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ABSTRACT

The advection-dispersion equation is commonly employed in studying solute migration
in a flow. This study presents semi-analytical solution of two-dimensional contaminant
flow models incorporating the cross-flow dispersion parameter and a decay term for
evaluating groundwater contamination in a homogeneous finite medium. In deriving
the model equations, it was assumed that there was a constant point-source
concentration at the origin. Two models were considered: case 1 with Neumann
boundary conditions and case 2 with associated Dirichlet boundary conditions. The
cross-flow dispersion, horizontal dispersion, vertical dispersion, velocities and decay
terms are time-dependent. The model equations were transformed and solved by
combined parameter expanding method, Eigen-functions expansion method and direct
integration method. The results which investigate the effect of change in the parameters
on the concentration were discussed and represented graphically for suitable initial
values of
the parameters DL0  1.0, DT 0  1.5, DLT 0  4.0, q  3.0, u0  0.1, v0  0.1 and

  0.1, The study revealed that as the decay parameter increases, the contaminant
concentration decreases with time in the two cases considered, while in case 2, the
contaminant concentration declines with both time and distances as the values of the
parameters listed above increase.
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NOTATIONS

The following symbols are used in the project

K - permeability

Vp  pressure drop

Dx  horizontal dispersion

Dy  vertical dispersion

DL  Longitudinal dispersion coefficient

DT  vertical dispersion coefficient

s concentration of contaminant attached to porous media

DLT  cross-flow horizontal dispersion coefficient

DTL cross-cross-flow vertical dispersion coefficient

q  flow resistance parameter T 1
 

c  solute concentration in the liquid phase ML1 
 

v  seepage or average pure water velocity LT 1 
 

u  initial velocity  LT 1 
 

c 

initial concentration

 3 

0 ML 
R  initial concentration ML3 

i 

xv



R  retardation factor

 non-dimensional time variable

  decay parameter

x  the longitudinal direction of flow L

Dn  dispersion porosity of the different geologic formation

t  time variable

kd  distribution coefficient



CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Groundwater is the water found beneath Earth’s surface in cracks of rocks, and spaces in

soil. It is stored in and moves slowly through geologic formation of soil, sand and rocks

called aquifers. The depth at which soil pore spaces or fractures and voids in rock become

completely saturated with water is called water table. Groundwater is usually recharged

from the surface; it may discharge from the surface naturally at springs and seeps.

Groundwater, under most conditions, is safer and more reliable for use than surface water

(Paladino et al., 2018). Part of the reason for this is that surface water is more readily

exposed to pollutants (from sources such as factories) than groundwater. Thus groundwater

serves as an essential source of drinking water and other domestic use in most part of the

world. However, its contamination is one of the most typical hydro-geological and

environmental problems. Groundwater contamination occurs when pollutants are released

to the ground and make their way down into groundwater. This type of water pollution can

also occur naturally due to the presence of a minor and unwanted constituent, contaminant

or impurity in the groundwater (Jaiswal et al., 2011). The pollutant often creates a

contaminant plume within an aquifer which spreads the pollutant over a wider area. Its

advancing boundary, often called a plume edge, can intersect with groundwater wells or

daylight into surface water such as seeps and springs making the water supplies unsafe for

humans and wildlife. The movement of the plume may be analyzed through a hydrological

transport model or groundwater model. Analysis of groundwater pollution may focus on

soil characteristics and site geology, hydrogeology, hydrology and the nature of the

contaminants. In many parts of the world,
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groundwater resources are under increasing threat from growing demands, wasteful use

and contamination. The fare and transport of solute in soils and groundwater has long

been a focus of experimental and theoretical research in subsurface hydrology. Solute

transport in the soil and the groundwater is affected by a large number of physical,

chemical and microbial processes, such as on-site sanitation systems, landfills, effluent

from wastewater treatment plants, leaking sewers, petrol filling stations or from over

application of fertilizers in agriculture and the properties of the media. Once the

groundwater is contaminated, it is extremely difficult and costly to remove the

contaminants from the groundwater (Gurganus, 1993). In many practical situations, one

needs to predict the time behavior of a contaminated groundwater layer. Most of the

groundwater contaminants are reactive in nature and they infiltrate through the Vadoze

zone, reach the water-table, and continue to migrate in the direction of groundwater

flow. Therefore, it is essential to understand the transport process of contaminants

through the subsurface porous media.

1.2 Statement of the Research Problem

The importance of the utilization of groundwater resources continues to grow due to the

increasing requirement for water for irrigation, drinking, commercial, agricultural and

industrial proposes. From this, we can see that water become an even more important part

of human life. Contaminated groundwater can enter the food chain and cause many life-

threatening diseases and problems. The effect of drinking contaminated or dirty water

causes waterborne disease. Contaminated water can cause many types of diarrheal diseases,

including Cholera, and other serious illnesses, such as Guinea worm disease, Typhoid and

Dysentery. The solution to this problem is to approximate when the water from the primary

source of drinking will become a hazardous zone. Hence, sustainable management planning

must be developed for groundwater systems. The main focus of
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this study is to consider the transport and fate of reactive contaminant and determine

how to take care of problems associated with it. A number of mathematical models

describing groundwater flow and solute transport in homogeneous and heterogeneous

porous domain have been developed in the past (Lee & Kim, 2012). Several methods

such as Laplace transform technique, Green’s function method and generalized integral

transform technique have been used to model and solve these problems in one - two

and three dimensions. Despites all efforts, contaminants still remain a major problem

that possess a threat, hence the need for this research.

1.3 Aim and Objectives of Study

The aim of this work is to carry out analysis of two-dimensional cross-flow of reactive

contaminants.

The objectives are to;

i. extend the work of Lee and Kim (2012) on two-dimensional cross-flow by

incorporating the decay and reactive contaminant term;

ii. solve the two-dimensional cross-flow model with Neumann boundary condition

using Eigen-Function Expansion Technique;

iii. solve the two-dimensional cross-flow model with Dirichlet boundary condition

using Eigen-Function Expansion Technique;

iv. obtain the graphical simulations of the solutions obtained;

v. find the effects of change of the parameters of the model on the concentration of

the contaminant.
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1.4 Justification of the Study

Groundwater contamination is a major problem related strongly to both; protection of

environment and the need of water. Due to the increasing interest in groundwater

protection, models for simulating contaminants fate and transport in the unsaturated

zone are valuable and useful tools in many scientific and engineering applications.

Several modeling approaches are available in the scientific literature, ranging from

models that solve a single equation (solute transport) to more complex models that

solve a set of governing equations (groundwater flow, solute transport, heat movement)

due to the increasing concern of the healthy hydro–environment nature for the existence

of life on earth. This problem has led to growing interest in the study of fate and

transport of contaminants through a homogeneous finite aquifer.

1.5 Scope of the Study

This research work considers a two-dimensional contaminants flow model

incorporating cross-flow dispersion and reaction term. This research however, does not

put in to consideration, three-dimensional contaminant flow.

1.6. Definition of Terms

Advection – Dispersion Equation (ADE): The ADE relates one or more function and

their derivatives either ordinary differential equation or partial differential equation.

Model: a simplified description of a system or process that can be used as an aide in

analysis or design.

Porous Media: is a solid matrix that is partially filled by interconnected voids (pores)

which can convey fluids under an applied gradient.
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Surface water: bodies of water on or above the surface of the earth such as lakes,

streams, ponds, wetlands

Aquifer: is a geological formation in an underground with structures or textures

capable of storing and transmitting water such as springs and wells.

Ground Water: is the water stored underground which flow downward saturating soils

or rocks and supplying springs and wells.

Ground Water Recharge: inflow of water to a ground water reservoir from the surface.

Discharge Rate: the rate at which water is removed from ground water reservoir.

Contamination: Is the introduction of any substance into the ground water as a result

of man’s activities causing significant degradation of water quality, deteriorating and

restricting water usage.

Contaminants: physical, chemical, biological and radiological substances in water

which are introduced by humans and are harmful.

Contaminate: to introduce a substance into waters that would cause the concentration

of that substance to exceed the maximum contaminant level.

Contaminant Transport Model: is the application of a mathematical model to

represent a regional ground water contamination problem.

Contamination Plume: is an area of degraded water in an aquifer resulting from

migration of a contaminant.

Point Source: a source of pollution that can be traced to or is released at a definable

single place.
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Pollution: any aspect of water quality (physical, thermal, chemical, or biological) that

interferes with an intended use.

Water Pollution: is an alteration of the physical, chemical or biological properties of a

water resource making it harmful or less fit for any beneficial water purpose and usage.

Pollution Source: is the origin of ground water pollution.

Molecular Diffusion: is the mass spreading of contaminants under a chemical

concentration gradient from an area of greater concentration towards an area of lower

concentration.

Advection: is the mass transportation process of solutes in ground water system caused

by the bulk movement of flowing ground water.

Leaching: a quantity of wood ashes, through which water passes and thus imbibes the

alkali

Sub- surface: a surface which is sub manifold of another surface.

Adsorption: the adhesion of a liquid or gas on the surface of a solid material forming a

thin film on the surface.

Porosity: a measure of how porous a material is, the ratio of the volume of pores to the

total volume

Advection: the horizontal movement of a body of atmosphere (or other fluid) along

with a contaminant transport of its temperature humidity. Dispersion: the state of being

dispersed.

Diffusion: the movement of water vapor from regions of high concentration (high

water vapor pressure) toward regions of lower concentration.

Hydrodynamic Dispersion: the dispersion or spreading of solutes, colloids, or heat in a

groundwater system which is caused by variations in the velocity and direction of flow.
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Retardation: the process by which a solute travel at a slower rate than the average

linear velocity because of partitioning onto the solid phase of the porous medium.

Retardation factor: a dimensionless number expressing the relative velocity of a

chemical in ground water to that of water. Retardation factor represents the delay in the

contaminants migration due to linear and instantaneous adsorption to the solid phase.

Diffusion Coefficient: the coefficient relating solute flux due to diffusion to the

concentration gradient.

