

0.7 1.03443258400 × 10−3 9.38481069527 × 10−4 5.20726772139 × 10−5

0.8 1.99722337817 × 10−3 1.79702697195 × 10−3 9.86168560990 × 10−5

0.9 3.72722248493 × 10−3 3.32445013034 × 10−3 1.80628773786 × 10−4

1.0 6.76580330296 × 10−3 5.98239095624 × 10−3 3.21623761221 × 10−4
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Table 4.3 Numerical Comparison of Exact Solution and the Proposed Methods for
Problem 2 for � = �. ��

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 2.0000000000000000000 2.0000000000000000000 2.0000000000000000000 2.0000000000000000000

0.1 2.4701988672182829769 2.4701988901235716030 2.4701988916945362055 2.4701988694385372294

0.2 2.8898549811593281700 2.8898550475903798431 2.8898550521970691904 2.8898549872129310540

0.3 3.2695365991805926204 3.2695367183658320765 3.2695367252952477633 3.2695366096397309824

0.4 3.6169125594644035444 3.6169127348535730639 3.6169127431198655553 3.6169125743912527451

0.5 3.9376982887163044513 3.9376985207858306440 3.9376985293535594978 3.9376983079943958070

0.6 4.2362516323143080864 4.2362519200216870588 4.2362519280201535389 4.2362516557383969141

0.7 4.5159614605420799766 4.5159618021000866133 4.5159618089081776867 4.5159614878912523029

0.8 4.7795088555179296682 4.7795092488135041059 4.7795092539637423221 4.7795088865693610862

0.9 5.0290473123789455970 5.0290477552008961247 5.0290477583569118747 5.0290473469251090013

1.0 5.2663299577411102278 5.2663304479025818024 5.2663304488479230632 5.2663299955893313444

The Table 4.3 shows the numerical results of problem 2. The results show that the

proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.



53

Table 4.4Absolute Error �(�) − �(�) in prosed methods for Problem 2

The limit errors of problem 2 at h=0.01 indicates that, there is efficient and also there is

increase in accuracy as the step size increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 2.29052886260 × 10−8 2.44762532285 × 10−8 2.2202542524 × 10−9

0.2 6.64310516730 × 10−8 7.10377410203 × 10−8 6.0536028839 × 10−9

0.3 1.191852394561 × 10−7 1.261146551429 × 10−7 1.04591383620 × 10−8

0.4 1.753891695194 × 10−7 1.836554620108 × 10−7 1.49268492006 × 10−8

0.5 2.320695261927 × 10−7 2.406372550465 × 10−7 1.92780913557 × 10−8

0.6 2.877073789723 × 10−7 2.957058454524 × 10−7 2.34240888276 × 10−8

0.7 3.415580066366 × 10−7 3.483660977100 × 10−7 2.73491723262 × 10−8

0.8 3.932955744375 × 10−7 3.984458126537 × 10−7 3.10514314178 × 10−8

0.9 4.428219505277 × 10−7 4.459779662777 × 10−7 3.45461634043 × 10−8

1.0 4.901614715746 × 10−7 4.911068128354 × 10−7 3.78482211166 × 10−8
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Table 4.5 Numerical Comparison of Exact Solution and the Proposed Methods for
Problem 3 for � = �. ��

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000

0.1 1.0500417292784912682 1.0500417293457835468 1.0500417292741132458 1.0500417292799142976

0.2 1.1003353477310755806 1.1003353479770131443 1.1003353477024359703 1.1003353477362294525

0.3 1.1511404359364668053 1.1511404364899374194 1.1511404358437530280 1.1511404359484509096

0.4 1.2027325540540821910 1.2027325550756534539 1.2027325538286751584 1.2027325540770755735

0.5 1.2554128118829953416 1.2554128135847063960 1.2554128114150377147 1.2554128119236178801

0.6 1.3095196042031117155 1.3095196068782244240 1.3095196033199264267 1.3095196042714339901

0.7 1.3654437542713961691 1.3654437583415579519 1.3654437526905396956 1.3654437543849120799

0.8 1.4236489301936018069 1.4236489362870485254 1.4236489274514709661 1.4236489303813397814

0.9 1.4847002785940517416 1.4847002876810812149 1.4847002739123865338 1.4847002789110383465

