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Process Development and Product Quality of Micro-Metal

Powder Injection Molding

A. A. Abdullahi, I. A. Choudhury, and M. Azuddin

Department of Mechanical Engineering, Manufacturing Systems Integration, University of Malaya,
Kuala Lumpur, Malaysia

Injection molding has been found to be an efficient and cost-effective manufacturing technique for the production of a wide variety of parts

and components at both macro- and microscale. This is attributed to the application of robust design and process development. However,

every manufacturing technique is challenged by quality issues and part defects, but tackled by continuous improvement framework(s). This

systematic monitoring and control approach of dimensional accuracy, mechanical properties, and surface quality of the finished part strongly

depend on process conditions at different production stage. Therefore, the aim of this study is to review process development of micro-metal

injection molding; focusing on critical factors influencing part quality and optimization of process parameters. The critical factors that

influenced the finished part quality are part design, mold design, material selection, machine, and process conditions. Optimizing mold

temperature, melt temperature, injection speed, injection pressure, cooling time, packing, and holding parameters improve the quality of

the molded part. This trend of process development of injection molding gave rise to a broad scope of applications with brighter future

potentials for the next decades, particularly for medical and electronics applications.

Keywords Injection; Micro-metal; Molding; Optimization; Parameters; Process; Product; Quality.

INTRODUCTION

The concept of injection molding can be linked to the
invention of John and Isaiah Hyatt in the year 1872.
They were the first to patent injection molding machine.
This machine uses a plunger to inject the plastic melt
through a heated barrel into the mold cavity. However,
the industry has been progressively developing with a
complete turnaround from a plunger type for the first
screw injection molding machine in the year 1946 by
James Watson Hendry. This design concept dominates
the industry today, but further developed into multi-shot
and bicomponent injection molding at both macro- and
microscale. Meanwhile, exploration of this arising tech-
nology is still ongoing by researchers in order to fully
develop the process at microscale, considering the effect
of processing paramters and powder particle size on
feedstock and indeed the finished parts [1–7].

Microfabrication of parts by powder injection molding
(PIM) encompasses metal powder injection molding
(MIM) and ceramic powder injection molding (CIM). This
technology offers significant cost savings, increased design
and material flexibility, increased possibility of miniaturi-
zation, shape complexity, high mechanical properties,
good surface finish, and dimensional accuracy of parts
[8–12]. These capabilities gave PIM an edge over other
microfabrication techniques such as micromachining, hot

pressing, laser ablation, slip=tape casting, etching, and
LIGA. Meanwhile, increased micro-miniaturization of
mold cavity and part dimensions brought about technical
issues, which affect part quality.

The downsize of machine components and or part
dimensions to produce miniature products by micro-
injection molding results in product defects such as
incomplete filling of mold cavity, product deformation
in debinding, and sintering process. Similarly, nonhomo-
geneity or segregation of particles at mixing stage has
been a challenge [13–16]. However, these problems were
tackled by carefully selecting process parameters and
then optimized for the best product quality.

Therefore, this study aims to review research trend
over the past one decade and to highlight the process
development of micro-metal injection molding (mMIM)
and its challenges, with a focus on improvement of
product quality through optimizing process conditions,
supported by robust design of experiment (DOE) for
process parameters to enhance productivity.

EVOLUTION OF mMIM PROCESS

High market demand of miniature microparts influ-
ence the manufacturing of microdevices or systems. This
gave rise to the development of microelectromechanical
systems (MEMS), micromachines, and or microsystems
which have greatly increased in recent times [17–19].
However, the need to balance the increasing demand
of these products shifted the attention of both research-
ers and stakeholders to the development of cost-
effective manufacturing techniques, which will enhance
product quality and productivity. Nevertheless, these
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characteristics were satisfied by mMIM and found
suitable for mass production of complex, intricate
shapes and sizes [20–22]. Figure 1 illustrates the evol-
ution of mMIM and finished part production processes.

The mMIM evolves from process integration of powder
metallurgy and plastic injection molding technologies
[23, 24] at microscale. This technology also undergoes
the four processing stages of MIM, which are: mixing
(feedstock preparation), injection moulding, debinding
and sintering [25–30]. As process development of mMIM
inues, researchers support their ideas and innovation
from theories of polymer injection molding (IM) and con-
ventional micro-injection molding (mIM). This is to give a
clear understanding of mMIM which undergoes the same
processing steps.

