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ABSRACT

This thesis considered the study of thermodiffusion effects on flow of a nanofluid
towards stretching sheet with applied magnetic field and convection. The problems, one
dimensional unsteady state with suction and two dimensions steady state are presented.
Similarity transformations are applied to reduce the equations that govern the flow to a
system of coupled nonlinear ordinary differential equations. The problems are solved
using the Adomian decomposition method. The results obtained for skin frictions
(  / / 0f ) and Nusselt number (  / 0 ) are compared with the existing literatures and

a good agreement is established. Concrete graphical analysis is carried out to study the
effects of emerging physical parameters such as velocity ratio, magnetic parameter,
thermal Grashof number, solutal Grashof number, Prandtl number, Lewis number,
Brownian motion and Dufour number. The velocity ratio was kept constant (A = 0.1)
throughout the study except cases where it was varied. The Grashof numbers are found
to enhance the fluid velocity while the magnetic parameter is a reduction agent. Prandtl
number and Lewis number are seen as reduction agents to the fluid temperature and
solutal concentration profile respectively.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

A number of works have been performed to gain an understanding of the heat transfer

performance for the practical application to heat transfer enhancement. Thus the advent

of high heat flow processes has created significant demand for new technologies to

enhance heat transfer. There are several methods to improve the heat transfer efficiency.

Some of these methods are utilization of extended surfaces, application of vibration to

the heat transfer surfaces, and usage of micro channels. Heat transfer efficiency can also

be improved by increasing the thermal conductivity of the working fluid. Commonly

used heat transfer fluids such as water, ethylene glycol, and engine oil have relatively

low thermal conductivities, when compared to the thermal conductivity of solids (Yusuf

et al., 2019).

High thermal conductivity of solids can be used to increase the thermal conductivity of

a fluid by adding small solid particles to that fluid. The feasibility of the usage of such

suspensions of solid particles with sizes on the order of 2 millimetres or micrometers

was previously investigated by several researchers and the following significant

drawbacks were observed (Das et al., 2008).

a. The particles settle rapidly, forming a layer on the surface and reducing the heat

transfer capacity of the fluid.

b. If the circulation rate of the fluid is increased, sedimentation is reduced, but the

erosion of the heat transfer devices increases rapidly.

c. The large size of the particles tends to clog the flow channels, particularly if the

cooling channels are narrow.

d. The pressure drop in the fluid increases considerably.
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e. Finally, conductivity enhancement based on particle concentration is achieved (the

greater the particle volume fraction is, the greater the enhancement and greater the

problems, as indicated above).

Thus, the route of suspending particles in liquid was a well known but rejected option

for heat transfer applications.

However, the emergence of modern materials technology provided the opportunity to

produce nanometer-sized particles which are quite different from the parent material in

mechanical, thermal, electrical, and optical properties.

Nanofluid is a new kind of heat transfer medium, containing nanoparticles (1–100 nm)

which are uniformly and stably distributed in a base fluid. These distributed

nanoparticles, generally a metal or metal oxide greatly enhance the thermal conductivity

of the nanofluid, increases conduction and convection coefficients, allowing for more

heat transfer (Yusuf et al., 2018).

According to Yusuf et al. (2019), nanofluids have been considered for applications as

advanced heat transfer fluids for decades. However, due to the wide variety and the

complexity of the nanofluid systems, no agreement has been achieved on the magnitude

of potential benefits of using nanofluids for heat transfer applications. Compared to

conventional solid–liquid suspensions for heat transfer intensifications, nanofluids

having properly dispersed nanoparticles possess the following advantages:

-High specific surface area and therefore more heat transfer surface between particles

and fluids.

-High dispersion stability with predominant Brownian motion of particles.

-Reduced pumping power as compared to pure liquid to achieve equivalent heat transfer

intensification.
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-Reduced particle clogging as compared to conventional slurries, thus promoting

system miniaturization.

-Adjustable properties, including thermal conductivity and surface wet ability, by

varying particle concentrations to suit different applications.

1.2 Statement of the Problem

Khan et al. (2014) considered the Thermodiffusion effects on stagnation point flow of a

nanofluid towards a stretching surface with applied magnetic field. Similarity

transforms were applied to reduce the equations that govern the flow to a system of

nonlinear ordinary differential equations. Runge-Kutta-Fehlberg method is applied to

solve the system. Results were compared with existing solutions that are special cases

to the problem. The researchers did not put into consideration the effect of buoyancy,

the method employed did not give solutions at all points, but mesh points and lastly the

unsteady case was not considered.

1.3 Justification of the Study

A wide variety of industrial processes involve the transfer of heat energy. Throughout

any industrial facility, heat must be added, removed, or moved from one process stream

to another and it has become a major task for industrial necessity. These processes

provide a source for energy recovery and process fluid heating/cooling (Yusuf et al.,

2018). From the literatures available to the researchers, the study of thermo-diffusion

effects on magnetohydrodynamics stagnation point flow towards a stretching sheet in a

nanofluid with convection has not been explored.
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1.4 Aim and Objectives of the Study

1.4.1 Aim of the study

The aim of this study is to carry out the study of thermo-diffusion effects on

magnetohydrodynamics stagnation point flow towards a stretching sheet in a nanofluid

with convection.