1.0 1.5493061443340548457 1.5493061579730394425 1.5493061363158179051 1.5493061448811208414

The Table 4.5 shows the numerical results of problem 3. The results show that the

proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.6 Absolute Error �(�) − �(�) in prosed methods for Problem 3

The results of the errors of problem 3 at h=0.01, proved that as the number of step size

� increases, the accuracy increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 6.729227860 × 10−11 4.3780224000 × 10−12 1.4230294000 × 10−12

0.2 2.459375637 × 10−10 2.8639610300 × 10−11 5.1538719000 × 10−12

0.3 5.534706141 × 10−10 9.2713777300 × 10−11 1.1984104300 × 10−11

0.4 1.0215712629 × 10−9 2.2540703260 × 10−10 2.2993382500 × 10−11

0.5 1.7017110544 × 10−9 4.679576269 × 10−10 4.0622538500 × 10−11

0.6 2.6751127085 × 10−9 8.8318528880 × 10−10 6.8322274600 × 10−11

0.7 4.0701617828 × 10−9 1.5808564735 × 10−9 1.1351591080 × 10−10

0.8 6.0934467185 × 10−9 2.7421308408 × 10−9 1.8773797450 × 10−10

0.9 9.0870294733 × 10−9 4.6816652078 × 10−9 3.1698660490 × 10−10

1.0 1.36389845968 × 10−8 8.0182369406 × 10−9 5.4706599570 × 10−10
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Table 4.7a Numerical Comparison of Exact Solution and the Proposed Methods
for Problem 4 at � = �. �� for ��(�)

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000

0.1 1.2214027581601698339 1.2214027614936890907 1.2214027568391019275 1.2214027581979879566

0.2 1.4918246976412703178 1.4918247112672642709 1.4918246921329415725 1.4918246977909539644

0.3 1.8221188003905089749 1.8221188341859906962 1.8221187866604442706 1.8221188007609200285

0.4 2.2255409284924676046 2.2255409962035175750 2.2255409008568002254 2.2255409292304573299

0.5 2.7182818284590452354 2.7182819489298926880 2.7182817791494409138 2.7182818297714603770

0.6 3.3201169227365474895 3.3201171214932372457 3.3201168412922787940 3.3201169248967472082

0.7 4.0551999668446745872 4.0552002781300832569 4.0551998391111892266 4.0551999702275362944

0.8 4.9530324243951148037 4.9530328937775461772 4.9530322315788535380 4.9530324294894164708

0.9 6.0496474644129460837 6.0496481521225351670 6.0496471817874609251 6.0496474718768422907

1.0 7.3890560989306502272 7.3890570841179821452 7.3890556937844913932 7.3890561096141137358

The Table 4.7a shows the numerical results of problem 4for �1 . The results show that

the proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.7b Numerical Comparison of Exact Solution and the Proposed Methods
for Problem 4 at � = �. �� for ��(�)

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000

0.1 1.2214027581601698339 1.2214027581601698339 1.2214027568391027627 1.2214027581980047577

0.2 1.4918246976412703178 1.4918246976412703178 1.4918246921329449417 1.4918246977910167792

0.3 1.8221188003905089749 1.8221188003905089749 1.8221187866604522664 1.8221188007610667348

0.4 2.2255409284924676046 2.2255409284924676046 2.2255409008568155653 2.2255409292307309945

0.5 2.7182818284590452354 2.7182818284590452354 2.7182817791494669294 2.7182818297719146439

0.6 3.3201169227365474895 3.3201169227365474895 3.3201168412923188767 3.3201169248974443106

0.7 4.0551999668446745872 4.0551999668446745872 4.0551998391112479099 4.0551999702285565759

0.8 4.9530324243951148037 4.9530324243951148037 4.9530322315789366535 4.9530324294908558229

0.9 6.0496474644129460837 6.0496474644129460837 6.0496471817875750743 6.0496474718788228966

1.0 7.3890560989306502272 7.3890560989306502272 7.3890556937846446480 7.3890561096167800977

The Table 4.7b shows the numerical results of problem 4for �2 . The results show that

the proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.8a Absolute Error �(�) − ��(�) in prosed methods for Problem 4

The errors of this method at each k-step show that error becomes smaller as the step size

increases. It also observed that there is accuracy as step size increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 3.33351925680 × 10−9 1.32106790640 × 10−9 3.78181227 × 10−11