Mixing

The preparation of injection molding feedstock begins
with material selection, followed by mixing of the metal
powder and binder in correct proportions known as
powder loading. Binder systems of MIM are broadly
classified into four categories: these are the thermoplas-
tic based, thermoset based, gelation, and freeze forming
[27, 31]. A survey of the literature indicates that the use
of thermoplastic-based binder now dominates. Wen et al.
[32] reviewed the design and binder formulation for
titanium metal injection molding (Ti-MIM) process.
Their study gave a detailed discussion on four broad
classifications of the binder systems for PIM, covering
wax-based, polyoxymethylene-based, aromatics-based,
and water-soluble binder systems. In addition, the

water-soluble binders are further subgrouped into
gelation- and non-gelation-based binder systems. The
water-soluble binders have gained acceptance due to
the environmental toxicity issues posed by organic sol-
vent (such as n-heptane and n-hexane) during debinding.
However, formulation of the binder systems focuses on
the homogeneity of the feedstock as a measure to con-
trol defects and ensuring physical and mechanical
properties of the finished part [19, 33–35]. This depends
on the powder loading of the feedstock design.

According to Liu et al. [36], typical volumetric per-
centage proportion of binder to form a homogenous
feedstock is between 35 and 50 vol.% in a powder mix.
This becomes paramount for the fact that optimal pow-
der loading produces the best green part strength. For
instance, powder loading of micro-nano stainless steel
feedstock is presented in Table 1. In addition, optimal
powder loading is required as it reduces part shrinkage
and other associated defect. Therefore, this makes mix-
ing a very important process, and error at this stage
may be difficult to correct. Therefore, the need for hom-
ogenous mix of the feedstock is critical. Meanwhile,
researchers depend on the characteristics and rheologi-
cal properties of the feedstock [19, 37–40]. Suri et al.
[41] found out that feedstock properties were influenced
by processing parameters such as mixing speed, blade
geometry, material feed rate, filling speed, processing
temperature, and duration of mixing. In some situations,
powder characteristics (particle size and shape, specific
surface area) and binder characteristics (binder compo-
sition, viscosity) also have an impact on the quality of
the feedstock [37, 42–45].

FIGURE 1.—Evolution of mMIM process and product flow.
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The quality of finished part depends strongly on
feedstock, which is the first product of mMIM. Hossain
et al. [49] investigated the mixing parameters and
performance characteristics for powder–binder in metal
injection molding. Ahn et al. [21] and Supati et al. [40]
carried out an extensive investigation on the effect of
powder and binder rheological properties. However, an
indication from the literature shows that attention was
given to particle size distribution [46, 48, 50–52], mold
dimensions [39], part geometry [53], and processing
condition [54–56] which influence the dimensional
accuracy and mechanical properties of the molded part.
In addition, researchers now adopt a new design for
formulating feedstock, by the introduction of
micro-nano powder mixture and low viscosity binder
systems for mMIM [48, 57]. The nano-sized powders
enhanced the critical powder volume concentration
(CPVC) of the micro-metal feedstock from 67.33 to
78.33 vol. % and caused a 40% reduction in injection
temperature [58].

Injection Molding

This is the second processing stage whereby the feed-
stock prepared during mixing is fed into the injection
molding machine. This process can be broken down to
four phases, which are plasticating=filling, holding and
or packing, injection, and cooling phase, respectively.
It is observed that researchers used Battenfeld Microsys-
tem 50 and custom-made machine, especially for mIM.
According to Giboz et al. [59], mIM process is more than
just scaling down of the conventional injection process,
but it requires a thourogh rethinking of the entire pro-
cess. Meanwhile, researchers such as Michaeli et al.
[60] and Chang et al. [61] have developed micro-injection
molding machine with favorable output in relation to
the commercially available types.

However, consistency of parts produced from injec-
tion molding machine in terms of part dimension and
quality is achieved through process parameters, some
of which are speed, time, pressure, and temperature of
the barrel, melt, and mold, which have to be monitored,
controlled, and optimized [3, 28, 42, 62–66]. These
involved the application of optimization techniques to
performance characteristics and process parameters
[67–70]. This shall be further discussed under optimiza-
tion. Subsequently, the product at this stage is called
‘‘green part,’’ and further process at the next processing
stage is called ‘‘debinding.’’

Debinding

This is the third processing stage of the injection
molding technique which involves the removal of binder,
known as ‘‘debinding.’’ At this stage, the product is
called ‘‘brown part.’’ It is achieved via solvent [29, 71,
72], catalytic [73, 74] or thermal [75–77] processes, or
combination of the process. Meanwhile, multistep
debinding techniques are employed, optimizing proces-
sing conditions (aspect ratio, time, and temperature) as
well as solvent medium [33, 78, 79] and then followed
by thermal debinding. Thermal debinding is a process
whereby the green part is condensed in a furnace [25,
80] but associated with part defects such as crack,
slump, porosity, and blister. Figure 2 shows a trend of
temperature profile over time, observed during thermal
debinding and sintering process.