1.4.2 Objectives of the study

The objectives of this present study are to:-

i. transform the Partial differential equation (PDE) formulated to ordinary

differential equations (ODE) using the similarity equations.

ii. solve the set of transformed non linear, coupled, ordinary differential equations

(ODE) using the Adomian Decomposition Method (ADM).

iii. validate the results obtain with the existing literature.

iv. present and analyse the solutions with the help of the graphical representations.

v. Verify the effects of the various dimensionless parameters that appears in the

solutions.

1.5 Scope and Limitation

The Partial Differential Equation (PDE) formulated from the problem is presented in its

rectangular coordinate system. The appropriate similarity transformations and stream

functions are used to transform the partial differential equations to ordinary differential

equations. Non linear coupled ordinary differential equations are derived,

corresponding to velocity, temperature, solutal concentration and nanoparticle

concentration equations. These equations are solved using Adomian Decomposition

Method. The effect of various parameters that appeared are analysed with the help of

graphs. This work is limited to incompressible nanofluid dynamics.
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1.6 Definition of Terms

Fluid: A substance which deforms continuously when shear stress is applied to it no

matter how small, such as liquid or gas which can flow, has no fixed shape and offers

little resistance to an external stress.

Nanofluid: it is a fluid containing nanometer-sized particles, called nanoparticles.

Buoyancy: is the force that causes objects to float when submerged in a fluid.

Steady flow: it is when all properties of flow are independent of time.

Unsteady flow: it is when all properties of flow are time-dependent.

Grashof number: is a dimensionless number in fluid dynamics and heat transfer

which approximates the ratio of the buoyancy to viscous force acting on a fluid. It

frequently arises in the study of situations involving natural convection. It is named

after the German engineer Franz Grashof.

Prandtl number (Pr): the relationship between the thickness of two boundary layers at

a given point along the plate depend on the dimensionless prandtl number which is the

ratio of the momentum diffusivity � or �
�

to the thermal diffusivity ∝ or �
���

.

Boundary Layers:- boundary layer is defined as that part of moving fluid in which the

fluid motion is influenced by the presence of a solid boundary. As a specific example of

boundary layer formation, consider the flow of fluid parallel with a thin plate, when a

fluid flows at high Reynolds number past a body, the viscous effects may be neglected

everywhere except in a thin region in the vicinity of the walls . This region is termed as

the boundary layer.

Magnetohydrodynamics: is the study of magnetic properties and behavior of

electrically conducting fluids.

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Buoyancy
http://en.wikipedia.org/wiki/Viscous
http://en.wikipedia.org/wiki/Natural_convection
http://en.wikipedia.org/wiki/Franz_Grashof
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Convection: is the conveying of heat from part of a liquid or gas to another by the

movement of heated substances.

Stagnation Point: A point in the flow where the local velocity is zero.

������������ �����: change in density of fluid with time

0
t





Incompressible flow: fluid motion with negligible changes in density �

0


t


Lewis number (Le): is defined as the ratio of the Schmidt number (Sc) and the Prandtl

number (Pr). The Lewis number is also the ratio of thermal diffusivity and mass

diffusivity.

�� = ∝
�

= ��
��

= �ℎ�����
����

Brownian motion: the erratic random movement of microscopic particles in a fluid, as

a result of continuous bombardment from molecules of the surrounding medium.

Skin friction: friction at the surface of a solid and a fluid in relative motion.

Nusselt number (Nu): is defined as the ratio of convection heat transfer to fluid

conduction heat transfer under the same conditions.

Nu =
���������� ℎ��� ��������
���������� ℎ��� ��������

Thermodiffusion: is the thermal conductivity divided by density and specific heat

capacity at constant pressure. α =
ℎ��� ���������

ℎ��� ������
= �

���
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Reviews on Fluid Dynamics

Over the years boundary layer flows have been of much interest to researchers because

of their real world applications such as engineering melt spinning, manufacturing of

rubber sheets, glass fiber production, and so on. One of these boundary layer flows is

the stagnation point flow. Cooling of electronic devices by fans, cooling of nuclear

reactors during emergency shutdowns, etc. are the applications of stagnation flows.

Crane (1970) first studied this problem for stagnation point flow towards a solid surface.

After this seminar work, many researchers explored various aspects of boundary layer

flows incorporating innumerable physical configurations (Banks, 1983).

In real world, most of the fluids such as water, kerosene oil, ethylene, glycol, and others

are poor conductors of heat due to their lower values of thermal conductivity. To cope

up with this problem and to enhance the thermal conductivity or other thermal

properties of these fluids, a newly developed technique is used which includes, addition

of nano-sized particles of good conductors such as copper, aluminum, titanium, iron

and other oxides to the fluids. Choi (1995) was the first one to come up with this idea

and also showed that the thermal conductivity of conventional fluids can be doubled by

adding nano particles to base fluids that also incorporate other thermal properties. These

enhancements can be used practically in electronic cooling, heat exchangers, double

plane windows. Buongiorno (2006) presented a more comprehensive model for the

nanotechnology based fluids that unveils the thermal properties superior to base fluids.