0.2 1.36259939531 × 10−8 5.5083287453 × 10−9 1.496836466 × 10−10

0.3 3.37954817213 × 10−8 1.37300647043 × 10−8 3.704110536 × 10−10

0.4 6.77110499704 × 10−8 2.76356673792 × 10−8 7.379897253 × 10−10

0.5 1.204708474526 × 10−7 4.93096043216 × 10−8 1.3124151416 × 10−9

0.6 1.987566897562 × 10−7 8.14442686955 × 10−8 2.1601997187 × 10−9

0.7 3.112854086697 × 10−7 1.277334853606 × 10−7 3.3828617072 × 10−9

0.8 4.693824313735 × 10−7 1.928162612657 × 10−7 5.0943016671 × 10−9

0.9 6.877095890833 × 10−7 2.826254851586 × 10−7 7.4638962070 × 10−9

1.0 9.851873319180 × 10−7 4.051461588340 × 10−7 1.06834635086 × 10−8
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Table 4.8b Absolute Error �(�) − ��(�) in prosed methods for Problem 4

The errors of this method at each k-step show that error becomes smaller as the step size

increases. It also observed that there is accuracy asstep size increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 3.3335192598 × 10−9 1.3210670712 × 10−9 3.78349238 × 10−11

0.2 1.36259939693 × 10−8 5.5083253761 × 10−9 1.497464614 × 10−10

0.3 3.37954817740 × 10−8 1.37300567085 × 10−8 3.705577599 × 10−10

0.4 6.77110500879 × 10−8 2.76356520393 × 10−8 7.382633899 × 10−10

0.5 1.204708476599 × 10−7 4.93095783060 × 10−8 1.3128694085 × 10−9

0.6 1.987566901028 × 10−7 8.14442286128 × 10−8 2.1608968211 × 10−9

0.7 3.112854091582 × 10−7 1.277334266773 × 10−7 3.3838819887 × 10−9

0.8 4.693824320877 × 10−7 1.928161781502 × 10−7 5.0957410192 × 10−9

0.9 6.877095901085 × 10−7 2.826253710094 × 10−7 7.4658768129 × 10−9

1.0 9.851873333544 × 10−7 4.051460055792 × 10−7 1.06861298705 × 10−8
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Table 4.9a Numerical Comparison of Exact Solution and the Proposed Methods
for Problem 5at� = �. �� for��(�)

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000

0.1 1.1051709180756476248 1.1051709181718426061 1.1051709180567076248 1.1051709180759226178

0.2 1.2214027581601698339 1.2214027585269294230 1.2214027580864674606 1.2214027581611853332

0.3 1.3498588075760031040 1.3498588084233101488 1.3498588074048068427 1.3498588075783428844

0.4 1.4918246976412703178 1.4918246992202831534 1.4918246973207343640 1.4918246976456077872

0.5 1.6487212707001281468 1.6487212733095189148 1.6487212701688798820 1.6487212707072904351

0.6 1.8221188003905089749 1.8221188043836797233 1.8221187995764798993 1.8221188004014437088

0.7 2.0137527074704765216 2.0137527132637676051 2.0137527062877824178 2.0137527074863338145

0.8 2.2255409284924676046 2.2255409365744872851 2.2255409268406922300 2.2255409285145615380

0.9 2.4596031111569496638 2.4596031220991699819 2.4596031089193912222 2.4596031111868564171

1.0 2.7182818284590452354 2.7182818429278272601 2.7182818254983103173 2.7182818284985564271

The Table 4.9a shows the numerical results of problem 5 for �1 . The results show that

the proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.9b Numerical Comparison of Exact Solution and the Proposed Methods
for Problem 5 at � = �. �� for ��(�)

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.0000000000000000000 0.0000000000000000000 0.0000000000000000000 0.0000000000000000000

0.1 0.11051709180756476248 0.11051709228030670605 0.11051709169612794148 0.11051709180940785620

0.2 0.24428055163203396678 0.24428055341312486004 0.24428055120503029077 0.24428055163872184030

0.3 0.40495764227280093120 0.40495764634303308340 0.40495764129541600832 0.40495764228796231964

0.4 0.59672987905650812712 0.59672988656697339034 0.59672987725109747114 0.59672987908416248188