Diffusivity: the ratio of conductivity to storage capacity

Distribution Coefficient: the measure of the tendency of a solute to sorb to the solid

phase of a porous media.

Remediation: is the reduction in concentration of contaminants to some acceptable or

usable level in ground water.

Percolation: is a process of downward movement of water and contaminants in the

unsaturated zone influenced by gravity and hydraulic force to the ground water system.

Permeability: the ability of a material to allow the passage of a liquid such as water.

Homogenous: is a characteristic of the same or similar nature that is uniform in

structure or composition throughout.

Homogeneity: the property of a parameter or system whose values are unchanged over

space.

Heterogeneous: is a characteristic of dissimilar nature that is different in structure or

composition.

Anthropogenic: created or caused, or induced by human actions
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Concentration: the amount of dissolved or colloidal species in water

Infiltration: the movement of water from the surface of the land into the subsurface.

Permeability: the ease with which a porous media can transmit water or other fluids.

Plume: a three dimensional body of fluid emanating from a point source or point

sources with a chemistry or physical composition differing from the ambient

groundwater, atmosphere, or surface water body.

Source: any point by which fluid, colloids, or heat is added to a groundwater system.

Geology: the fields of study concerned with the structure, evolution and dynamics of

the Earth and its natural mineral and energy resources.

Hydrogeology: is the area of geology that deals with the distribution and movement of

groundwater in the soil and rocks of the Earth’s crust.

Hydrology: is the science that encompasses the study of water on the Earth’s surface

and beneath the surface of the Earth, the occurrence and movement of water, the

physical and chemical properties of water, and its relationship with the living and

material components of the environment.
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Groundwater Contaminant Transport Models

Immiscible solute or tracer particles of pollutants are major cause of degradation of the

hydro-environment in the surface water bodies and aquifers, (Dilip et al., 2011). In most

cases, groundwater is safer and more reliable for use than surface water. One of the reason

is that surface water is more readily exposed to contaminants from sources such as

agricultural activities, indiscriminate disposal of all kinds of wastes, factories or traffic than

groundwater. Thus, groundwater is an important source of water for domestic use in

Nigeria as well as in other countries. However, the determination of the environmental

indicators of many ecosystems has led to stringent environmental control and an increase in

research into the fate of contaminant in water. The ability of practitioners and regulators to

predict the extent and the rate of dispersion of pollution plumes can help them develop

better pre-emptier or remedial strategies. The contaminant of soil and groundwater by

chemicals has become an increasing concern in the recent past years. These chemicals enter

the groundwater system by a wide variety of mechanisms including accidental spills, land

disposal of domestics and industrial wastes and application of agricultural fertilizers. Once

introduced into an aquifer, these contaminants are transported by flowing groundwater and

degraded water qualities at nearby wells and streams. For improving the management and

protection of groundwater resources, it is important to first understand the various

processes that can control the transport of contaminant in groundwater. Prediction of the

facts of groundwater contaminant can be to assess the effect of this chemical on local water

resources and to evaluate the effectiveness of remedial actions. There is need for the study

in the area of contaminant transport modeling for the prevention of unacceptable long-term

environmental impact
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of the contaminant. There are two major methods applied in examining contaminant

transport with regard to reactions in porous media. These methods are termed stochastic

and deterministic (Flury et al., 1998; Kia, 1991; Gao et al., 2013). Stochastic methods

deal with reaction coefficients and are considered to ‘be stationary processes’ (Loll &

Moldrup, 2000; Sleep & McClure, 2001; Deceuster & Kaufmann, 2012), or they may

be verified through a random hydraulic conductivity field (Miralles-Wilhem & Gelhar,

1996). As proper site-specific quantities are fundamental for simulation of contaminant

transport, these models are expensive and unlikely to be used in practical cases (Gao et

al., 2013). The other approach is to analyze which of the deterministic methods could

be simpler and more general compared to the stochastic methods (Gao et al., 2013) by

considering two dimensions for the soil medium and the possibility of it being

developed without Laplace transformation. One approach to consider deterministically

is to model the soil medium as a layered system in which each layer has its own

constant coefficients of reaction (Wu et al., 1997; Vanderborght & Vereecken, 2007;

Lewis & Sjöstrom, 2010). In order to allow early detection of possible contamination of

groundwater, Chegenizadeh et al., (2014) developed a prediction model by introducing

the concept of modeling of contamination transport through a soil matrix in a two-

dimensional convection-dispersion equation for contaminant transport in a soil matrix.

Their study includes the investigation of different reaction coefficients and time-

dependent inlet boundary conditions, from which a numerical solution is derived.

Ghoraba et al., (2013), investigated groundwater quality through hydro chemical analyses

in order to assess the quality of water in samples taken from the canals, drains and

groundwater. A laboratory study and mathematical modeling were presented in their work,

providing two numerical computer models by applying finite difference method to study

the flow of water as a three-dimensional and unsteady state. In their results, levels
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of water were determined and the values of solute concentration and distribution of

water in the region at different times were evaluated. They also proposed a groundwater

remediation scheme by using group of extraction wells at some region where the

concentration values of ammonium contaminants are the up most according to hydro

chemical analyses results. Also proposed scenario for cleaning to use a set of wells to

pump contaminated groundwater extraction for treatment and reused in irrigation.

Ghose et al., (2013), observed that in planning of water resource projects, the estimation of

the availability of water plays an important role. The first step in the water availability

estimation is the computation of runoff resulting from the precipitation on river catchments.

The length of the run off measured in a stream may be of short period or long period

depending upon the catchment characteristics. Therefore, keeping this in mind, their work

focused on two different model generation – runoff rating curves, considering present day

water level (H(t)) as input and present day runoff (Q(t)) as the model output; and runoff

prediction models, considering 1 day lag water level (H(t - 1)), 2 day lag water level (H(t-2))

and 1 day lag runoff (Q(t - 1)) as inputs and 1 day ahead runoff (Q(t+1)) as the output of the

model. Models developed which were used for prediction of runoff are Non-Linear

Multiple Regression (NLMR) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Both

models were trained and tested to predict the performance of models. Genetic Algorithm

(GA) is then coupled with NLMR model to obtain the condition of hydrological parameter

for which the runoff is maximum.

Seyf-Laye et al., (2012), developed a three-dimensional groundwater flow model to

evaluate the groundwater potential and assess the effects of groundwater withdrawal on

the regional water level and flow direction in the central Beijing area. They estimated

current contaminant fluxes to the central area and site streams via groundwater by

developing a program of groundwater model. The conceptual model developed for the
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site attempted to incorporate a complex stratigraphic profile in which groundwater flow

and contaminant transport is strongly controlled by a shallow aquifer. Their model

simulations indicated that a sharp drop in the hydraulic head occurs at the center of the

model area, which generates a cone of depression and a continuous decline of head

with respect to time as a result of heavy groundwater abstraction.

2.2 Groundwater Contaminant Models in One-Dimension

Mathematical modeling is a powerful tool in managing the groundwater resources and

rehabilitation of polluted aquifers. The distribution and behavior of contaminant

concentration along/against unsteady groundwater flow in aquifer is usually studied

through mathematical modeling as it is an essential approach to formulate the geo-

environmental problems and provides the best possible solution for reducing its impact on

the environment. The pollutant’s solute transport from a source through a medium of air or

water is described by a partial differential equation of parabolic type derived on the

principle of conservation of mass (Singh, 2011), and is known as advection-diffusion

equation (ADE). In one-dimension is contains two coefficients, one represents the diffusion

parameter and the second represents the velocity of the advection of the medium. A one-

dimensional solution can be suitable to model contaminant in laboratory columns, pollution

in aquifers where the contamination source extends through the saturated zone in either

transverse y and z directions or cases where dispersion in y and z directions can be

neglected (Moranda et al., 2018). Many one-dimensional exact analytical solutions in

closed form have been proposed, and scientists’ attention has been dedicated to solutions

that have time-dependent sources (Chen et al., 2017). A library of one-dimensional

analytical models that encloses some solution with source decay was proposed by Van

Genuchten et al., (1982). Guerrero et al., (2013) proposed a Duhamel theorem based

approach in order to compute one-dimensional solution with time
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dependent boundary conditions and gave some solution in closed form for exponential

source decay. The literature contains analytical solutions for solute transport in

homogenous and heterogeneous porous media. Analytical solution in one-dimensional

advection-dispersion transport equations in homogeneous medium have been collected

in various compendiums. These analytical solutions are useful for providing

contamination scenarios in risk analysis, to investigate the effects of chemical-physical

parameters on contaminant transport, and also to validate the numerical models

(Moranda et al., 2018). Singh et al., (2009), derived an analytical solution of solute

concentration for space-time variation in unsteady flow in a homogeneous finite aquifer

subjected to point source contamination under the conditions of the flow velocity in the

aquifer of sinusoidal form and the flow velocity as an exponentially decreasing function.

The sinusoidal form represents the seasonal variation in tropical regions. In their work,

it is found that the time dependent velocity has a significant effect on the migration of

pollutant in aquifers. Similarly, Singh et al. (2015), obtained analytical solutions for

one-dimensional solute dispersion along uniform groundwater flow in a semi-infinite

aquifer using the Laplace transform technique to describe the nature of the contaminant

concentration with respect to space and time for Dirichlet and Cauchy-type boundary

conditions. The results obtained for two expressions of temporally dependent

dispersion, such as the sinusoidally and exponentially increasing forms, are more

realistic as the time-dependent input concentration is considered at the source and more

significant than the uniform source of the input concentration.

Moranda et al., (2018), proposed an analytical solution in closed form of the advection-

dispersion equation in one dimensional contaminated soils which is valid for non-

conservative solutes with first order reaction, linear equilibrium sorption, and a time-
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dependent Robin boundary condition representing a combined production-decay release

mechanism. Their governing equation is written as:

S C x , t   D  2 C x , t    C x , t   C x , t 

tx 2x
(2.1)

subject to the following initial and boundary conditions

C x , 0  0, C 0, t   h t  

C x , t  

 D


x
  C 0, t   g t 



(2.2)

The above model is particularly useful to describe sources as the contaminant release

due to the failure in underground tanks or pipelines, on Aqueous Phase Liquid pools, or

radioactive decay series which shows that the use of the Robin boundary condition can

underestimate concentration profiles.