He discussed all the convective properties of nanofluids by developing a more general

model. After these developments in nanofluids, Khan and Pop (2010) were the first to

study boundary layer flow over a stretching sheet by using the model of Nield and

Kuznetsov (2009). Mustafa et al. (2011) presented first study on stagnation point flow
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of a nanofluid. They presented both Brownian motion and thermophoresis effects on

transport equations by reducing them to a nonlinear boundary value problem. One can

easily find enough literature on nanofluid flows, however some of the studies are

reported in Nadeem and Haq (2013) and references therein. Study of electrically

conducting fluids hold importance due to applications in modern metallurgy and metal

working processes. Magnetic nanofluids are used to regulate the flow and heat transfer

by controlling the fluid velocity. Mahaputra (2002) studied MHD stagnation point flow

over a stretching sheet using numerical simulations. MHD stagnation point flow for

nanofluid was presented by Ibrahim et al. (2013) employing fourth order Runge-Kutta

technique. Some other studies regarding magneto-nanofluids are presented in Nadeem

and Lee (2012) and references therein. In all presented studies, Soret and Dufour effects

were neglected. It is a well-known fact that the temperature and concentration gradients

present mass and energy fluxes, respectively. Concentration gradients result in Dufour

effect (diffusion-thermo) while Soret effect (thermal-diffusion) is due to temperature

gradients. Such effects play a significant role when there are density differences in the

flow. For the flows of mixture of gases with light molecular weights and moderate

weights, Soret and Dufour effects cannot be neglected. Thermo-diffusion effects on the

flow over a stretching sheet are examined by Awad et al. (2013).

Ramachandra et al. (1988) have investigated the mixed convection flow in the

stagnation flow region of a vertical plate. The steady stagnation-point flow towards a

permeable vertical surface was investigated by Ishak et al. (2008). Li et al. (2011)

introduced an analysis of the steady mixed convection flow of a viscoelastic fluid

stagnating orthogonally on a heated or cooled vertical flat plate. Makinde (2012)

examined the hydromagnetic mixed convection stagnation-point flow towards a vertical

plate embedded in a highly porous medium with radiation and internal heat generation.



9

Mabood and Khan (2014) introduced an accurate analytical solution (series solution)

for MHD stagnation-point flow in a porous medium for different values of the Prandtl

number and the suction/injection parameter. An unsteady boundary layer plays

important roles in many engineering problems like a start-up process and a periodic

fluid motion. An unsteady boundary layer has different behaviors due to extra time-

dependent terms, which will influence the fluid motion pattern and the boundary-layer

separation. Kumara et al. (1992) have studied the unsteady mixed convection flow of an

electrically conducting fluid at the stagnation point of a two-dimensional body and an

axisymmetric body in the presence of an applied magnetic field. Seshadri et al. (2002)

studied the unsteady mixed convection in the stagnation-point flow on a heated vertical

plate where the unsteadiness is caused by the impulsive motion of the free stream

velocity and by sudden increase in the surface temperature (heat flux). Hassanien et al.

(2004) analyzed the problem of unsteady free convection flow in the stagnation-point

region of a rotating sphere embedded in a porous medium. The unsteady flow and heat

transfer of a viscous fluid in the stagnation region of a three-dimensional body

embedded in a porous medium was investigated by Hassanien et al. (2006). Hassanien

and Al-Arabi (2008) studied the problem of thermal radiation and variable viscosity

effects on unsteady mixed convection flow in the stagnation region on a vertical surface

embedded in a porous medium with surface heat flux. Fang et al. (2011) investigated

the boundary layers of an unsteady incompressible stagnation-point flow with mass

transfer. Shateyi and Marewo (2014) have numerically investigated the problem of

unsteady MHD flow near a stagnation point of a two-dimensional porous body with

heat and mass transfer in the presence of thermal radiation and chemical reaction.

Rosali et al. (2014) discussed the effect of unsteadiness on mixed convection boundary-

layer stagnation-point flow over a vertical flat surface embedded in a porous medium.
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During the past decade, the study of nanofluids has attracted enormous interest from

researchers due to their exceptional applications to electronics, automotive,

communication, computing technologies, optical devices, lasers, high-power X-rays,

scientific measurement, material processing, medicine, and material synthesis, where

efficient heat dissipation is necessary. Nanobiotechnology is also a fast-developing field

of research and application in many domains, such as in medicine, pharmacy, cosmetics

and agro-industry. Nanofluids are prepared by dispersing solid nanoparticles in base

fluids such as water, oil, ethylene glycol, or others. According to Yacob et al. (2011),

nanofluids are produced by dispersing the nanometer-scale solid particles into base

liquids with low thermal conductivity such as water and ethylene glycol. Nanoparticles

are usually made of metal, metal oxide, carbide, nitride, and even immiscible nanoscale

liquid droplets. Congedo et al. (2009) compared different models of nanofluids

(regarded as a single phase) to investigate the density, specific heat, viscosity, and

thermal conductivity, and discussed the water–Al2O3 nanofluid in detail by using

Computational Fluid Dynamics (CFD). Hamad et al. (2011) introduced a one-parameter

group to represent similarity reductions for the problem of magnetic field effects on

free-convective nanofluid flow past a semi-infinite vertical flat plate following a

nanofluid model proposed by Buongiorno (2006). Hady et al. (2012a) studied the

radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly

stretching sheet with variable wall temperature. Also, Hady et al. (2012b) studied the