0.5 0.82436063535006407340 0.82436064765134635083 0.82436063239531075998 0.82436063539506242708

0.6 1.0932712802343053849 1.0932712989103736644 1.0932712757599482442 1.0932712803020394347

0.7 1.4096268952293335651 1.4096269221368480101 1.4096268887982308965 1.4096268953262951206

0.8 1.7804327427939740837 1.7804327801078204364 1.7804327339000666331 1.7804327429273981733

0.9 2.2136428000412546974 2.2136428503072393416 2.2136427881011495413 2.2136428002198322288

1.0 2.7182818284590452354 2.7182818946548164375 2.7182818127856068953 2.7182818286924831261

The Table 4.9b shows the numerical results of problem 5 for �2 . The results show that

the proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.10a Absolute Error � � − ��(�) in prosed methods for Problem 5

The errors of this method at each k-step compared with the exact solution shows that

error becomes smaller as the step size increases. it is also observed that there is efficient

and accuracy as step size increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100
0.00000000000
× 100

0.1 9.61949813 × 10−11 1.89400000 × 10−11 2.749930 × 10−13

0.2 3.667595891 × 10−10 7.37023733 × 10−11 1.0154993 × 10−12

0.3 8.473070448 × 10−10 1.711962613 × 10−10 2.3397804 × 10−12

0.4 1.5790128356 × 10−9 3.205359538 × 10−10 4.3374694 × 10−12

0.5 2.6093907680 × 10−9 5.312482648 × 10−10 7.1622883 × 10−12

0.6 3.9931707484 × 10−9 8.140290756 × 10−10 1.09347339 × 10−11

0.7 5.7932910835 × 10−9 1.1826941038 × 10−9 1.58572929 × 10−11

0.8 8.0820196805 × 10−9 1.6517753746 × 10−9 2.20939334 × 10−11

0.9 1.09422203181 × 10−8 2.2375584416 × 10−9 2.99067533 × 10−11

1.0 1.44687820247 × 10−8 2.2375584416 × 10−9 3.95111917 × 10−11
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Table 4.10b Absolute Error �(�) − ��(�) in prosed methods for Problem 5

The errors of this method at each k-step compared with the exact solution shows that

error becomes smaller as the step size increases. it is also observed that there is efficient

and accuracy as step size increases.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 4.7274194357 × 10−10 1.1143682100 × 10−10 1.84309372 × 10−12

0.2 1.78109089326 × 10−9 4.2700367601 × 10−10 6.68787352 × 10−12

0.3 4.07023215220 × 10−9 9.7738492288 × 10−10 1.516138844 × 10−11

0.4 7.51046526322 × 10−9 1.80541065598 × 10−9 2.765435476 × 10−11

0.5 1.230128227743 × 10−8 2.95475331342 × 10−9 4.499835368 × 10−11

0.6 1.86760682795 × 10−8 4.4743571407 × 10−9 6.77340498 × 10−11

0.7 2.69075144450 × 10−8 6.4311026686 × 10−9 9.69615555 × 10−11

0.8 3.73138463527 × 10−8 8.8939074506 × 10−9 1.334240896 × 10−10

0.9 5.02659846442 × 10−8 1.19401051561 × 10−8 1.785775314 × 10−10

1.0 6.61957712021 × 10−8 1.56734383401 × 10−8 2.334378907 × 10−10
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Table 4.11a Numerical Comparison of Exact Solution and the Proposed Methods
for Problem 6 at � = �. �� for ��(�)

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000

0.1 1.1188214758263820948 1.1188214659556514293 1.1188214681566830554 1.1188214754062051301

0.2 1.2716437576738549729 1.2716437305228945590 1.2716437359341537888 1.2716437565398388727

0.3 1.4549532239084352809 1.4549531782837742246 1.4549531867575094045 1.4549532219933551514

0.4 1.6672039939252308198 1.6672039316329515119 1.6672039422946649040 1.6672039912937684955

0.5 1.9082543256056969387 1.9082542496934643571 1.9082542614231205466 1.9082543223598613623

0.6 2.1789977736182262353 2.1789976874656861387 2.1789976990235336677 2.1789977698761334726

0.7 2.4811258413465451293 2.4811257482379941206 2.4811257582765876593 2.4811258372142764251

0.8 2.8169798161847030997 2.8169797191474114638 2.8169797262745719953 2.8169798117563023046