Purkayastha and Kumar (2018), presented an analytical solution for the one-

dimensional advection diffusion equation for studying the contaminant transport in

groundwater. The solution obtained in their work is for spatially varying diffusivity and

velocity terms along with time varying boundary conditions. The differential equation

considered in their paper is in the form of Legendre Linear Differential Equation which

is reduced to a linear differential equation having constant coefficients by a suitable

transformation. The final solution for differential equation in the transformed domain is

obtained by the method of Eigen-function expansions.

Yadav and Kumar (2017) described the analytical solution of spatially dependent solute

transport in one-dimensional semi-infinite homogeneous porous domain assuming that

the dispersion coefficient is considered spatially dependent, while seepage velocity is

considered exponentially decreasing function of space. Dispersion parameter and
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velocity are directly proportional to each other; space dependent retardation factor was

also taken. The nature of porous media and solute pollutant were considered chemically

non-reactive. Initially porous domain was considered solute free and the input source

condition was considered uniformly continuous. They presented the advection-

dispersion equation in one-dimension with initial and boundary conditions as follows:

R x , t  C   C 
 D x , t   u x , t C 

t xx  

C x , t   0


; t  0, x  0 


C x , t   C0 ; t  0, x  0




C x , t 


 0 ; t  0, x  

x



(2.4)

(2.5)

The following transformation was introduced to solve the advection dispersion equation

by Laplace Transformation Techniques

u x , t   u e mx 
0

mx D x , t   u D x , t   D e 0

R x , t   u R x , t   R e mx 
0



(2.6)

It was gathered that the trends of solute concentration with distance travelled in presence of

source contaminant and time are reducing in nature which may help to understand

rehabilitation tendency of the contaminated aquifer in the domain which may help as the

primary predictive tools in groundwater management system. From their obtained solution

of dispersion equation and graphs, they also concluded that the contaminant concentration

reduces with increasing retardation factor whereas increases with increasing time,

dispersion parameter and flow resistance coefficients and vice-versa.

2.3 Groundwater Contaminant Model in Two-Dimensions
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Limthanakul and Pochai (2020) proposed a two-dimensional mathematical model for

long-term contaminated groundwater pollution measurement around a land fill. The

model is governed by a combination of two models. The first model is a transient two-

dimensional groundwater flow model that provides the hydraulic head of the

groundwater.

S
H


x , z , t

  
 Kx

H

x , z , t


 


 Kz

H

x , z , t

 
   

t x  x  z  z 



H x , z , 0   h x , z 



h x , z , t   h z ,  z   0, I , x  0,


z


L 
h x , z , t 

 h x ,  x   0, I , z  M ,x 
z T z


h x , z , t 

 h z ,  z   0, I , x  M 
z x x R


h x , z , t 

 h x ,  x   0, I , z  0 
x 

z
B



(2.7)

(2.8)

The second model is a transient two-dimensional advection-diffusion equation that

provides the groundwater pollutant concentration.

c x , z , t   u c x , z , t   w c x , z , t   D  2 c x , z , t   D 2c x , z ,t   Q (2.9)
t x 2 z2x z x z



H x , z , 0   h x , z 



h x , z , t   hL z ,  z   0, I z , x  0,



h x , z , t  

 hT x ,  x   0, I x , z  M z

,

z
 


h x , z , t

 hR z ,  z   0, I z , x  M x



x
 


h x , z , t

 hB x ,  x   0, I x , z  0



z (2.10)

16



The explicit finite difference technique was used to approximate the hydraulic head and

the groundwater pollutant concentration. The simulations can be used to indicate when

each simulated zone becomes a hazardous zone or a protection zone.

Cole et al., (2017) considered (in two-dimensions) the steady state flow condition of the

contaminant transport where inorganic contaminants in aqueous waste solutions are

disposed off at the land surface where it would migrate through the vadoze zone to

underground water through the model equation:
c   c  c 

 D 
2


2

v 
x x

2

y
2

 

with the boundary conditions:

c

x , y

 0 
 c ; x  0, y  0 

c x , y 


 0; x 2  y2 


(2.11)

(2.12)

The two-dimensional advection dispersion equation which is solute transport model

without sorption or degradation was solved using change of variable method. The effect

of Peclet number on the concentration of contaminant was investigated when the Peclet

number is less that one and when the Peclet number is greater than one. The result

obtained revealed that the contaminant concentration increases along x-direction and

decreases along y direction for both values of the Peclet number - greater than one and

less than one.

Chegenizadeh et al., (2014) developed a prediction model that allows the early detection of

possible contamination by introducing the concept of the modeling of contamination

transport through a soil matrix and then presented a two-dimensional Convection-

Dispersion Equation (CDE) for contaminant transport in a soil matrix. They investigated

the effect of different reaction coefficients and time-dependent inlet boundary conditions,

from which a numerical solution is derived. The governing equation is system of
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uncoupled 2-dimensionalConvection-Dispersion Equation (CDE). The equations were

applied on the basis of constant water content, dispersion coefficient and velocity.

c b s  2 c c 
r   D r   r

   y cr 
 t y

2
t y 
c
r  b s  D  cr 

  c
r   xc 

2

t  t x 2 x r 

K d x   K 0  Cosh2
 x  
  
 x0  

 y  
K d  y   K 0  Cosh2  

 y0  


R x 
cr

 D
 2 cr

 
cr

 cr

t x 2 x


R  y 
cr

 D
 2 cr

 
cr

 cr

t y 2 y

bK d x


R x  1  


 

R  y   1  bK d  y  
 (2.13)

 

Ujile (2013) and Singh et al. (2015) at different times studied the two dimensional

contaminant flow with different boundary and initial conditions:

c  c  c c c
 D

2
 D

2
 u t   v t 

y2 2t x x y x y (2.14)

In order to understand the movement and dispersion of solutes in the flow, Lee and

Kim (2012) formulated the two-dimensional model:

c
 u

c


  c
 Dsn

c 


  c
 Dnn

c 
 Dss   Dsn 

(2.15)t s s ss  n  n  n 

Lee and Kim (2012) did not consider decay and reaction of the contaminant with

the fluid and solid matrix. In the study, a decay or reaction term and convective

term are incorporated in order to see the behavior of the concentration.
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2.4 Preferential Path and Transport Processes in Sub-Soil

Jarvis (2007) and Clothier et al., (2008) defined Preferential flow as the fast, non-

equilibrium flow of water infiltration in the soil that can reduce water and nutrient

availability, threaten groundwater, and cause natural disasters such as avalanches,

landslides, and mudslides. The residues in the soil are subjected to various processes,

viz, adsorption, movement and degradation. Advection carries the contaminant at an

average rate as a plug flow. However, in reality, the solute is seen to spread out from

the flow path. This spreading or mixing phenomenon is called dispersion. At the

microscopic level, the fluid flow within a porous medium is actually a movement along

the tortuous three dimensional passages in voids. The local velocities in the passages

are different from their macroscopic average values both in magnitude and in direction.

Due to the complexity of the micro-geometry of the porous media, one has to describe

the flow phenomena in porous media on a macroscopic basis. The spatial average

method is a way to transfer properties of porous media from microscopic level to the

macroscopic level. The dispersion consists of mechanical hydrodynamic dispersion and

molecular diffusion. Mechanical dispersion refers to the spreading and mixing caused

long variation in the velocity with which water moves and the fluid mixing due to the

effect of unresolved heterogeneities in the permeability distribution.

The molecular diffusion is caused by the non-homogeneous distribution of contaminant

in a fluid. The contaminant molecules in high concentration moves to the low

concentration areas to form a uniform concentration distribution. Several mechanisms

causing macroscopic mixing are generally accounted for in the dispersion coefficient,

viz, mixing due to tortuosity, inaccessibility of pore water, recirculation due to flow

restriction, macroscopic and hydrodynamic dispersion and turbulence in flow path. The

formation of a dispersion coefficient tensor for an anisotropic medium requires five
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dispersivities by Bear (1972). The effect of preferential flow processes on hydrological

processes has been widely discussed in the literature to predict soil solute transport and

soil erosion (Nieber & Sidle, 2010; Zhang et al., 2014 and Zhou et al., 2013).

Various factors have influenced the formation, distribution, and differentiation of the

preferential flow, leading to complex and diverse research on the preferential flow (Cheng

et al., 2011). Factors that affect preferential flow paths include soil types and structure,

biological activities (channels of roots and earthworms), soil moisture content, and

hydraulic conditions (Hardie et al., 2011; Vannoppen, et al., 2015; Yi, et al., 2019). Soil

types and structure have complex effects on preferential flow because of their spatial

heterogeneities, which can directly change the hydraulic properties, quantities and

distribution of soil macro-pores. Biological activities create complex channel systems that

could serve as preferential flow paths, thereby further influencing the lateral and vertical

movements of preferential flow (Bargues et al., 2014). The role of antecedent soil water in

preferential flow may differ under different soil and macro-pore conditions (Yao et al.,

2017). These factors primarily affect the density and distribution of preferential flow paths,

altering the soil macro-porous structure and its connectivity through the soil, and

consequently determining the scale and nature of the preferential flows. Hydraulic

conditions such as rainfall intensity, duration and total rainfall affects the momentum

balance of water flow driven primarily by gravity. Studies showed that increase in rainfall

intensity can enhance preferential flow as a result of increased soil water pressure (Wu et

al., 2014). However, spatial changes of preferential flow under different amounts of

precipitation have not been fully described and quantitatively tested, which are crucial to

understanding the mechanism of preferential flow in different rainfall events. Jimoh et al.,

(2017) used the Bubnov-Galerkin weighted residual method to solve a one-dimensional

contaminant flow problem which is characterized by advection,
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dispersion and adsorption was discretized and solved to obtain the semi-analytical

solution. The adsorption isotherm was assumed to be of Freudlich type. The results

obtained were expressed in graphical form to show the effect of change in the

parameters on the concentration of the contaminants. From the analysis of the results, it

was discovered that the contaminant concentration decreases with increase in the

distance from the origin as the dispersion and velocity coefficient decrease.