problem of natural convection boundary-layer flow past a porous plate embedded in a

porous medium saturated with a nanofluid using Buongiorno’s model. Further, Abu-

Nada and Chamkha (2010) presented the natural convection heat transfer characteristics

in a differentially heated enclosure filled with CuO–ethylene glycol (EG)–water

nanofluids for different variable thermal conductivity and variable viscosity models.
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Rudraswamy and Gireesha (2014) studied the problem of flow and heat transfer of a

nanofluid over an exponentially stretching sheet by considering the effect of chemical

reaction and thermal radiation. Besthapu and Bandari (2015) presented a study on the

mixed convection MHD flow of a Casson nanofluid over a nonlinear permeable

stretching sheet with viscous dissipation. Numerical solutions of the natural convection

flow of a two-phase dusty nanofluid along a vertical wavy frustum of a cone is

discussed by Siddiqa et al. (2016a). The bioconvection flow with heat and mass transfer

of a water-based nanofluid containing gyrotactic microorganisms over a vertical wavy

surface was studied by Siddiqa et al. (2016b). Kameswaran et al. (2016) studied

convective heat transfer in the influence of nonlinear Boussinesq approximation,

thermal stratification, and convective boundary conditions on non-Darcy nanofluid flow

over a vertical wavy surface.

The effects of radiation on unsteady free convection flow and heat transfer problem

have become more important industrially. At high operating temperature, radiation

effect can be quite significant. Many processes in engineering areas occur at high

temperature and knowledge of radiation heat transfer becomes very important for

design of reliable equipments, nuclear plants, gas turbines and various propulsion

devices or aircraft, missiles, satellites and space vehicles. Based on these applications,

Cogley et al. (1968) showed that in the optically thin limit, the fluid does not absorb its

own emitted radiation but the fluid does absorb radiation emitted by the boundaries.

Hossain and Takhar (1996) have considered the radiation effects on mixed convection

boundary layer flow of an optically dense viscous incompressible fluid along a vertical

plate with uniform surface temperature. Makinde (2005) examined the transient free

convection interaction with thermal radiation of an absorbing emitting fluid along
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moving vertical permeable plate. Satter and Hamid (1996) investigated the unsteady

free convection interaction with thermal radiation of an absorbing emitting plate.

Vasu and Manish (2015) studied the problem of two-dimensional transient

hydrodynamic boundary-layer flow of an incompressible Newtonian nanofluid past a

cone and plate with constant boundary conditions. Gireesha et al. (2015) introduced a

numerical solution for hydromagnetic boundary-layer flow and heat transfer past a

stretching surface embedded in a non-Darcy porous medium with fluid-particle

suspension. The unsteady forced convective boundary-layer flow of an incompressible

non-Newtonian nanofluid over a stretching sheet when the sheet is stretched in its own

plane is investigated by Gorla and Vasu (2016). Gorla et al. (2016) investigated the

transient mixed convective boundary-layer flow of an incompressible non-Newtonian

quiescent nanofluid adjacent to a vertical stretching surface. The unsteady flow and heat

transfer of a nanofluid over a contracting cylinder was studied by Zaimi et al. (2014).

Srinivasacharya and Surender (2014) studied the effects of thermal and mass

stratification on natural convection boundary-layer flow over a vertical plate embedded

in a porous medium saturated by a nanofluid.

Abdullah et al. (2018) studies the effects of Brownian motion and thermophoresis on

unsteady mixed convection flow near the stagnation-point region of a heated vertical

plate embedded in a porous medium saturated by a nanofluid. The plate is maintained at

a variable wall temperature and nanoparticle volume fraction. The presence of a solid

matrix, which exerts first and second resistance parameters, is considered in the study.

A suitable coordinate transformation is introduced and the resulting governing

equations are transformed and then solved numerically using the local nonsimilarity

method and the Runge-Kutta shooting quadrature. The effects of various governing

parameters on the flow and heat and mass transfer on the dimensionless velocity,
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temperature, and nanoparticle volume fraction profiles as well as the skin-friction

coefficient, Nusselt number, and the Sherwood number are displayed graphically and

discussed to illustrate interesting features of the solutions. The results indicate that as

the values of the thermophoresis and Brownian motion parameters increase, the local

skin-friction coefficient increases whereas the Nusselt number decreases.

Moreover, the Sherwood number increases as the thermophoresis parameter increases,

and decreases as the Brownian motion parameter increases. On the other hand, the

unsteadiness parameter and the resistance parameters enhance the local skin-friction

coefficient, local Nusselt number, and the local Sherwood number.

Flow of a nanofluid in a boundary layer in an inclined moving sheet at angle Θ is

considered analytically by Yusuf et al. (2019), the Mathematical formulation consists of

the Magnetic parameter, thermophoresis, and Brownian motion. Solutions to

momentum, temperature and concentration distribution depends on some parameters.

The non linear coupled differential equations were solved using the improved Adomian

decomposition method and agreement was established with the numerical method

(Shooting technique). The result shows that the velocity and temperature profile of the

fluid increases in the thermal Grashof number due to the presence of buoyancy effects.

