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ABSTRACT 

This research work explores the usefulness of the pseudo-rigid-body model (PRBM) in the dynamic 

behaviour analysis of constant-force compression spring electrical contacts (CFCSECs). It also 

expresses the desire to understand how CFCSECs behave dynamically. Such knowledge is 

important in the implementation of CFCSECs in viable commercial applications. The relative 

simplicity of employing the PRBM to streamline the dynamic analysis of CFCSECs, compared with 

existing dynamical methods, combined with the fact that the dynamic model can be represented 

mathematically, is a large step forward. Results obtained for these CFCSECs revealed a very 

important phenomenon of the peak-to-peak force plot, that over certain range of frequencies, these 

mechanisms exhibit better constant-force behaviour than they do statically. 

Key word: Usefulness of the PRBM, viable commercial applications, streamline the dynamic 

analysis, dynamical methods 

 

INTRODUCTION 

Designing compliant mechanisms (CMs) for specific applications can be a complex problem with many 

considerations. The basic trade-off is between the flexibility to achieve deformed motion and the rigidity to sustain 

external load (Li and Kota, 2002). The impact of dynamic behaviour is of great importance in improving the design 

of CMs, especially for complex mechanisms and for micro-electro mechanical systems (MEMS) (Wang and Yu, 

2007). The dynamics of mechanisms that include flexible links has received a lot of consideration in the last years, 

directly reflecting the increase in both the number and scope of applications for which the dynamic response must 

be accurately modeled in order to ensure that the mechanisms operate properly in the dynamic range (Lobontiu, 

2003). Although existing methods such as the finite element method (FEM), elliptic integrals method, and chain 

algorithm method are widely available, there remain challenges in the computational model of CMs (Lan, 2005). 

This research work expresses the desire to understand how constant-force compression spring electrical contacts 

(CFCSECs) behave dynamically. Such knowledge is important in the implementation of CFCSECs in viable 

commercial applications. This understanding is attempted by using the pseudo-rigid-body (PRB) modeling 

technique.The PRBM is a design tool that approximates the force-deflection relationships of CMs by assigning a 

rigid-body, lumped compliance counterpart to every flexible segment comprising the mechanism (Howell, 2001). 

What makes it so useful is its ability to transform a CM requiring in-depth nonlinear analysis into an “equivalent” 

rigid-body mechanism, for which well-known rigid-body kinematics techniques are already in place. Though the 

PRBM has been shown to be valid for the static analysis of CMs, very little research has been performed to explore 

its usefulness in dynamic analysis (Boyle, 2001). If the model can be shown to approximate well the dynamic 

response of CFCSECs, then its usefulness is extended even further. 

 

DEVELOPMENTAL ANALYSIS 

Figures 1 show the different configurations of CFCSEC. As shown in the figure, Class 3A mechanisms are 

basically CFCSECs that have three flexible segments located at the first, second, and third pivot points. Figure 2 

shows the CFCSEC Configuration lllmAClass 3 and its PRBM. 
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Figure 1: Developed Configurations of CFCSECs 
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Figure 2: CFCSEC Configuration lllmAClass 3 and the Generalized PRBM 

 

THE GENERALIZED PSEUDO-RIGID-BODY MODEL (PRBM) 

The generalized PRBM for all CFCSEC configurations is shown in Figure 2; only half of the symmetric mechanism 

is shown. The lengths of the rigid segments, placement of the pin joints, and the spring constants of the torsional 

springs may all be calculated using various model parameters. The generalized expression for the torsional spring 

constant k  for the flexible segments of the different configurations of CFCSEC is given by  

L

EI
Knk             (1) 

where   is the PRBM characteristic radius factor, K  is the torsional spring stiffness coefficient, E  is the 

modulus of elasticity of the flexible segment, I  is the moment of inertia of the cross section of the flexible 

segment, L  is the length of the flexible segment. The average values for  Kand  over a wide range of loading 

conditions have been tabulated (Howell and Midha, 1995), but may be approximated for any material properties as 

0.85 and 2.65 respectively for long flexible segments and for short flexural pivots, the values of  Kand  are 1. 