2.5 Saturated Porous Media

A porous medium or material is defined as a solid (often called a matrix) permeated by

an interconnected network of pores (voids) filled with a fluid, (Yeh et al., 2015).

Experimental investigations have shown that variation of porosity and hydraulic

gradient are responsible for the deviations from Darcy's law:

q   k p


(q= instantaneous flow rate, k = permeability,  

(2.16)

dynamic viscosity of fluid  p 

pressure drop), which is perfectly obeyed only when the fluid flow is laminar in porous

media (Alabi et al., 2009). Previous attempts to modify this equation considered only

the effects of porosity of surface-active materials such as clay in causing deviations

from Darcy's law. Alabi et al., (2009), considered both the effect of porosity of any

porous medium and hydraulic gradient from recent experimental data to propose a

general equation for both laminar and non-laminar or turbulent fluid flow in porous

media at any hydraulic gradient, including the boundary conditions.

The analytical models are the available tools for investigating solute transport in porous

media and for estimating potential for contaminant transport in groundwater. Analytical

solutions are usually derived from the basis of physical principles and are free from
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numerical dispersion and other truncation errors that often occurred in numerical

simulations. They also provided computationally-efficient tools for modeling the fate and

transport of groundwater contaminants plumes (Clement, 2001). In general, the analytical

models can be evaluated much more quickly than numerical solutions. In a given transport

equation, analytical solution would differ according to the assumed domain geometry, the

source geometry and boundary conditions. The ease of use, marks analytical transport

models in obvious foremost step in any mass transport modeling. Analytical solutions of

the advection-dispersion solute transport equation remain useful for a large number of

applications in water science and engineering, hydrological science and engineering,

environmental science and engineering (Das et al., 2017). The dominant process of solute

transport is advection moving aqueous chemical species along with fluid flow. Most of the

solute transport modeling begins with advective transport. The advection-dispersion

equation describes the spatial and temporal variation in solute concentration with specific

initial and boundary conditions. The governing equation known as the constant-parameter

advection-dispersion equation:

C C  C

 U  D
2

t x x
2

(2.17)

may be derived for the case of steady and unsteady flows. The traditional advection-

dispersion equation represents a standard model to predict the solute concentration in an

aquifer which is based on conservation of mass and Fick’s law of diffusion (Bear, 1972;

Fried & Combarnous, 1971). The simulation of solute transport in rivers is frequently based

on numerical models of the Advection-Dispersion Equation (Wallis, 2007).

Wexler (1989) presented analytical solutions to the advection- dispersion solute equation,

for a variety of boundary conditions types and solute-sources configurations in one, two

and three dimensional system having uniform groundwater flows. Solutions were
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presented in a simplified format, together with information on important assumption in

derivation and limitations to their use.

Numerical modeling of pollutant migration in porous media has recently a great deal of

attention due to an increased interest in the preservation of the quality of the

environment and particularly of the protection of groundwater from various pollutants.

The finite difference methods have traditionally been applied to solve flow and

transport equations. One of the most important implementations of the finite difference

approach is in the powerful code swift and its succeeding works.

2.6. Differential Equation (DE)

In mathematics, we call the changing entities as variables and the rate of change of one

variable with respect to another as a derivative. Equations expressing a relationship

among these variables and their derivatives are known as differential equations. In

order words, a differential equation originate whenever a universal law is expressed by

means of variables and their derivatives. Any equation containing differential

coefficients is called a differential equation. The order of differential equation is the

order of the highest differential coefficient contained in the differential equation while

the degree of differential equation is the power to which the highest differential

coefficient is raised when the equation is rationalized.

Ordinary Differential Equation (ODE): Ordinary differential equations are those

equations that involve only one independent variable and only ordinary differential

coefficients.

Partial Differential Equation (PDE): A partial differential equation is a mathematical

equation that involves relations between two or more independent variables, an unknown

function (dependent on those variables); and partial derivatives of the unknown function
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with respect to the independent variables. Partial differential equations are ubiquitous in

mathematically-oriented scientific fields, such as physics and engineering. They are

foundational in the modern scientific understanding of sound, heat, diffusion,

electrostatics, electrodynamics, fluid dynamics, electricity, general relativity and

quantum mechanics. They also arise from many purely mathematical considerations,

such as differential geometry and the calculus of variation; among other notable

applications, they are the fundamental tool in the proof of the Poincare conjecture from

geometric topology. The order of a partial differential equation is the order of the

highest derivative involved. Partial differential equations are used to mathematically

formulate, and this aid the solution of physical and other problems involving functions

of several variables, such as the propagation of heat or sound, fluid flow, elasticity,

electrostatics and electrodynamics.

Example of partial differential equation:

 w w
2


2

 0 (2.18)x 2 y 2

  


2

 0 (2.19)t y

2

In partial differential equations, it is common to denote partial derivative using

subscripts, that is

w  2 w (2.20)
xyxy

There are several methods of solving a PDE which can be classified either as analytical

or numerical methods. It is typically understood that any exact solution to a differential

equation (DE) that can be expressed in terms of polynomial, logarithmic/exponential,
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and/or trigonometric functions (elementary functions) is an analytical solution. Most

methods for analytically solving PDEs transform them into system of fairly

comprehensive list of techniques which include – separation of variables, integral

transform, integral equations, change of coordinates, dependent variable transforms,

perturbation methods, impulse response techniques, calculus of variations, Eigen-

function expansion.

2.7 Eigen-function Expansion Method

The method of Eigen-function expansion is one of the most elegant methods for various

problems resulting from partial differential equations. It is the method in which a solution

is represented in the form of a series in some functions closely related to an original

problem. Physically, in the simplest cases this approach corresponds to superposition of

stationary waves. Some applications of the method of Eigen-function date back to Euler,

Ostrogradskii was first to develop its general formation. The method of Eigen-function is

closely related to the Fourier method, or the method of separation of variables which is

intended for finding a particular solution of a differential equation. However, many

problems involve homogeneous reactions in the system or complicated coordinate systems

making the governing PDE more complicated and maybe requiring a more sophisticated

method to solve it. This is a typical diffusion – reaction problem in spherical coordinates

with first order consumption. Solving this PDE with separation of variables can be

somewhat confusing and cumbersome. One of the most often used methods of

mathematical physics which is called Eigen-function expansion method has been a

veritable tool for solving problems arising from aforementioned physical phenomenon by

contemporary researchers (El-Raheem, 2011 and Olayiwola et al., 2013).
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CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1. Model Formulation

We consider the transport of a contaminant through a homogeneous finite medium of

length x  L under transient state flow is assumed that at time t  0 , the flow is not clean

(that is, the domain is solute free). Let ci be the initial contaminant concentration and c x,

y , t  describe the distribution of the concentration at all points in the flow domain. A time

de concentration is assumed at the boundary x  0of the flow. The velocities of the flow

in the horizontal and vertical direction are u t  and v t  respectively. The dispersion DL ,

DT , DLT and DTL represent the horizontal dispersion coefficient, vertical

dispersion coefficient and cross-flow dispersion coefficients respectively.

3.1.1 The cross-flow contaminant flow model

Following the work of Lee and Kim (2012), the cross-flow contaminant flow model can

be formulated as follows:

c

s

 u
c

 v
c


  c

 DLT
c 


  c

 DT DL   DTL

t t x y x x y x y  
c  s  D  2 c  D  2 c  D  2 c  D  2 c  u c  v c

t t y x x yL x 2 T y 2 LT xy TL

1 kd 
c

 DL
 2 c

 DT
 2 c

 DLT
 2 c

 DTL
 2 c

 u
c

 vt x 2 y 2 xy y x x

where

DL  Longitudinal dispersion coefficient

c 

c

y 

c



yc c

(3.1)

(3.2)

(3.3)
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DT  vertical dispersion coefficient

DLT  cross-flow horizontal dispersion coefficient

DTL  cross-cross-flow vertical dispersion coefficient

c  solute concentration in the liquid phase
 1 
ML 

v  seepage or average pure water velocity
 LT

1


 

u  initial velocity LT 1 
 

  decay parameter

kd  distribution coefficient

s  concentration of contaminant attached to porous media

s
 k c

dt t

and DL , DT , DLT DTL , u vare functions of t

Let R  1 kd 

R c  DL f t   2 c  DT f t  
2 c  2DLT f t   2 c  u 0 f t  c  v0 f t c 0 f t c

t x 2 y 2 xy x y0 0 0

Divide equation (3.6) through by f t 

R c  c  c  c c c
 D

2
 D

2
 2D

2
 u  v c

f t  t 0L x 2
T y 2

LT xy x 0 y 0
0 0 0

Introducing a new time variable,
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  1  f t dt
R

where

f t   R eqt

 
f t 

t R

t



R

 f t 

Substituting equation (3.11) into equation (3.7), it becomes

t c  c  c  c c c
 D

2
 D

2
 2D

2
 u  v 0 c

 t L x 2
T y 2

LT xy x 0 y 0
0 0 0

c  c  c 
2
c c c

 D
2

 D
2
 2D  u  v 0 c

 L x 2
T y 2

LT xy x 0 y 0
0 0 0

Introducing a space variable,

  x  y D
T 0

D L 0

c


c




c

x  x 

c c  cD
T 0

  y  y D 
L0

 2 c   c    c  2c
      

x

2

x  

2

 x    
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(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



c        D 
 T 0 

  y  y D
 L0 

 c 
2

 
2
 D  D 

22
2  2    2   2T 0 T 0

y 

y





D


D 

L 0 L0

 2        D    D  2
 

 
T 0 T 0

 xy y x  D  D  2

   L 0 L0

Substituting into equation (3.13)

c  c D 2  c  c c D
T T

 D
2

 D
2

 2D
2

 u  v0 0

 L  2
T D  2

LT  2
0  0 D0 0 0

L L
0 0

c  D 2 D   c  D  c
T T T

  D   2D  2   u  v  0 0 0
  0 0   2   D D

0 0
D

 L 0 LT 0   0 
L L L

D 2 D DTLet D  DL   2DLT T , and u  u0  v0 T

D 0 0 0
0 0 D D

L L L
0 0 0

Equation (3.22) can be written as

c c
 0

0c

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Case 1:

c c c

 D
2

 u c  2 

The initial and boundary conditions are as chosen below

c  , 0   ci ;   0

c 0,    c0 1  e q ; x  0



c l ,    0,   l
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(3.24)