2.2 Adomian Decomposition Method (ADM)

Begin with an equation    Fu t g t , where F represents a general nonlinear ordinary

differential operator involving both linear and nonlinear terms. The linear term is

decomposed into L R , where L is easily invertible and R is the remainder of the

linear operator. For convenience, L may be taken as the highest order derivative which

avoids difficult integrations which result when complicated Green’s functions are

involved (Adomian, 1994). Thus the equation may be written

Lu Ru Nu g   (2.1)
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where Nu represents the nonlinear terms. Solving for Lu ,

Lu g Ru Nu   (2.2)

Because L is invertible, an equivalent expression is

1 1 1 1L Lu L g L Ru L Nu      (2.3)

If this corresponds to an initial-value problem, the integral operator 1L may be

regarded as definite integrals from 0t to t . If L is a second-order operator, 1L is a

twofold integration operator and      1 /
0 0 0L Lu u u t t t u t     . For boundary value

problems (and, if desired, for initial-value problems as well), indefinite integrations are

used and the constants are evaluated from the given conditions.

1 1 1u A Bt L g L Ru L Nu       (2.4)

The nonlinear term Nu will be equated to
0

n
n
A




 , where the nA , are special polynomials

to be discussed, and u will be decomposed into
0

n
n
u




 , with 0u identified as

1A Bt L g 

1 1
0

0 0 0
n n n

n n n
u u L R u L A

  
 

  

     (2.5)

Consequently, we can write
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1 1
1 0 0

1 1
2 1 1

1 1
1

.

.

.

n n n

u L Ru L A

u L Ru L A

u L Ru L A

 

 

 


  


  







   

(2.6)

The polynomials nA , are generated for each nonlinearity so that 0A , depends only on

0u , 1A , depends only on 0u ,and 1u , 2A , depends on 0u , 1u , 2u , etc. All of the nu ,

components are calculable, and
0

n
n

u u




 . If the series converges, the n -term partial

sum
1

0

n

n i
i
u





 will be the approximate solution since
0

lim n in i
u u






  by definition.

It is important to emphasize that the nA can be calculated for complicated nonlinearities

of the form     /,  ,...  or .f u u f g u

Khan et al. (2014) considered an incompressible, Magnetohydrodynamic stagnation

point flow of a nanofluid towards a stretching sheet with wall temperature wT , solutal

concentration Cw , nanoparticle concentration w and , C ,  and T    at larger values of

the stretching sheet respectively. The governing equation for continuity, momentum,

temperature, solutal and nanoparticle concentrations are written as follows:

0u v
x y
 

 
 

(2.7)

 
22 2
0

2 2
BUu u u uu v U U u

x y x x y




 

      
               (2.8)
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22 2

2 2

2 2

2 2

T
m B

TC

DT T T T T T T Tu v D
x y x x y y T x yx y

C CD
x y

  


                
                                

  
   

(2.9)

2 2 2 2

2 2 2 2S CT
C C C C T Tu v D D
x y x y x y

         
                  

(2.10)

2 2 2 2

2 2 2 2
T

B
D T Tu v D

x y Tx y x y
   



         
                  

(2.11)

Subject to the boundary condition:

,   0,  ,  C= C ,  =   0
,  ,C C , =   y

w w w wu U ax v T T y
u U bx T T

 
    

     
     

(2.12)

The present work extends Khan et al. (2014) by introducing the buoyancy parameter

and considered the work in two cases of the extension (one dimensional unsteady state

with suction and two dimensions steady state). The analysis is also carried out using the

Adomian decomposition method. From the available literatures, this innovation is new.
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CHAPTER THREE

3.0 MATERIALSAND METHODS

3.1 Problem Formulation

Considering an incompressible, Magnetohydrodynamic stagnation point flow of a

nanofluid towards a stretching sheet with wall temperature wT , solutal concentration

Cw , nanoparticle concentration w and , C ,  and T    at larger values of the stretching

sheet respectively. Following the formulation in Khan et al. (2014) with natural

convection. The governing equation for continuity, momentum, temperature, solutal and

nanoparticle concentrations are written as follows:

0v
y





(3.1)

     
2

2
02

u u uv B U u g T T g C C
t y y

      

   
            (3.2)

22 2

2 2
T

m B TC
DT T T T T Cv D D

t y y y T yy y
 



          
                  

(3.3)

2 2

2 2S CT
C C C Tv D D
t y y y

    
       

(3.4)

2 2

2 2
T

B
D Tv D

t y y T y
  



    
       

(3.5)

Subject to the boundary condition:

0,   ,  ,  C= C ,  =   0,   0
,  ,C C , =   y ,   t 0

w w wu U v v T T y t
u U T T

 
    

     
    

(3.6)
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0u v
x y
 

 
 

(3.7)

     
22 2
0

2 2
BUu u u uu v U U u g T T g C C

x y x x y
  



   

      
                   (3.8)

22 2

2 2

2 2

2 2

T
m B

TC

DT T T T T T T Tu v D
x y x x y y T x yx y

C CD
x y

  


                
                                

  
   

(3.9)

2 2 2 2

2 2 2 2S CT
C C C C T Tu v D D
x y x y x y

         
                  

(3.10)

2 2 2 2

2 2 2 2
T

B
D T Tu v D

x y x y T x y
   



         
                  

(3.11)

Subject to the boundary condition:

,   0,  ,  C= C ,  =   0
,  ,C C , =   y

w w w wu U ax v T T y
u U bx T T

 
    

     
     

(3.12)

where velocity along y axes isu ,  is the density of the base fluid,  is the kinematic

viscousity, σ is the electrical conductivity, m is the heat diffusivity, TK is the heat-

distribution ratio, g acceleration due to gravity,  volumetric coefficient of thermal

expansion, TCD is the Duffour diffusivity, 0B external magnetic field, CTD is the Soret

Diffusivity, pC is the specific heat capacity at constant pressure, BD is the Brownian

diffusion coefficient, TD is the thermopheric diffusion coefficient and
( )
( )

p

f

c
c





 is the

ratio of heat capacity of the particles to the effective heat capacity of the fluid with

sD as the solutal diffusisvity,   and  U U are the wall velocity and free stream velocity

respectively, t is time, 0v is suction parameter.

Equations (3.1) to (3.5) represent the 1-dimensional unsteady case with suction and (3.7)

to (3.11) is the 2-dimensional steady state with (3.6) and (3.12) as the boundary

conditions respectively.
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In other to reduce the PDEs into ODEs, the following similarity transformational

variables are defined as follows:

 ,   , , ,
2 w w w

T T C Cy u Uf s
T T C Ct

    
 

  

  

  
    

  
(3.13)

   /,   ,   , , ,
w w w

T T C Ca y u axf v a f s
T T C C

      
  

  

  

  
      

  
(3.14)

From the similarity equation in (3.13)
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(3.15)

Substituting (3.15) into (3.1) to (3.6)
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are Magnetic parameter, suction parameter, thermal Grashof number, solutal

concentration Grashof number, velocity ratio, Prandtl number, Brownian motion,

thermophoresis parameter, modified Dufour parameter, Lewis number, Dufour solutal

Lewis number, nano Lewis number.



24

From the similarity equation in (3.14)
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Introducing equation (3.17) into (3.7) to (3.12), the equations reduces to
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Introducing the operators into equations (3.19) we have
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where    1 1
1 2   and    L d d d L d d             (3.21)

Introducing the Adomian polynomials into (3.20) we have
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Where

   

 
 
 

2

0 1

0 2

0 3

0 4

1
2

1

1

1

f MA

s

 

  

 

  


   


  
 

  

(3.24)

are the initial guesses.

Using maple18 to evaluate the integrals we have the final solutions as:
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Similarly from Equation (3.18), we have
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Introducing the operators into equations (3.26) we have
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Introducing the Adomian polynomials into (3.27) we have



30

 1 1 1 / 1 1 2
1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 / /
2 2 2 2

0 0 0 0 0

1 1 / /
2 2

0 0 0

0

n n n n rT n rC n
n n n n n n

n r n r b n r t n r n
n n n n n

n n n
n n n

n
n

f L A L B ML A f G L G L s A

P L C PN L D PN L E PNdL s

s LeL F LeLdL









     
    

     

    
   

    

  
 

  





       

    

  

     

    

  

 1 1 / /
2 2

0 0

/ / / / / / / / /

/ /

 , ,C , ,  E

,

t
n n

n nb

n n n k n n n k n n n k n n n k n n n k

n n n k n n k

NLnL G Ln L
N

where A f f B f f f D

F f s G f



    



 
 

 

    

 










   

    


  

 

(3.28)

1 // 1 / / 1 / 1 1
1 1 1 1 1 1

0 0

1 / 1 / / 1 / / 1 //
1 2 2 2 2

0 0 0

1 / 1 //
1 2 2

0

1
1 2

n n

n n n k n n k n rT n rC n
k k

n n n

n r n n k r b n n k r t n n k r n
k k k
n

n n n k n
k

n

f L f f L f f ML f G L G L s

PL f PN L PN L PNdL s

s LeL f s LeLdL

LnL



     





    
  

 

   
   

  

 
 






     

    

  

 

 

  


/ 1 //

2
0

n
t

n n k n
k b

Nf Ln L
N

 

















(3.29)
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are the initial guesses.

Similarly, using maple18 to evaluate the integrals we have the final solutions as:
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The solution obtained from equations (3.25) and (3.31) are presented in the Appendices

A and B respectively.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Results

In this chapter, Tables showing the comparison of the results of the present method and

those in the literature such as Khan et al. (2014) and Ibrahim et al. (2013) are presented

and the variation of each dimensionless property that appear such as thermal Grashof

number, Lewis number, Prandtl number and Magnetic parameter are also presented

graphically with the aid of Maple 18.

Table 4.1: Comparison of values of  / / 0f with existing solutions for
0rC rTM G G  

A
Present
Results

Khan et al.
(2014)

Ibrahim et al.
(2013)

Mustafaa et al.
(2011)

0.01 -1.0534 -0.998 -0.998 -0.998
0.1 -0.9774 -0.9694 -0.9694 -0.9694
0.2 -0.9206 -0.9181 -0.9181 -0.9181
0.5 -0.6608 -0.6673 -0.6673 -0.6673
2 2.0223 2.0175 2.0175 2.0175

Table 4.2: Comparison of values for local Nusselt number  / 0 with existing
solutions for 0b tN N Nd  

Pr A Present
Results

Khan et al.
(2014)

Ibrahim et al.
(2013)

Mustafaa et al.
(2011)

1 0.1 0.6329 0.6021 0.6022 0.603
1 0.3 0.6564 0.6244 0.6255 0.625
1 0.5 0.6856 0.6924 0.6924 0.692

1.5 0.1 0.6965 0.7768 0.7768 0.777
1.5 0.3 0.7412 0.7971 0.7971 0.797
1.5 0.5 0.8124 0.8647 0.8648 0.863

Tables 4.1 and 4.2 above shows the comparison of the present work and previous works

published in the literature and agreement is observe between the present method and the
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previously published works.