According to Wongpanit et al. [27], one of the critical
issues in MIM technology is how to eliminate defects
during thermal debinding. Meanwhile, mechanical
properties and other defects such as distortion could
be reduced via addition of acrylic acid grafted to the
binder content. The kinematic study of the binder com-
ponents of the feedstock during debinding is paramount.
Enneti et al. [75] presented an explicit review on thermal
debinding process with details of the master decompo-
sition curves (MDCs). Equation (1) expressed the
relationship between the parameters considered:

U qð Þ ¼ h t;Tð Þ ¼
Z t

0

1

T
exp

�Q

RT

� �
dt ð1Þ

where U(q) is the densitification, t is the time, T is the
absolute temperature, Q is the apparent activation
energy, and R is the gas constant. Meanwhile, to accel-
erate binder removal and avoiding defect, researchers
now prefer solvent extraction method [29].

TABLE 1.—Powder loading of micro-nano stainless steel feedstock.

Number of loading

Powder loading, vol.%

ReferenceRange Critical Optimal

3 52–57 — 54 [40]

4 60–72 — 68 [46]

5 62–70 68–70 66 [47]

5 62–70 66–68 66 [48]

FIGURE 2.—Schematic of the thermal debinding and sintering

processes [81].
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Sintering

This is the final stage whereby the brown part is
subjected to heat in a thermal furance. This process
removes the remaining binder and pores from the brown
part and improves the mechanical properties of the
finished part [25, 80]. However, the problem of part dis-
tortion must be well guided as it remains a challenge
which manifests at this stage. Figure 3(a) illustrates the
possible flow path of the melt within mold cavity, gener-
ating internal stresses due to frozen-in orientation, while
Fig. 3(b) depicts distortion of brown part due to stress
relaxation.

Heng et al. [82] investigated the effect of sintering
temperature range on microstructure and mechanical
property of molded parts. Their study revealed that
mechanical properties of a sintered part improved with
increasing sintering temperature. Similary, Okubo et al.
[83] investigated the effect of powder particle size and
sintering conditions on dimensional accuracy of
micropart produced. However, optimum sintering
temperature has to exist to improve the dimensional
accuracy while downsizing the particle size. Raza et al.
[84] determined the optimum cooling rate of 10�C=min
for both the mechanical properties and corrosion
resistance of the sintered 316 L stainless steel part,
optimizing temperature, time, heating rate, and cooling
rate.

OPTIMIZATION AND SIMULATION OF INJECTION MOLDING

Part design, mold design, material selection, and
machine and process conditions are critical factors that
influence the finished part quality in injection molding.

These process conditions are selected and controlled for
best product quality by the application of optimization
techniques. Figure 4 illustrates a broad classification of
optimization techniques applied by researchers to injec-
tion molding processes. These methods were developed
based on statistical, global search process and approxi-
mate mathematical functions. Numerical simulations
are sometimes employed based on DOE for collecting
data on the optimization techniques.

Application of optimization techniques to injection
molding by researchers are non-iterative methods [85–
90], iterative methods [91–98], and intelligent algorithms
[95, 97, 99, 100] as depicted in Figure 4. Meanwhile,
sometimes researchers combine these methods or techni-
ques [92, 96, 101–112] to enhance the effectiveness of the
method. Research findings from literature show that
DOE, optimization techniques, factor interaction, and
quality control as well as the critical factors influenced
the finished part quality as illustrated in Fig. 5.
Annicchiarico and Alcock [113] recently reviewed fac-
tors that affect the shrinkage of molded part for both
macro- and microscale injection molding. Their study
focused on material behaviours, processing parameters,
mold design, and specimen design as branches that influ-
ence the shrinkage of molded part.

Researchers usually carried out simulation using soft-
ware and then validated with experimental results. This
act has positively affected injection molding output in
the last decades [114, 115]. Quite a number of commercial
softwares such as ABAQUS, ANSYS CFX1,
SIGAMA1, Moldex3D1

, Moldflow1, C-Mold1, and
others are widely used for injection molding simulations
[116]. However, these softwares were developed for
macroscopic applications, but found to be useful with
some basic assumptions for analysis of models developed
at micro=nano scale [66, 117–119]. Classification of
simulation-based optimization is shown in Fig. 6.

According to Liu et al. [36], computer simulation have
successfully reduced the design-to-manufacture cycle
time, through optimization of mold design and process
parameters. It is observed from the literatures that
investigation were largely on melt temperature, mold
temperature, holding pressure, injection pressure, and
injection speed to improve part quality [120–123].
Meanwhile, other factors such as material characteristics
and powder loading, shot size, cavity geometry, and sur-
face finish of the mold may influence part quality. Thus,
it is necessary to apply DOE to optimize process
especially during mold filling for better product quality
of mIM [67, 124–127]. Attia and Alcock [124] reviewed
DOEs used by researchers in evaluating the effect of
process paramaters on responses factors and developed
a multiple quality criteria for micro-injection molding,
but more work is needed especially for mMIM.