0.9 3.1894635362182133462 3.1894634380005282949 3.1894634407551647253 3.1894635315695534350

1.0 3.6019982713677825036 3.6019981744856380611 3.6019981712894638995 3.6019982665608147121

The Table 4.11a shows the numerical results of problem 6 for �1. The results show that

the proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.11b Numerical Comparison of Exact Solution and the Proposed Methods
for Problem 6 at � = �. �� for ��(�)

t Exact 2SBHBDF 3SBHBDF 4SBHBDF

0.0 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000

0.1 1.0824199884910901748 1.0824200051988278997 1.0824200012234128341 1.0824199891921174204

0.2 1.1376677589706946021 1.1376678052003208622 1.1376677950069845199 1.1376677608634287591

0.3 1.1747014470219494758 1.1747015253225366920 1.1747015084836254564 1.1747014502199894520

0.4 1.1995258705013361479 1.1995259785325025582 1.1995259556975010180 1.1995258748986766636

0.5 1.2161661791908468270 1.2161663126696098373 1.2161662847451238931 1.2161661846196841982

0.6 1.2273205116776468742 1.2273206659136690119 1.2273206338313627512 1.2273205179436520716

0.7 1.2347974843436955088 1.2347976549733900425 1.2347976196397396412 1.2347974912731347580

0.8 1.2398094490054084462 1.2398096322862802725 1.2398095944508510359 1.2398094564450483982

0.9 1.2431690693881768598 1.2431692622635727131 1.2431692225263847537 1.2431690772157698542

1.0 1.2454210902778164549 1.2454212903314757443 1.2454212491796604128 1.2454210983948924869

The Table 4.11b shows the numerical results of problem 6 for �2. The results show that

the proposed methods 2SBHBDF, 3SBHBDF, and 4SBHBDF agree well with the exact

solution as illustrated in the tabulated results. The results also proved that as the number

of step size � increases, the accuracy increases.
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Table 4.12a Absolute Error �(�) − ��(�) in prosed methods for Problem 6

The errors of this method at each k-step show that error becomes smaller as the step size

increases. It also observed that there is accuracy asstep size increases.

t 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 9.8707306655 × 10−9 7.6696990394 × 10−9 4.201769647 × 10−10

0.2 2.71509604139 × 10−8 2.17397011841 × 10−8 1.1340161002 × 10−9

0.3 4.56246610563 × 10−8 3.71509258764 × 10−8 1.9150801295 × 10−9

0.4 6.22922793079 × 10−8 5.16305659158 × 10−8 2.6314623243 × 10−9

0.5 7.59122325816 × 10−8 6.41825763921 × 10−8 3.2458355764 × 10−9

0.6 8.61525400966 × 10−8 7.45946925676 × 10−8 3.7420927627 × 10−9

0.7 9.31085510087 × 10−8 8.30699574700 × 10−8 4.1322687042 × 10−9

0.8 9.70372916359 × 10−8 8.99101311044 × 10−8 4.4284007951 × 10−9

0.9 9.82176850513 × 10−8 9.54630486209 × 10−8 4.6486599112 × 10−9

1.0 9.68821444425 × 10−8 1.000783186041 × 10−7 4.8069677915 × 10−9
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Table 4.12b Absolute Error �(�) − ��(�) in prosed methods for Problem 6

The errors of this method at each k-step show that error becomes smaller as the step size

increases. It also observed that there is accuracy as step size increases.

Figure 4.1 – 4.6 shows the graph for Absolute Errors in the Proposed Methods for

Problem 1 – 6.

� 2SBHBDF 3SBHBDF 4SBHBDF

0.0 0.00000000000 × 100 0.00000000000 × 100 0.00000000000 × 100

0.1 1.67077377249 × 10−8 1.27323226593 × 10−8 7.010272456 × 10−10

0.2 4.62296262601 × 10−8 3.60362899178 × 10−8 1.8927341570 × 10−9

0.3 7.83005872162 × 10−8 6.14616759806 × 10−8 3.1980399762 × 10−9

0.4 1.080311664103 × 10−7 8.51961648701 × 10−8 4.3973405157 × 10−9

0.5 1.334787630103 × 10−7 1.055542770661 × 10−7 5.4288373712 × 10−9

0.6 1.542360221377 × 10−7 1.221537158770 × 10−7 6.2660051974 × 10−9

0.7 1.706296945337 × 10−7 1.352960441324 × 10−7 6.9294392492 × 10−9

0.8 1.832808718263 × 10−7 1.454454425897 × 10−7 7.4396399520 × 10−9

0.9 1.928753958533 × 10−7 1.531382078939 × 10−7 7.8275929944 × 10−9

1.0 2.000536592894 × 10−7 1.589018439579 × 10−7 8.1170760320 × 10−9
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Figure 4.1 Plot of Absolute Errors in the Proposed Methods for Problem 1