4.2 Presentation of Graphical Results for Unsteady One Dimensional with

Suction

The graphical results for unsteady one dimensional with suction are presented and

discussed in this section.

Figure 4.1: Variation of Velocity ratio on the velocity profile for one dimension

Figure 4.1 shows the variation of the velocity ratio on the velocity profile and it is

observe that as the velocity ratio increases, the velocity boundary layer dropped. This is

as a result of the increase in the velocity ratio which rises above the boundary layer at

higher values.

f
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Figure 4.2: Variation of thermal Grashof number on velocity profile for one dimension

Figure 4.2 depicts the effects of thermal Grashof number on the velocity profile. It is

observe that as the Grashof number rises, the fluid velocity rises above the velocity

boundary layer.

Figure 4.3: Variation of solutal Grashof number on velocity profile for one dimension

f

f
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Figure 4.3 depicts the effects of solutal Grashof number on the velocity profile. It is

observe that as the Grashof number rises, the fluid velocity rises above the velocity

boundary layer.

It is also observe clearly that the thermal Grashof number increases the fluid velocity at

a faster rate with same values than the solutal Grashof number.

Figure 4.4: Variation of Prandtl number on temperature profile for one dimension

Figure 4.5: Variation of Prandtl number on nanoparticle profile for one dimension



36

Figures 4.4 to 4.5 presents the variation of Prandtl number on temperature profile and

nanoparticle concentration profiles. It is observe that as the Prandtl number increases

both the fluid temperature and nanoparticle concentration profile reduces.

Figure 4.6: Variation of Brownian motion on temperature profile for one dimension

Figure 4.7: Variation of Brownian motion on nanoparticle profile for one dimension
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Figure 4.6 to 4.7 depicts the effects of Brownian motion on temperature and

nanoparticle concentration profile respectively. The Brownian motion is seen to

enhance the both temperature and nanoparticle concentration profile. The rate of

increase of the nanoparticle is observed to be low.

Figure 4.8: Variation of suction parameter on velocity profile for one dimension

Figure 4.9: Variation of suction parameter on temperature profile for one dimension
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Figure 4.10: Variation of suction parameter on solutal concentration for one dimension

Figure 4.11: Variation of suction parameter on nanoparticle for one dimension

Figures 4.8 to 4.11 display the effects of suction parameter on fluid velocity,

temperature, solutal and nanopartcle concentrations respectively. It is observe that as

the suction parameter increases, the fluid velocity, temperature, solutal and nanoparticle

concentration all dropped.
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Figure 4.12: Variation of thermophoresis parameter on temperature for one dimension

Figure 4.13: Variation of thermophoresis parameter on nanoparticle for one dimension

Figure 4.12 to 4.13 presents the effect of thermophoresis parameter on temperature and

nanoparticle concentration profiles. It is observe that as the parameter increases the

fluid temperature and nanoparticle concentration also increases.
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Figure 4.14: Variation of modify Dufour parameter on temperature for one dimension

Figure 4.14 shows the effects of modify Dufour number on temperature parameter and

it is observe that as the dufour number increases the fluid temperature also increases.

Figure 4.15: Variation of Lewis number on solutal concentration for one dimension

Figure 4.15 shows the effects of Lewis number on the solutal concentration profile and

it is observe that as the Lewis number increases, the solutal concentration decreases.
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Figure 4.16: Variation of Dufour solutal Lewis number on solutal concentration for one

dimension

Figure 4.16 depicts the effect of Dufour solutal Lewis number on the solutal

concentration profile. It is seen that as the Dufour solutal Lewis number increases, the

solutal concentration boundary layer also increases.

Figure 4.17: Variation of nano Lewis number on nanoparticle for one dimension
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Figure 4.17 display the effects of nano Lewis number on nanoparticle concentration

profile. As the nano Lewis number increases, the nanoparticle concentration profile

dropped.

Figure 4.18: Variation of magnetic parameter on velocity profile for one dimension

Figure 4.18 display the effect of magnetic parameter on the fluid velocity and it is

clearly seen that the magnetic parameter is a decreasing agent of the fluid velocity due

to the Lorentz force that is produces.

4.4 Presentation of Graphical Results for Steady State Two Dimensions

The graphical results for steady state two dimensions are presented and discussed in this

section.
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Figure 4.19: Variation of velocity ratio on velocity profile for two dimensions

Figure 4.19 shows the effect of velocity ratio on the velocity profile. It is observer that

when the free stream velocity is lower than the stretching sheet (A=0.8, 0.4), the

velocity dropped below 1 and rises above when otherwise ( A= 2.8, 2.1, 1.4).