For long fixed-fixed flexible segment 2n  and for long fixed-pinned flexible segment and short flexural pivot, 

1n . The variable bx  is simply a measurement of the point where the mechanism attaches to the slider located 

with respect to where the mechanism connects to ground. The following expressions, along with the definition 
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given in Figure 3, may be used to determine the lengths of the flexible and rigid segments for the different CFCSEC 

configurations.  
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Figure 3:  Definition of flexible and rigid segment lengths 

 

DYNAMIC BEHAVIORAL MODEL FORMULATION USING LAGRANGE’S METHOD  

Lagrange’s method is one of the most useful techniques in generating equations of motion of CMs, especially when 

internal forces and reactions are not of interest. For CFCSECs, the particular interest in a dynamic analysis is its 

output force. Taking 
2  as the generalized position coordinate and neglecting the effect of damping on the 

CFCSEC PRBM, Lagrange’s equation is expressed as (Sandor and Erdman, 1988) 

   
2

2
2






Q
VTVT

dt

d


























        (7) 

where, 

2
Q = Generalized force  

Using the PRBM, the potential energy equation can easily be obtained. For a segment modeled using a torsional 

spring and a pin joint, the total potential energy in the mechanism (assuming negligible potential energy due to 

gravity) is the sum of the individual potential energy stored in each compliant segment.  
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Figure 4: Translational and rotational motion of the mechanism link 

 

As shown in Figure 4, the centre of mass of each link translates along a predefined path with linear velocity as the 

mechanism moves, and each link is also rotating about its centre of mass with angular velocity. The total kinetic 

energy for any given link is therefore, the sum of the translational and rotational kinetic energies. 
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.......,,3,2 linksmovingallenumeratesniWhere   

For CFCSECs, the generalized forcing function 2Q  consists of a moment 
F  due directly to the force F  acting on 

the slider and the term AF  is introduced to compensate for the moment due to axial force effects in the 

mechanism’s links/segments. In mathematical terms, the generalized forcing function 2Q  may be expressed as 

follows 

AFFQ  
2

          (10) 

The value of the torque AF  is approximated using the expression giving below 
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The value of   is chosen using experimental data from static tests. Expanding out equation (7) and simplifying, the 

generalized dynamic equation of motion for CFCSECs becomes 
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Torque 
F  is transformed to mechanism’s output force F  using the power relationship given by 
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EQUATIONS FORMULATION USING THE PRINCIPLE OF VIRTUAL WORK  

The concept of virtual work is another useful device for solving both static and quasi-static force analysis problems. 

Virtual work, however, refers to imagined work, the displacement does not actually occur, it is introduced as an 

imagined quantity (Sandor and Erdman, 1988). A mechanism with rigid components is in a state of static 

equilibrium if the sum of the virtual work done by all real forces and moments is zero for every virtual 

displacement consistent with the kinematics constraints. If elastic components are a part of the mechanical system, 

the total virtual work done by these elastic components is equal to the total virtual work of all real forces and 

moments (acting on the non elastic components) for virtual displacement consistent with the constraint (Sandor and 

Erdman, 1988). Thus for such a system 
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Application of the principle of virtual work to the generalized CFCSEC PRBM and taking the variable 
2  as the 

generalized position coordinate, gives the following expression 
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RESULTS AND DISCUSSIONS 

The relevant mechanism parameters and variable values for the different CFCSEC configuration are given in Table 

1. The variables b, h, and I are the width, the thickness, and the area moment of inertia of the flexible segment’s 

cross section; E is the modulus of elasticity of the flexible segments. As shown in Figure 5, a comparison of the 

force predicted by the static portion of the dynamic model with velocities and accelerations set to zero (with 
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0AF ), for a 10 and 15% displacement, with that predicted by existing compliant mechanism theory, essentially 

an application of the principle of virtual work on the PRBM of CFCSEC configuration lllmAClass 3 , shows that 

both plots match perfectly, which is a confirmation that the static portion of the dynamic model is correct. Figure 6, 

7 and 8 shows the force displacement diagram showing the force predicted by the static portion of the dynamic 

model for the different CFCSEC configurations, the percent constant-force prediction plot and the model force 

prediction plot as a function of time for the different CFCSEC configurations respectively for a 10 and 15% 

displacement. In the evaluation of the generalized dynamic model for its constant-force capabilities, three useful 

plots were analyzed, which includes, the mean force plots, the median force plots, and the peak-to-peak force plots 

shown in Figure 9, 10, and 11 respectively as a function of frequency. Notice that each curve in the peak-to-peak 

force plot first curves down, before it starts to increase. This dip in the peak-to-peak force shows the range of 

frequencies over which CFCSECs exhibits better constant-force behaviour than they do statically. In fact, the same 

observation was made by Boyle (2001) while studying the dynamics of compliant constant-force mechanisms. The 

results for a single frequency with very low peak-to-peak force have been tabulated as shown in Table 2 for a 10, 

15, and 20% displacement respectively. The percent constant-force (PCF) may be obtained using the expression 
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Multiplying by a hundred gives the PCF as a percentage with 100% being perfectly constant. The PCF is very 

important because it measures the amount of variation between the minimum and maximum output force of the 

CFCSEC. Due to the nature of CFCSECs, the maximum force is usually located at the maximum deflection and the 

minimum force can generally be found at the smallest deflection. 