The Figure 4.1 above shows the absolute error of the proposed methods of 2SBHBDF,

3SBHBDF and 4SBHBDF. From the figure above, it shows that 4SBHBDF has least

error which implies that k=4 produce better result than 2SBHBDF and 3BHBDF. Also

3BHBDF has lesser absolute error than 2SBHBDFwhich proved that as number of step

size k increases, the smaller the error.
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Figure 4.2 Plot of Absolute Errors in the Proposed Methods for Problem 2

Figure 4.2 above depicts the error of the proposed methods for problem 2. From the

above figure it shows that 4SBHBDF has an error closer to zero than 2BHBDF and

3BHBDF which implies that at k=4 produce better result than k=2 and k=3 while k=3

also producebetterthan k=2.
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Figure 4.3 Plot of Absolute Errors in the Proposed Methods for Problem 3

The Figure 4.3 above shows the absolute error of the proposed methods of 2SBHBDF,

3SBHBDF and 4SBHBDF. From the figure above, it shows that k=4 is better than k=3

and k=3 is better than k=2.
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Figure 4.4 Plot of Absolute Errors in the Proposed Methods for Problem 4

The Figure on the left hand side represents the absolute error for 1y while the figure on

the right hand side represents the absolute error for 2y . From the figure it is observed

that as the number of step k increases, the absolute error in the solution obtained with

the proposed methods reduces.
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Figure 4.5 Plot of Absolute Errors in the Proposed Methods for Problem 5

Figure 4.5: Absolute error in 1y (left)and 2y (right) using the proposed methods for

problem 5 with h=0.01.

From Figure 4.5, it is observed that as the number of step k increases, the absolute error

at k=4 for the proposed methods is smaller than k=2and k=3.
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Figure 4.6 Plot of Absolute Errors in the Proposed Methods for Problem 6

Figure 4.6: Absolute error in 1y (left)and 2y (right) using the proposed methods for

Figure problem 6.

From Figure 4.6: It shows that k=4 performs better than k=3 while k=3 performs better

than k=2.

Figure 4.6: Absolute error in 1y (left) and 2y (right) using the proposed methods for

problem 6.

From Figure 4.6: It shows that k=4 performs better than k=3 while k=3 performs better

than k=2.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this research, block hybrid backward differentiation of order (k+1) have been

developed by the interpolation and collocation techniques with the incorporation of k

off- step points for the solution of second order ordinary differential equations (ODEs).

The power series expansion was used as the basis function. It also proved that the

methods are consistent, zero- stable and convergent. Six problems were used to test the

efficiency of the methods. It was also observed from the error tables and figures that the

BHBDF performed better in solving problems of second order ordinary differential

equation as they produce lesser errors. Hence, this our method has developed a

supremacy over already existing literatures.

5.2 Recommendation for Further Work

It is proposed for further research that;

i. Other basis functions asides power series be considered (Legendre Polynomial).

ii. The number of k- steps be increased as a chance of testing further the performance

of the methods.

5.3 Contributions to Knowledge

The research work incorporated some carefully selected off-grid points in the derivation

process of a class of k-step liner multistep methods has improved the order of accuracy

of the method for the solution of some classes of second order ordinary differential

equations. It is established from the analysis that the off-grid points 1
2

, 3
2

, 5
2

, 11
4

,
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and 15
4

, 31
8

yield order of accuracy    3,3,3,3,3,3,3,3 , 4, 4, 4, 4, 4, 4, 4, 4, 4, 4T Tp p 

and  5,5,5,5,5,5,5,5,5,5,5,5 Tp  respectively. Furthermore, the study has been able

to develop a reliable methods in solving problems resulting from engineering and

sciences among others with maximum errors of 10-9.
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