Figure 4.20: Variation of thermal Grashof number on velocity profile for two

dimensions
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Figure 4.20 shows the effects of thermal Grashof number on the velocity profile and it

is observe that as Grashof number increases, the velocity also increases due to the

buoyancy effect that is possess.

Figure 4.21: Variation of concentration Grashof number on velocity profile for two

dimensions

Figure 4.21 is the graph depicting the effects of solutal grashof number on the velocity

profile. It is observe that as the solutal Grashof number is enhancing the velocity profile

is also increasing.

Figure 4.22: Variation of magnetic parameter on velocity profile for two dimensions
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Figure 4.22 is the variation of magnetic parameter on the velocity profile and it is

observe that as the magnetic parameter increases, the velocity profile reduces due to the

drag like force present in the magnetic field.

Figure 4.23: Variation of Prandtl number on temperature profile for two dimensions

Figure 4.24: Variation of Prandtl number on nanoparticle profile for two dimensions
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Figure 4.23 to 4.24 shows the effects of Prandtl number on temperature and

nanoparticle concentration profiles. It is observe that as the Prandtl number increases,

the temperature of the fluid reduces while the nanoparticle concentration is enhancing.

Figure 4.25: Variation of Brownian motion on temperature profile for two dimensions

Figure 4.26: Variation of Brownian motion on nanoparticle profile for two dimensions
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Figure 4.25 to 4.26 are the graphs of Brownian motion parameter on the fluid

temperature and nanoparticle concentration profiles. It is seen that as the Brownian

motion parameter increases both fluid temperature and nanoparticle concentration also

increase.

Figure 4.27: Variation of thermopherosis parameter on temperature for two dimensions

Figure 4.28: Variation of thermopherosis parameter on nanoparticle for two dimensions
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Figure 4.27 to 4.28 are the graphs of thermopherosis parameter on the fluid temperature

and nanoparticle concentration profiles. It is seen that as the thermopherosis parameter

increases both fluid temperature and nanoparticle concentration also increase.

Figure 4.29: Variation of modify Dufour parameter on temperature for two dimensions

Figure 4.30: Variation of modify Dufour parameter on solutal for two dimensions
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Figure 4.31: Variation of modify Dufour parameter on nanoparticle for two dimensions

Figure 4.29 to 4.31 display the effects of modify Dufour number on the fluid

temperature, solutal and nanoparticle concentrations respectively. It is observe that as

the modify Dufour number is increasing, the temperature and the solutal concentration

are increasing agent while the nanoparticle concentration profile is a reduction agent.

Figure 4.32: Variation of Lewis number on solutal concentration for two dimensions
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Figure 4.32 shows the effects of Lewis number on solutal concentration profile and it is

observe that as the Lewis number increases, solutal concentration profile reduces.

Figure 4.33: Variation of nano Lewis number on nanoparticle for two dimensions

Figure 4.33 shows the effects of nano Lewis number on nanoparticle concentration

profile and it is observe that as the Lewis number increases, nano particle concentration

profile reduces.

Figure 4.34: Variation of Dufour solutal Lewis number on solutal for two dimensions
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Figure 4.34 presents the variation of Dufour solutal Lewis number on the solutal

concentration profile. It was observed that as the Dufour solutal Lewis number

increases the solutal concentration profile also increases.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This present study extends the work of Khan et al. (2014) by considering the natural

convection. The PDEs formulated in rectangular system was reduced to ODEs using

some transformational variables. The non linear coupled ODEs depends on some

physical parameters such as magnetic parameter, Lewis number, and Grashof number.

The following observations were made:-

1. The graphs presented in this work clearly satisfy the boundary conditions, which

imply that the problem is well posed.

2. The larger values of the dimensionless distance is choosing to be at 3  .

3. The results presented in this work were compared with the results of the existing

literatures as seen in Table 4.1 and 4.2 and a good agreement was established which

justify the choice of method.

4. The value of the velocity ratio was kept at A=0.1, except where it was varied.

5. All the parameters that were varied in the work have same effects on both one

dimensional and two dimensional cases considered, but the boundary layer

thickness varies.

6. This study presents the results of the problems considered at all point (semi-

analytically) unlike the work of Khan et al. (2014) which results were at mesh

points (Numerically).

5.2 Recommendations

1. Researchers are encouraged to extend the present study by adding more parameters

and obtain the result of the problem using a different approach other than ADM.

2. Researchers are also advised to consider the work in three dimensions for both

steady and unsteady state.
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Contribution to Knowledge

The following contributions were made to knowledge:

 The present work extends the work of Khan et al. (2014) by introducing the

buoyancy parameter and considered the work in two cases of the extension (one

dimensional unsteady state with suction and two dimensions steady state).

 This study present the results of the problems considered at all point

(analytically) unlike the work of Khan et al. (2014) which results were at mesh

points (Numerically).

 The study reveals that Prandtl number (0.1, 0.2, 0.3, 0.4), Lewis number (0.1,

0.2, 0.3, 0.4) and Magnetic parameter (0, 0.5, 0.6, 0.9) are seen as reduction

agents to the fluid temperature, solutal concentration profile and fluid velocity

respectively. Also, the Grashof number (0.1, 0.2, 0.3, 0.4) are found to enhance

the fluid velocity.
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