(3.25)

(3.26)

(3.27)



By transforming the boundary and initial condition, the equation becomes

c  c

 D
2

  2

c , 0  c
i

c 0,    c 
0

c l,    0


 u c 
c







2  q 







(3.28)

Non-dimensionalization

We non-dimensionalize equation (3.28)

c*  cci 


0 
* 


l 
 u 

 *  l 

Equation (3.28) becomes

with the aid of the dimensionless variables

(3.29)

c c
*

c  c
*

c c
*

 D
2

 u c c*0 0 0

l  *  l *  2  l * 0

u

c u c *
 Dc  2 c *

 uc c*
c c*0 0 0

l  * l 2  *2 l * 0

c * Dc l 2c * uc l c * lc *
   c

 l 0 c u  l 0 c u  c u* 2 *2 * 0
0 0 0

c
*

D  c
*

c
*

l
 2   c

*
 * lu  *2  * u

Where D* 
D
lu

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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The non-dimensionalized equation is

c
*

 c
*

c
* D 2   c

 *  * *
* *2 * (3.35)

The non-dimensionalized equation with the initial and boundary conditions of equation

(3.28) becomes

c *  D  2 c * 
c *  c 

 *   * *
* *2 *


c *, 0  c 
i 

c 0

c * 0,    2  q ;   0 
c 1,  0;  1 

* 

  
 

(3.36)

The parameter expanding method is applied to the equation (3.36) as follows:

Let c ,   c0  ,     c1  , ...
*

and 1  b in the advection term of equation (3.36) as used in Olayiwola

The following equation is obtained from equation (3.36)

 
        2       

c  ,    c  ,    2 c  ,   ...  D*
2
c  ,    c  ,    2 c

2
 ,  

 0 1 2  0 1

 b
   0  1  2  




  c  ,    c  ,    2 c  , 
      

  c  ,    c  ,    2 c  ,  ...
0 1 2

From equation (3.37) we generate the following equation

et al. (2013).

... 



... (3.37)








Order zero  0 :
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c 
 D 2 c,*

  2 0

c , 0  c i
0 c

0

c 0,    2  q
c 1,   0

0



Order zero  1 :

c 
 D 2 c,1 *

 2 1

c ,0  0
0

c 0,0
1

c 1,0
1













  b  c  ,    c, 


0 0









(3.38)

(3.39)

The above equations (3.33) and (3.35) are transformed to satisfy the homogeneous

boundary conditions. This is done by using the transformation:

g 0,    

where     2  q

so that

c0  ,    w0  ,   

That is,

c0  ,    w0  ,  

 

and 

g 0,

2  q

0



 0

(3.40)

(3.41)

(3.42)

Differentiating equation (3.42) we have

c0  c0  w0  c0  g0 (3.43) w  g
0


00
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c  w  q
0 0

 

Also,

c  c  w  c  g0 0 0 0

 w  g 
0



c0 



w0  0

 c   w 
2 0  0


2

  

 c  w
2  2

0 0
 2  2

Substituting back equations (3.44) and 3.48) into equation (3.38),

w  w
 q  D 2

0 * 0

  2

w 2 w
 D *



 q0 0

  2

Also from the initial and boundary conditions,

c0 0,    w0 0,    2  q  2  q

w0 0,    0




w0 1,    0;  1

For initial condition,
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(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)



c  , 0   w,0 2  c
i

0 0 c
0

w , 0  c  2i
0 c

0

The transformed equation (3.38) becomes

w  w 
 D 2  q0 * 0 

  2


w , 0  c  2 
i 0 c 0

w 0,0 
0 

w 1,0 
0 

 

Also from equation (3.39), we have

c  w
1 1

 

c  w
1 1

 

 2 c1  2 w1

 2  2

The transformed equation (3.39) becomes

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

w  w
 D 2

1 * 1
  2

w ,0  0
0

w 0,0
0
w 1,   0

0



 b w  w 
0

0 
 









(3.60)

Equation (3.56) is solved by the method of Eigen-function expansion as follows:
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The solution by Eigen-function expansion is of the form as used by Olayiwola et al.

(2013)

 2 n 1
0

,  
 n

  sin w w 2ln1

where

 *   2 n 1 
2

  t  
 D 

2 l
  F t dt  b ew e  

n n n
0

2
l

 

 F  ,   sin
2 n 1n 

 dF l 0 2l

b
n  2 l f   sin 2 n 1 d

l 0 2l

In this case, l 1

From equation (3.56), f    c  2 :
i
c
0

b 
2 l  c

 2

sin

2 n 1
 d  i n l c 2

0  0

b  2
 c

 2
 l
sin

2 n 1
 d

 i  n c 2
  00


 c





2 2 n 1
2

 i

2


cos
n

b

c


 2 n 1 2

0 

bn  
4  c

 2

0 1 i 

 2 n 1 
c
0 

 * 
D  



 2 n1  2


2l




1




 0

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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 b 4  c  2
2 n 1  i n c

 0

From equation (3.56), F x,    q

2
1
 


2 n 1n 

 dF 1 q sin
0 2


1 2 n 1

n 

 dF 2 q sin 20

2  2 n 1  1F    2 q cos  n

22 n 1   0

 F   4q
2 n 1n

Substitute bn   and Fn   into equation (3.62)

 *   2 n 1  2   *  2 n1 2
 D     t  4 q 4 D   

2 2wn    e    dt   c
i 2 e  

 2 n  1  2 n  10 
c
0 

 *   2 n 1  2

 c  *   2 n1 
2

4 q  D   t  4 D    2  dt   2 w e e 2 n  1    2 n 1  i  2   
n  c

0  0

 *

 2 n 1  2

  t 
   *  2 n1

4q 4  D   4 D 
2 2w

n   e 
    c

i  2 e  2n  1 1 2  2  2n 1D * 2n    c0 
 0

 *   2 n 1 
2

 


 c 
*   2 n1 

2

4q 4 4w   D  2     2 D  2  
1  e   i e  

2n  1 D
 



 2n 1
 n

*
2 2   0 

2n 1  c 
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(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

2


 (3.76)

(3.77)



 *   2 n 1 
2

 
  c  *   2 n1 216 q 4w  1  e  D  2   D  2   (3.78)

 


i
 2 e

   

 2 n 1
 

n D
*
2 n 1 3 

3  
c

 

*   2 n 1 

2

 c  *   2 n1 2
 D  

 16q  16q 
2

  4  2 D 
2

 (3.79)w e e     

 2n 1
 i   

n

 

D * 2n  1 3  3 D * 2n1 33  c

  c   *   2 n1  2

 16 q 16 q 4 D  w      2 2 i e   
  D   2 n 1  


(3.80)D * 2 n  1  3 * 2 n 1  3  c

 

n 3 3

Therefore c0  ,    w0 ,    g0  ,   (3.81)

 2 n 1
c0  ,    wn   sin   g 0   (3.82)2n1

 2 n 1
c0  ,    2  q  wn   sin  (3.83)2n1

   c  *   2 n1 
2

 


 16 q 16 q 4 D   2    2 n 1 
i  2 e    D 2 n  1 3 3 2 n 1 3  c  *   D *  3  

c  ,   2  q      0   (3.84)0  2 n 1n1

sin 
2

Recall


16 q  16 q 4   D 2 n  1  D 2 n 1   2 n 1

0
 * 3 3  * 3 3



w  2 n 1n1

sin 
2


8q  8q  ci

w0
   2  D * 2 2 D * 2 2

  2 n  1  2 n 1 
c
0

 n1 2 n 1cos 
2

 c 
 i

 c0




 2 




2 





D*

e

*   2 n1  2

 


D   e 2  


 (3.85)

  2 n1 2 


   


2
 

 (3.86)
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Equation (3.60) is solved by the method of Eigen-function expansion as follows:

The solution by Eigen-function expansion is of the form

 2 n 1
0

,  
 n

  sin w w
n1 2l

where

 *   2 n 1  2 *  2 n1 2

 D     t  D   2 2
wn    e    Fn t dt  bn e 


0

2
l

 

  ,   sin
2 n 1n 

 dF l F
0 2

bn
2
l F   sin

2 n 1
 dl 20

In this case, l 1

(3.87)

(3.88)

(3.89)

(3.90)

From equation (3.60)

2
1

 


2 n 1n 

sin  db 01 0 2

b 0
n

(3.91)

(3.92)

From equation (3.60),

F  ,    b w  w0

 0

2  w   
Fn    1 b 0  w0sin 2 n 1

 d

 21

0  

(3.93)

(3.94)
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Fn

Fn

Fn








  c  *   2 n1  2 

  8q 8q D   1 2  2  2 2l  2  i  e  

 
D

*  


2 
D

*
2 n 




2  c  
 0 

  2b 2 n  1 1 
0 n1 2 n  1 2 n 1

cos  sin  d
2 2

   c  *   2 n1 
2 16 q 16 q 4 D        2 2  2 n 1

i e  

1  D 2 n  1 3 2 n 1 3 3 c  *


3  D *  


2    0  

0 n1 2n  1 2 n 1

sin  sin  d
2 2

   c  *   2 n1 
2 
  8q 8q D   2   2  i  2 e   

  2 2 c 
D *  2n   2 

D *  2n    2   
 0 

  2b  
n1 1 1sin 2n 1 d2 0

   c  *   2 n1 

 16q 16q 2 D 
3 3   2 2 

 2n 1
 i e  

  D *


2n  1  3 D *


2n 1  3


c 

 2     0 
2n 1n1 1

 dsin 2

02

   c  
*   2 n1 

2 
  8q 8q D   2 2  2  2 2l    i e  

 D *  2n   2  D * 2n    2  c   
 0 

  2b  
n1 1 1sin 2n 1 d2 0

   c  *   2 n1 

 16q 16q 2 D 
3 3   2 2       2n 1

 i e  

 D *
  0 

 2
 2n  1  3  D * 2n 1  3 c 


n1
1

1


1 cos 2n 1 d

2  
0

39

(3.95)