 

  
Figure 5: Comparison of the force predicted by the static portion of the dynamic model with that predicted by the 

principle of virtual work for CFCSEC configuration lllmAClass 3  

  
Figure 6: Force displacement diagram showing the force predicted by the static portion of the dynamic model for a 

10 and 15% displacement of the different CFCSEC configurations 
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Figure 7: Percent constant-force prediction plot as a function of time for a 10 and 15% displacement of the 

different CFCSEC configurations 

 

  
Figure 8: Model force prediction plot as a function of time for a 10 and 15% displacement of the different 

CFCSEC configurations 

 

  
Figure 9: Mean force plot as a function of frequency for a 10 and 15% displacement of the different CFCSEC 

configurations 

 

  
Figure 10: Median force plot as a function of frequency for a 10 and 15% displacement of the different CFCSEC 

configurations 
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Figure 11: Peak-to-peak force plot as a function of frequency for a 10 and 15% displacement of the different 

CFCSEC configurations 

 

TABLE 1:  Parameters and variable values for the different configurations of CFCSECs 

Parameter lssmAClass 3  slsmAClass 3  llsmAClass 3  lslmAClass 3  

r2 4.5165 mm 4.8077 mm 4.5699 mm 4.2757 mm 

r3 4.5165 mm 4.8077 mm 4.5699 mm 4.2757 mm 

r5 0.7631 mm - 0. 6775 mm 0.7247 mm 

r6 - - - 0.7247 mm 

m2 0.0168 g 0.0166 g 0.0153 g 0.0158 g 

m3 0.0164 g 0.0166 g 0.0157 g 0.0158 g 

ms 8.7535 g 8.7535 g 8.7535 g 8.7535 g 

b 5 mm 5 mm 5 mm 5 mm 

hSolid 0.1 mm 0.1 mm 0.1 mm 0.1 mm 

h1 0.0457 mm 0.0085 mm 0.0312 mm 0.0434 mm 

h2 0.0043 mm 0.0244 mm 0.0219 mm 0.0038 mm 

h3 0.0092 mm 0.0085 mm 0.0082 mm 0.0434 mm 

E 110 GPa 110 GPa 110 GPa 110 GPa 

SY 552 Mpa 552 Mpa 552 Mpa 552 Mpa 

l1 1.5263 mm 0.3803 mm 1.3551 mm 1.4494 mm 

l2 0.3840 mm 1.6297 mm 1.4611 mm 0.3382 mm 

l3 0.4119 mm 0.3803 mm 0.3657 mm 1.4494 mm 

k1 4.2599 mNm 0.1461 mNm 1.9905 mNm 3.8414 mNm 

k2 0.0186 mNm 0.6071 mNm 0.4880 mNm 0.0144 mNm 

k3 0.1714 mNm 0.1461 mNm 0.1351 mNm 3.8414 mNm 

Parameter lllmAClass 3  llsRigAClass 3  lllFleAClass 3  lllRigAClass 3  

r2 4.3478 mm 4.5528 mm 4.3478 4.3478 mm 

r3 4.3478 mm 4.5528 mm 4.3478 mm 4.3478 mm 

r5 0.6522 mm 0.6711 mm 0. 6319 mm 0.6319 mm 

r6 0.6522 mm - 0.6319 mm 0.6319 mm 

Rig - 3.6215 mm - 2.9487 mm 

m2 0.0143 g 0.0083 g 0.0060 g 0.0060 g 

m3 0.0143 g 0.0157 g 0.0060 g 0.0145 g 

ms 8.7535 g 8.7535 g 8.7535 g 8.7535 g 

b 5 mm 5 mm 5 mm 5 mm 

hSolid 0.1 mm 0.1 mm 0.1 mm 0.1 mm 

h1 0.0301 mm 0.0232 mm 0.0177 mm 0.0177 mm 

h2 0.0150 mm 0.0232 mm 0.0177 mm 0.0177 mm 

h3 0.0301 mm 0.0081 mm 0.0177 mm 0.0291 mm 

l1 1.3043 mm 4.4740 mm 4.2124 mm 4.2124 mm 
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l2 1.3043 mm 5.1736 mm 5.1151 mm 5.1151 mm 

l3 1.3043 mm 0.3622 mm 4.2124 mm 4.2124 mm 

k1 1.8443 mNm 0.8270 mNm 0.3875 mNm 0.3875 mNm 

k2 0.2305 mNm 0.5506 mNm 0.3191 mNm 0.3191 mNm 

k3 1.8443 mNm 0.1325 mNm 0.3875 mNm 1.7312 mNm 

 