2
 (3.96)

 
 


2
 (3.97)

 
 




   c    2 n1 
2 *
  8 q 8q D   2 2 2l    2  i  2 e  

 D *  2 n   2 D *  2 n   2  c   
0

n   2b   1  1  F
n1 1   cos 2 n 1  1

2 2 n 1  0
(3.98)   c  *  2 n1 

2

 


 16 q 16 q 4 D   2    2 n 1 
i  2 e   

 D 2 n  1 3  3 D * 2 n 1 3  3 c  *




  


 2     0  
n1

1


  1sin 2 n 1
  



2
 2 n 1 
 

 0

   c     2 n1  2
 

*

 8q 8q D   2   2i  2 e   
  *

2
2 *

2
2 c D     D 2n     

0

n   2b   2n  1  1  F
n1 1

(3.99)2n 1
   c  *   2 n1 

2  16q 16q 4  


D  


      2n1

i  2 e  2 

3 3 c 
*  3 

*   3 


 0 

n1 D 2n  1  D 2n 1  

We Substitute bn  and Fn   into equation (3.62).

Recall that

bn    0 (3.100)

 * 2 n 1  2
2   *  2 n12 2  D      t  2b  8q  8q  c   D    t

w    e  2       2 i 2 e  2   dt
 n     2 n 1  * 2


2  * 2 n 12  2  0 n1 D 2 n  1  D  c0  

2 n12 
 

2
t 

 (3.101)
 * 

2

  t   16 q  16 q 4  c   *  2 n1 2
 D    D   

  e  2     


i 2  
e  2  dt

 * 3 3  * 3 3 2 n 1  c  

D 2 n 1  D 2 n 1   
0 n1   0 



40



 
 2b  8q *  2 n 1 

2

  t   8q  c  *  2 n1 2 2 2

  D 
2

  D 
2
    

    2 n  1


2 n 1 e
    2 n  1  2  i 2e    dt 2  D* 2 2 D * 2 2 c 

0

n1 




   0   

  16 q *  2 n1

2

  t   16 q 4  c  *  2 n1 2


2 2

* 3 3  D   * 3 3   2 D    
    e  2

   i e  2  dt

2 n  1  2 n 1  2 n 1 


0

n1  D  D 

c 

  0  

(3.102)



 2b  8q 4 *  2 n 1  2
2

  t 
  8q  c 

 *  2 n12 2 

     D   

 t  2 D    t
e  2   2 i e  2 


2 n  1


D

*

2 n  1
2


2
D

*

2 n  1
2


2 

D
*

2 n  1
2


2  

n1 
0 

 c0




 
0 (3.103)




16 q 4 *  2 n1 2 2

 t


 16 q 4  c  *  2 n12 2 
  D    D      e  2   t   i  2 e  2 

 


D
*
 2 n  1

3


3
D

*

2 n  1
2


2 

D
*
2 n 1

3


3
2 n 1  

n1    c0   



 

0

*  2 n 1 
2 

 

0

2  2b 8q 4 2 8q  c  *  2 n1  2

    2 2  1  e D      2  2 2 D    
 2 

  i e  2 

2 n 1           * 2 * 2 * 2  c  
0

n1  D 2 n  1  D 2 n 1    D 2 n 1    (3.104)
  2   

2  16 q 4 *  2 n1 2 16 q 4  c  *  2 n1 2
  3 2  1  e D      3   2 D     2    

2 n 1
 i  e  2 

          * 3 * 2 * 3 c  
0

n1  D 2 n  1  D 2 n  1    D 2 n 1   

 2b  32 q  *  2 n 1
2
2   8q  c   *  2 n1 2

2 
 

2
 D      2  2  2 D   

       
 1  e  2     i  e  2  

2 n 1  4    D * 2 n 1  2 c  n1 D * 2 n 1  4  

      (3.105)



2

  
2 

 64 q *  2 n1  2 16 q 4  c  *  2 n1 2

2 D       3   2 D   
  

 
 1  e  2   

 2 n 1
 i e  2  

 *   5 5   
D
*
2 n  1 

3 c  
D 2 n 1   n1     0  

The solution of order one is therefore

 *  2 n 1  2 2 *  2 n12 2 
1     2b * 2 32q 4   D    8q 2 2  c 

 D    
 2n 1   4    *  c  

c  ,      1  e  2       2 i  2 e  2  

   D  2n 1 2n 1 n 1 n1      D  0  

sin
 2n 1

 

 2  (3.106)
 2 

  64q  * 2 n12 2   16q 4 
ci

 *  2 n12

 2n 1 D    D   
  1  e  2       2 e  2  sin 

2n 1   c  2 

 D

*



2

2n 1

5



5  

D

*

2n 1

3



3



 

n 1 n1       0
   
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Therefore, the solution of the cross-flow dispersion problem in (3.24) is

c  ,    c0  ,   c1  ,  (3.107)

where c, 
0

and c1  ,   are given in equations (3.84) and (3.106) respectively

Case 2:

In this case, the boundary conditions are of the Dirichlet type and the flow was initially

not solute free as given below:

c  c c

 D
2

 u   2 

c  , 0   c ;   0
  i  
0,  qc  c 1 e

0

c 1,    0;   1


c










(3.108)

By transforming the boundary and initial condition, just like as in case 1, the initial

boundary value problem (3.108) becomes

c  2 c c 
 D  u c

 
2

 
c , 0  ci  (3.109)

c 0,    c0 2  q  
  



c 1,   0;   1 

Non-dimensionalization

We non-dimensionalize equation (3.109) using the following dimensionless variables.
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c * c 
i c 0

 *   


l 
 *  u 

l 

Equation (3.109) becomes

(3.110)

c c
*

c  c
*

c c

 D
2

 u c0 c0 0 0 * (3.111)l
 *  l *  2  l * 

u

c u c * Dc 2 c * uc c
   c c *0 0 0 (3.112)

* 2 *2 *l  l  l  0

c * Dc l 2c * uc l c l
   c c *0 0 (3.113)

* 2 *2 * l c u  l c u  0 c u
0 0 0

c
*

D  c
*

c l


2

  *c (3.114) * lu *2  * u

Where
D

is taken as D*
lu

The non-dimensionalized equation is

c
*

 c
*

c

 D *
2

 * * (3.115) *  *2  *  c

The non-dimensionalized equation with the initial and boundary conditions of equation

(3.109) becomes
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c
*

 c
*

c 
 D 2   c

 *  * ** *2 *


c , 0   c 
* i



c 
0,   0

c   0 *  2  q 

c
*
l ,    0;   l 





(3.116)

The parameter expanding method is applied to the equation (3.116) as follows

Let

  0  1 
...c*  ,   c  ,    c  , (3.117)

and 1  b in the advection term of equation (3.116) as used in Olayiwola et al. (2013).

The following equation is obtained from equation (3.116).

  c    c    2 c   ...  ,   ,   , 

 0 1 2


2        

D*
2
c  ,    c  ,    2c  ,  ...

 0 1 2

 b  c    c     2c  ,   ... ,   ,  

 0 1 2
      

  c ,    c  ,   2c  ,  ...
0 1 2













(3.118)

From equation (3.118), we generate the following equation

Order zero  0 :

c
 D

 2 c , 0 * 
  2 0



c , 0  c 
i 

0 c 
0

c 0,     2  q  
0 
c l,    0 0



Order one  1 :

(3.119)
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c 
 D 2

1 *
  2

c , 0   0
1

c 0,0
1

c 1,0
1

c  ,    b  c  ,    c, 0


0 0









(3.120)

The above equation (3.119) and (3.120) are transformed to satisfy the homogeneous

boundary conditions. This is done by using the transformation:

g  ,              
0  

l
  

      
g 0 ,   2  q   0 2  q

c ,  w ,   g
0
, 

0 0

c ,  w ,  2  q    0    2  q 
0 0

c 0,    w 0,     2  q   2  q
0 0

 w0 0,    0

c0 1,    w0 1,     2  q    2  q   0

 w0 1,    0

c  , 0   w ,22  c
i

0 0 c
0

 w  , 0   ci  2  1
0 c0

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

Differentiating equation (3.124), with respect to  we have
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c  w   1q
0 0

 

Also,

c  c w c g
0 0 0 0 0

 w  g
0


0

c  w  2 q 
0 0

 

 2 c0    w0  


 


2

 2 c0  2 w0

 2  2

(3.130)

(3.131)

(3.132)

(3.133)

(3.134)

By substituting equation (3.130) and (3.134) in equation (3.119), the following

equations are obtained

w  w
   1q  D 2

0 * 0

  2

w 2 w
 D *



  1q0 0

  2

(3.135)

(3.136)

The transformed equation (3.119) becomes

w  w
 D 2

0 * 0
 

2

w , 0  c 
i

0 c
0,0

0
w

0

w 1,0
0


 q  1



2 1 









(3.137)

Also, from equation (3.120),
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c  w
1 1

 

c  w
1 1

 

 2 c1  2 w1

 2  2

The transformed equation (3.120) becomes

(3.138)

(3.139)

(3.140)

w  w
 D 2

1 * 1
 

2

w , 0   0
0

w 0,0
0

w 1,0
0

 b w  w 
0

0 
 








(3.141)

Equation (3.119) is solved by the method of Eigen-function expansion as follows.