TABLE 2: Summary of simulation results for a 10% displacement of the different configurations of CFCSEC 

Configuration R PCF 

Static 

(%) 

PCF 

Dynamic 

(%) 

Mean 

Force 

Static 

(N) 

Mean 

Force 

Dynamic 

(N) 

STDev 

Static 

STDev 

Dynamic 

10% Displacement 

lssmAClass 3  1.0 96.9681 96.0687 1.0163 0.9413 0.0112 0.0141 

slsmAClass 3  1.0 96.9681 96.0611 0.5765 0.5339 0.0063 0.0082 

llsmAClass 3  1.0 96.9681 96.0531 0.9090 0.8418 0.0100 0.0124 

lslmAClass 3  1.0 96.9681 96.0523 1.8443 1.7081 0.0203 0.0246 

lllmAClass 3  1.0 96.9681 96.0689 1.0803 1.0005 0.0119 0.0142 

llsRigAClass 3  1.0 96.9681 96.0631 0.7075 0.6553 0.0078 0.0103 

lllFleAClass 3  1.0 96.9681 96.0500 0.4806 0.4451 0.0053 0.0068 

lllRigAClass 3  1.0 96.9681 96.0699 0.7955 0.7367 0.0087 0.0116 

15% Displacement 

lssmAClass 3  1.0 95.4269 96.8727 0.5513 0.5180 0.0092 0.0059 

slsmAClass 3  1.0 95.4269 96.7862 0.3127 0.2938 0.0052 0.0031 

llsmAClass 3  1.0 95.4269 96.8508 0.4930 0.4632 0.0082 0.0051 

lslmAClass 3  1.0 95.4269 96.8890 1.0004 0.9399 0.0167 0.0110 

lllmAClass 3  1.0 95.4269 96.8820 0.5860 0.5506 0.0098 0.0064 

llsRigAClass 3  1.0 95.4269 96.8491 0.3838 0.3606 0.0064 0.0043 

lllFleAClass 3  1.0 95.4269 96.8486 0.2607 0.2449 0.0044 0.0030 

lllRigAClass 3  1.0 95.4269 96.8470 0.4315 0.4054 0.0072 0.0045 

20% Displacement 

lssmAClass 3  1.0 93.8681 97.3670 0.3568 0.3381 0.0081 0.0038 

slsmAClass 3  1.0 93.8681 97.3834 0.2024 0.1918 0.0046 0.0018 

llsmAClass 3  1.0 93.8681 97.3625 0.3191 0.3024 0.0072 0.0036 

lslmAClass 3  1.0 93.8681 97.3852 0.6474 0.6135 0.0146 0.0058 

lllmAClass 3  1.0 93.8681 97.4066 0.3793 0.3594 0.0086 0.0040 

llsRigAClass 3  1.0 93.8681 97.4002 0.2484 0.2354 0.0056 0.0026 

lllFleAClass 3  1.0 93.8681 97.3555 0.1687 0.1599 0.0038 0.0015 

lllRigAClass 3  1.0 93.8681 97.3549 0.2793 0.2646 0.0063 0.0030 

 

 

CONCLUSION 

The field of compliant mechanisms (CMs) is relatively new, and many design research issues are still unanswered. 

As the research matures in this area, we can expect to identify more and more applications of CMs in the near 

future. Although there are existing methods for the analysis of CMs, such as the finite element method, the elliptic 

integral method, and the chain algorithm method, there are still challenges in the computational models of CMs. 
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Many of these existing methods in most cases do not consider dynamic effect in the design stage. Therefore the 

resulting designs are valid for static or low frequency applications only. This research work expresses the desire to 

understand how constant-force compression spring electrical contacts (CFCSECs) behave dynamically. Such 

knowledge is important in the implementation of CFCSECs in viable commercial applications. This understanding 

was attempted using the pseudo-rigid-body modeling technique. The relative simplicity of employing the PRBM to 

streamline the dynamic analysis, compared with existing dynamical methods, combined with the fact that the 

dynamic model can be represented mathematically, is a large step forward. Results obtained for these CFCSECs 

revealed a very important phenomenon of the peak-to-peak force plot, that over certain range of frequencies, these 

mechanisms exhibit better constant-force behaviour than they do statically. 
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