The solution by Eigen-function expansion is of the form:

 n
0

,  
 n

 sinw w ln1

where

 *  n  2 t   *  n 2
 D  

 Fnt dt
D   t

wn    e  l   bn e 
l 

0

Fn    2 l F  ,   sin n  d
l 0 l

bn 2 l F   sin n  d
l 0 l

In this case, l 1

(3.142)

(3.143)

(3.144)

(3.145)
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From equation (3.137)

b 
2 1  c  2 1  sin n d i n 1 c

0  0

c 1 1  1sin n dn  2  sin n d  i 4
b

c
0 00

2ci 1
1

 1 1 1 1
bn   cos n 4   1cos n  cos n d

c0 n n n0  0 0

2c cos n  1  1 0 1 4 1 1
b   4  sin ni  n n c n n n 

00

b   2c cos n  1 4
i

n n c n
0

b   2  ci cos n  1 2
nn  c

 0

From equation (3.144), F  ,    q  1

n

 
1

 1sin n d 2


F q
0

   1   1cos n 
1 1 1

F  2 q    cos n d n n n  0 0

F   2 q  1  01  1 1 sin n
1


n   

n


n n


 0

 

Fn   
2q
n

bn   and Fn  are substituted into wn   (3.62) to obtain:
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(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)



 2 q  2c 4  *  n  2

tw  * 2
t    dt   cos n  1 eD  

e  D n   i   l 
n n n c n

0  0

2 q 1
1

 2c 4  * 2 t   cos n  1 * n 2
w

n 
e  D n    i  e D 

2n n
D *

n c n
 0

0

 2 q  * 2   2  c cos n  1 2  * 2 w  e  D n   i e D n 

* 3
1   n  n c

D n 
 

 0

c ,   w  ,    g
0
, 

0 0



 sin nw0  ,    wn 
n1

(3.156)

(3.157)

(3.158)

(3.159)

(3.160)

 ,     2  q 1       2 q 1  e * 2   2  c cos n  1 2  * 2c e  D n  i D n  




 0  * 3  n c
D n 

 

 n1  0

Recall that


sin n


(3.161)

  2 q


* 2

 
2  c  * 2


n  n w ,     e  D  i cos n  1 2 e D  sin n

* 3
1   0   n c 

D n 
 

 n1  0 

w   4q


* 2


 c  * 2 

n  n 0    D  i cos n  1 2 D 

* 2 1  e   2  e cos n
   c 

n1 D n 
 

  0 

(3.162)

(3.163)

By substituting equations (3.123) and (3.125) in the equation (3.60), gives

w  w

 2q * 2  c  * 2 

2  n    n 1  D * 1  b   e  D  2 i cos n  1 2 D  cos n2 1   e2 *
    c 

D n   

 


n1 
2  c 0 


 2q


* 2

 
* 2 

n  n 
   D   i cos n  1 2 e D  sin n

* 3 1  e 
  n c 

D n 
 

 n1  0 

(3.164)

From equation (3.164) above
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  2q


* 2

 
 c 

* 2 
n  n F  ,    b   D  2  i cos n  1 2e D  cos n

* 2 1  e 


 c 

D n 
 

 n1  2  c 0    2 q


* 2


* 2

n  D n 
   D    i cos n  1 2 e  sin n

* 3 1  e 




n c 

D n 
 

 n1  0 

1    2q   D* n 2    c  D*
 n 

2  
Fn    2  b 

  i

cos n  1 cos n  sin n d 1  e 
2 2 e* 2 c 

D n 
 

 
 

0  n1  0  
1    2 q   D* n 2   2  c  D *

 n 2  
2   e

 


i

cos n  1 2 e


sin n  sin n d1  D * n 3 n c
0

n1  

 
 

 
 

  0  

1   2 q

* 2

 
2  c  * 2 

n  n 
 2  D

  i cos n  1 2 eD  sin 2n d
* 3 1  e 




n c 

0 D n 
 

 n1  0 

  2 q


* 2

 
2  c  * 2 

n  n F   e D  i cos n  12 eD  
* 3

1   n   n c 
D n 

 

 n1  0 

From equation (3.143)

(3.165)

(3.166)

(3.167)

(3.168)


* 2

   2q  * 2  2  c 
* 2

 
n        3   cos n  1 2  

 D n  D n t
 i 

D n tw e   t    1  e   e dt 

 n1  D * n   n c  
0

 

   0  


* 2

   2q  * 2  2  c  * 2


  


  cos n  1 2  
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(3.169)

(3.170)

(3.171)

(3.172)

(3.173)



c  ,    w , 
1 1

1    *
2 q

3


*

1
2

 * 2  * 2   2  c  * 2 
     D n   D n   sin n    

i    D n  
 

c  ,   

n  n 
1  e   e cos n  1 2  e sin n

 D  D  


n


c
     0

The general solution of the equation (3.108) is therefore

(3.174)

(3.175)

c, 

where

 c0  ,

c0  , 





 c1

and

, 

c1  ,  

(3.176)

are given in equation (3.161) and (3.175) respectively.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Results

In this section, the solutions obtained for the two cases considered are expressed in

graphical forms with the aid of the Mathematical software called MAPLE 16. Under

each of the graphs, brief interpretation and discussions were made. The suitable initial

values of the parameters used are

D
L0
1.0, D 1.5, D

LT 0
 4.0, q  3.0, u

0
 0.1, v

0T 0
 0.1 and   0.1.

4.1.1 Graphical representation of the solution for case 1 with Neumann
Boundary Condition

The solution obtained in equation (3.84) and (3.106) for case 1are presented in graphs in

this section.

Figure 4.1: Contaminant Concentration Profile with Time for Varying Flow

Resistance Coefficient.
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The graph in Figure 4.1 shows that the contaminant concentration decreases with time

but decreases faster as the flow resistance coefficient decreases.

Figure 4.2: Contaminant Concentration Profile with Vertical Distance y for

Varying Flow Resistance Coefficient.

The graph in Figure 4.2 reveals that the contaminant concentration increases with

increase in vertical distance as the flow resistance coefficient increases.

Figure 4.3: Contaminant Concentration Profile with Time for Varying Decay

Parameter.
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In Figure 4.3 above, the contaminant concentration decline with increase in time but

tends to decrease faster as the decay coefficient decreases.

Figure 4.4: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Decay Coefficient.

The graph in Figure 4.4 shows that the contaminant concentration increases with

increase in horizontal distance as decay coefficient increases. The contaminant

concentration increases faster for higher values of decay parameter.
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Figure 4.5: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Decay Coefficient.

Figure 4.5 show that as the value of decay coefficient increases, the contaminant

concentration increases faster with increase in vertical distance.

Figure 4.6: Contaminant Concentration Profile with Time for Varying

Longitudinal Dispersion Coefficient.
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The effect of increasing the horizontal dispersion coefficient is shown in the Figure

4.6 above. The graph reveals that the contaminant concentration decreases with

increase in time as the horizontal dispersion coefficient increases.

Figure 4.7: Contaminant Concentration Profile with Distance x for Varying

Horizontal Dispersion Coefficient.

In Figure 4.7, the effect of increasing the horizontal dispersion coefficient is shown.

The graph shows that the contaminant concentration increases with increase in the

horizontal distance.
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Figure 4.8: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Horizontal Dispersion Coefficient.

The above graph in Figure 4.8 shows that as the horizontal dispersion coefficient

increases, the contaminant concentration increases in the horizontal direction.

Figure 4.9: Contaminant Concentration Profile with Time for Varying Vertical

Dispersion Coefficient.
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The graph in figure 4.9 reveals that the contaminant concentration decline with time as

the vertical dispersion coefficient increases but decreases faster for higher values of

the vertical dispersion coefficient.

Figure 4.10: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Vertical Dispersion Coefficient.

Figure 4.10 reveals that the contaminant concentration increases with increase in the

vertical dispersion coefficient but faster as the value of vertical dispersion coefficient

decreases.
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Figure 4.11: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Horizontal Dispersion Coefficient.

The impact of increasing the value of the vertical dispersion is shown in Figure 4.11

above. The graph shows that the contaminant concentration increases with increase

in vertical distance.

Figure 4.12: Contaminant Concentration Profile with Time for Varying Cross-

flow Dispersion Coefficient.
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In the figure 4.12 above, the contaminant concentration decreases with time as the

cross-flow dispersion coefficient increases and decreases faster for higher values of

the cross-flow dispersion coefficient.

Figure 4.13: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Cross-flow Dispersion Coefficient.

The graph in the Figure 4.03 shows that the concentration of the contaminant

increases as the horizontal distance increases. It increases faster as the cross-flow

dispersion coefficient decreases.
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Figure 4.14: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Cross-flow Dispersion Coefficient.

The graph in Figure 4.14 shows that the contaminant concentration increases along the

vertical direction as the cross-flow dispersion coefficient increases.

Figure 4.15: Contaminant Concentration Profile with Time for Varying Initial

Horizontal Velocity Coefficient.
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In Figure 4.15, the contaminant concentration decline with time as the initial horizontal

velocity increases.

Figure 4.16: Contaminant Concentration Profile with Horizontal Distance y for

Varying Initial Horizontal Velocity Coefficient.

Figure 4.16 shows that the contaminant concentration increases in the vertical direction

as the initial horizontal velocity increases.
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Figure 4.17: Contaminant Concentration Profile with Time for Varying Initial

Horizontal Velocity Coefficient.

In the Figure 4.17 above, on increasing the value of the initial vertical velocity, the

contaminant concentration decline with time.

Figure 4.18: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Horizontal Velocity Coefficient.
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The graph in the figure 4.18 above shows that the contaminant concentration increases

as the horizontal distance increases for increasing value of the vertical velocity

coefficient.

Figure 4.19: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Horizontal Velocity Coefficient.

The graph in Figure 4.19 shows the effect of increasing vertical initial velocity on

the concentration. It reveals that the contaminant concentration increases as the

vertical initial velocity coefficient increases.

4.1.2 Graphical Representation of the Solution for Case Two with the Dirichlet

Boundary Conditions.

In this section, the solution obtained in equation (3.161) and (3.175) for case two are

presented in graphs below:
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Figure 4.20: Contaminant Concentration Profile with Time for Varying Flow

Resistance Coefficient.

The effect of the flow resistance parameter on the concentration of the contaminant

is shown in Figure 4.20. It reveals the concentration decline with time as the floe

resistance parameter increases.

Figure 4.21: Contaminant Concentration Profile with Horizontal Distance x for

Varying Flow Resistance Coefficient.
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In the Figure 4.21, the graph shows that the concentration moves sinusoidally in the

horizontal direction and later decline sharply for growing values of flow resistance

parameter.

Figure 4.22: Contaminant Concentration Profile with Vertical Distance y for

Varying Flow Resistance Coefficient.

The graph in Figure 4.22 above shows that the contaminant concentration decline with

increasing vertical distance as the flow resistance parameter increases.
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Figure 2.23: Contaminant Concentration Profile with Time for Varying Decay

Parameter.

Figure 4.23 shows the impact of increasing the decay coefficient on the contaminant

concentration. The graph shows that the concentration decline with time as the decay

coefficient increases.

Figure 4.24: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Decay Coefficient.
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In Figure 4.24, the effect of increasing the value of decay coefficient on the

concentration is shown. The graph shows that the concentration moves sinusoidally

and decline sharply as the decay coefficient increases.

Figure 4.25: Contaminant Concentration Profile with Horizontal Distance y for

Varying Initial Decay Coefficient.

The effect of increasing the decay coefficient is also shown in figure 4.25 above.

The graph shows that the contaminant concentration decline along the vertical

spatial direction as the decay coefficient increases.
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Figure 4.26: Contaminant Concentration Profile with Time for Varying

Longitudinal Dispersion Coefficient.

Figure 4.26 shows the impact of increasing the horizontal dispersion on the

concentration. The graph shows that the contaminant concentration decline with time as

the horizontal dispersion increases.

Figure 4.27: Contaminant Concentration Profile with Distance x for Varying

Horizontal Dispersion Coefficient.
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In the Figure 4.27, the contaminant concentration moves sinusoidally and then decline

sharply which the effect of increasing the Horizontal Dispersion Coefficient on the

concentration.

Figure 4.28: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Horizontal Dispersion Coefficient.

The graph in Figure 4.28 shows the impact of varying the Horizontal Dispersion

Coefficient on the concentration. The contaminant concentration decline along the

vertical spacial direction as the Horizontal Dispersion Coefficient increases.
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Figure 4.29: Contaminant Concentration Profile with Time for Varying Vertical

Dispersion Coefficient.

In the Figure 4.29 above, the effect of increasing the initial vertical dispersion is shown.

The graph shows that the concentration of contaminant decline with time as the initial

vertical dispersion increases.

Figure 4.30: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Vertical Dispersion Coefficient.
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The graph in Figure 4.30 shows the behavior of the contaminant along the horizontal

direction as the initial vertical dispersion increases. From the graph, the contaminant

concentration behaves sinusoidally and then decline sharply.

Figure 4.31: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Horizontal Dispersion Coefficient.

Figure 4.31 shows the behavior of the contaminant concentration on the vertical

direction as the initial vertical dispersion increases. The graph shows that the

concentration decline with increasing initial vertical dispersion.
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Figure 4.32: Contaminant Concentration Profile with Time for Varying Cross-

flow Dispersion Coefficient.

Figure 4.32 shows the effect of varying the cross-flow dispersion on the concentration

with time. The graph reveals that the concentration decline with time.

Figure 4.33: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Cross-flow Dispersion Coefficient.
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The graph in Figure 4.33 shows that the contaminant concentration behaves

sinusoidally along the horizontal direction and decline sharply as the Initial Cross-flow

Dispersion Coefficient increases.

Figure 4.34: Contaminant Concentration Profile with Vertical Distance y for

Varying Initial Cross-flow Dispersion Coefficient.

In the Figure 4.34, the contaminant concentration decreases along the vertical direction

as the Initial Cross-flow Dispersion Coefficient increases.
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Figure 4.35: Contaminant Concentration Profile with Time for Varying Initial

Horizontal Velocity Coefficient.

The behavior of the contaminant concentration as the initial horizontal velocity

increases is shown in Figure 4.35 above. The graph revealed that the concentration

decline with time.

Figure 4.36: Contaminant Concentration Profile with Horizontal Distance x for

Varying Initial Horizontal Velocity Coefficient.
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The effect of changing velocity in the horizontal direction is shown in Figure 4.36. The

graph shows that the contaminant concentration decline sinusoidally along the

horizontal direction as the horizontal velocity increases.

Figure 4.37: Contaminant Concentration Profile with Vertical Distance y for

Varying Horizontal Velocity Dispersion Coefficient.

The graph in Figure 4.37 shows the behavior of the contaminant along the vertical

direction as the initial velocity increases. From the graph, the contaminant

concentration decreases as the initial horizontal velocity increases.
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Figure 4.38: Contaminant Concentration Profile with Time for Varying Initial

Horizontal Velocity Coefficient.

Figure 4.38 shows the impact of increasing the initial vertical velocity on the

concentration. The graph revealed that the contaminant concentration decline with time.

Figure 4.39: Contaminant Concentration Profile with Horizontal Distance x for

Varying Horizontal Velocity Coefficient.
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In Figure 4.39, the contaminant concentration moves sinusoidally and decline sharply

along the horizontal direction as the initial vertical velocity increases.

Figure 4.40: Contaminant Concentration Profile with Vertical Distance y for

Varying Horizontal Velocity Coefficient.

The effect of increasing the horizontal velocity coefficient on the concentration is

shown in Figure 4.40. The graph shows that the contaminant concentration decline with

increase in initial vertical velocity in the vertical direction.

4.2 Discussion

In this section, the graphs presented in section 4.1.1 and 4.1.2 are analyzed and discussed.

In Figures 4.1, 4.3, 4.15 and 4.17, the behaviors of the contaminant concentration are

shown. The graphs show that the contaminant concentration decreases with time as the

flow resistance parameter, decay parameter, horizontal velocity and vertical velocity

increases respectively. It is also very clear from Figures 4.6, 4.9 and 4.12 that the
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contaminant concentration decline sharply with time as the horizontal, vertical and

cross-flow dispersion coefficients decrease.

The graphs in Figures 4.4, 4.7, 4.10, 4.13, 4.16 and 4.18 are the concentration profile of

the contaminant concentration with the horizontal distance. The graphs reveal that the

contaminant concentration increases along the horizontal spatial direction as the values

of decay coefficient, horizontal dispersion coefficient, vertical dispersion coefficient,

cross-flow dispersion coefficient, horizontal and vertical velocity coefficients increase.

Similarly, Figures 4.2, 4.5, 4.8, 4.11, 4.14 and 4.19 are concentration profile of

contaminant with the vertical distance. the analyses show that the contaminant

concentration increases along the vertical direction as the values of flow resistance

parameter, decay coefficient, horizontal dispersion coefficient, vertical dispersion

coefficient, cross-flow dispersion coefficient, and the vertical velocity increase

respectively.

In section 4.1.2, the graphs presented are analyzed as follows: Figures 4.20, 4.23, 4.35

and 4.38 are contaminant concentration profile with time The graphs revealed that the

contaminant concentration decline with time as the flow resistance parameter, decay

coefficient, horizontal and vertical velocity coefficients increases respectively. In

Figures 4.26, 4.29 and 4.32, it was observed that the concentration decline sharply with

time as the horizontal dispersion, vertical dispersion and cross-flow dispersion

coefficient increase respectively. Similarly, in Figures 4.21, 4.24, 4.27, 4.30,4.33,4.36

and 4.39, the contaminant concentration decreases sinusoidally along the horizontal

space as the flow resistance parameter, decay coefficient, horizontal dispersion, vertical

dispersion, cross-flow dispersion, horizontal and vertical velocities increase.
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Lastly, the contaminant concentration profile presented in Figures 4.22, 4.25, 4.28,4.31,

4.34, 4.37 and 4.40 revealed that the contaminant concentration decreases along the

vertical direction as the values of flow resistance parameter, decay coefficient,

horizontal dispersion, vertical dispersion, cross-flow dispersion, horizontal and vertical

velocity coefficients increase.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS.

5.1 Conclusion

Two cases of contaminant flow models that incorporate the cross-flow dispersion and

decay parameter were formulated. Case 1 was associated with the Neuman boundary

conditions and Case 2 with the Dirichlet boundary conditions. The two problems have

been solved by using combination of parameter expanding method, Eigen-Functions

expanding technique and direct integration method.

The results obtained were expressed in graphical form in order to study and interpret

the behavior of the concentration of the contaminant as the values of the parameters are

varied.

The following conclusions were made:

(i) In Case 1, the concentration of the contaminant decreases with

increasing values of the parameters,

DL0 1.0, DT 0 1.5, DLT 0  4.0, q  3.0, u0  0.1, v0  0.1 and

time for

  0.1, while

the concentration of the contaminant increases along the co- ordinate axis (x and

y) as parameters values increases.

(ii) In Case 2, the contaminant concentration decline with time as the values of the

parameters increases, while, in contrast to results in Case 1, the concentration of

the contaminant decline along the co-ordinate axis.
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5.2 Contribution to Knowledge

Lee and Kim (2012) did not actually solve but formulated the two-dimensional model, in

this study, the decay   and reaction term were incorporated and solved using Eigen-

function expansion technique for: (i) Neumann boundary condition and (ii) Dirichlet

boundary condition. Findings reveal that as the decay parameter increases from   0.1

to   0.3 , the contaminant concentration declines faster to zero.

5.3 Recommendations

(i) In this research, an exponential form of velocity was assumed and used. Further

research can adopt a sinusoidal form.

(ii) In Case 2, the value of the initial horizontal velocity was chosen to be greater than

the vertical velocity. Future researcher may try the converse.

(iii) This research results may be recommended to the geologist as it may guide them to

know exactly when and where the contaminant concentration is zero in order to locate

their well in suitable location.
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