In addition, part quality depends on the ability of the
feedstock melt to flow into the mold cavity for micro-
and nanostructures [118]. Lin et al. [128] examined the
effects of the processing parameters on the filling of
nanofeatures components through the development of
analytical models which were verified experimentally.

FIGURE 3.—(a) Possible flow path of melt in mold cavity generating inter-

nal stresses because of frozen-in orientation and (b) distortion of brown

part due to stress relaxation [27].
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Their results showed that higher mold temperature was
required at nanoscale filling. Meanwhile, whenever the
filling aspect ratio is over 1, the mold temperature
should be raised near or above the glass transition tem-
perature of the polymer. Meanwhile, the suitability of
analytical methods diminishes as the complexity of the
MIM increases; this gave rise to the use of numerical
methods.

Mathematical formulation and modeling have been
implemented by the application of suitable numerical
methods in solving the governing equations developed
or formulated for injection molding simulation [129–
135]. Jiang et al. [136] analyzed the feedstock melt and

solid phase considereing basic assumptions of
non-Newtonian and non-isothermal fluid flow. The con-
tinuity equation (2) and momentum equation (3) of the
feedstock melt are as follows:

@u

@x
þ @v

@y
þ @w

@z
¼ 0 ð2Þ

@p

@x
¼ @

@x
g
@u

@z

� �
;
@p

@y
¼ @

@y
g
@v

@z

� �
;
@p

@z
¼ 0 ð3Þ

From Eq. (2), u, v, and w repressent velocity function
along the x, y, and z axis, respectively, while p represents

FIGURE 5.—Process parameters and critical factors influencing part quality in injection molding.

FIGURE 4.—Classification of optimization techniques used for injection molding process.
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the pressure and g is the viscosity. The energy equation
of the melt is then expressed as:

qCp
@T

@t
þ Vx

@T

@x
þ Vy

@T

@x

� �
¼ K

@2T

@x2
þ g _cc2 ð4Þ

In Eq. (4), the shear rate ð _cc2Þ represents @vx

@z

� �2þ @vy

@z

� �2

; T
represents the absolute temperature, t represents the
time, q represents the melt density, Cp represents the
specific heat, and K represents thermal conductivity of
feedstock. The energy equation for the solid phase is
expressed as:

qsCps

@Ts

@t
¼ K

@2Ts

@z2
s

ð5Þ

These governing equations are solved using numerical
methods either analytically or implemented by software.
However, finite difference method (FDM) and finite
element method (FEM) [137–139] methods were used
mostly for the analysis of melt flow with variant con-
ditions such as isothermal, non-isothermal [140, 141],
and non-Newtonian [140, 142]. Recently, researchers
now applied meshfree methods [137, 143–146] to injec-
tion molding due to complexity of handling mesh or grid
elements in analysis.

PRODUCT FABRICATION AND APPLICATIONS

The drive toward product miniaturization has been
greatly on the increase in the past few years.
Micro-molding methods such as injection molding, hot
embossing, reaction injection molding, injection com-
pression molding, and thermoforming [147–149] were
developed for fabrication of microparts. Typical compo-
nents manufactured by micro-injection molding are
broadly categorized into Type A and B. In Type A,
the overall size of the part is less than 1 mm and in Type
B the component dimension is larger but incorporates
micro-feature(s) size which is less than 200mm [150]. A
detailed review on the capabilities of micro-powder

injection molding as microfabrication techniques can
be found in [9].

Fabrication

It is now possible to fabricate three-dimensional
hollow part [151] and movable parts [152] with mMIM.
Attia et al. [152] proposed a novel framework to
fabricate moving interfaces by powder micro-molding.
These developments were facilitated as mPIM proved
to be cost-effective manufacturing techniques for
production of microdevices and components.

Inspection and Quality Control

The act of checking part specification during manu-
facturing process is termed inspection. This is usually
an aspect of quality control which can be either destruc-
tive or nondestructive. Therefore, quality control is a
systematic use of quality tools, frameworks, and meth-
ods to ensure certain standard or specification for the
product. Part quality is influenced by the effective con-
trol of the process conditions at different stages [153]
and the response factors (quality characteristics) which
are dimensional accuracy, mechanical properties, and
surface quality of the finished part [42]. Fabrication of
molded part quality depends strongly on the critical
factors which were illustrated in Fig. 5. The inter-
relationship between critical factors is elaborated further
here with fishbone diagram as shown in Fig. 7. In
addition, qualification methods such as pycnometer
density, cavity pressure, part dimension, part mass,
weight loss, microstructure, and mechanical testing were
employed to achieve defect-free parts [154].

Zhao et al. [28] proposed a nondestructive online
method for monitoring injection molding processes by
collecting and analyzing signals, using electrical sensors
installed in the machine. This is a measure to assess
the entire molding process and ensure the best quality
of the finished part. Also Gasparin et al. [155] investi-
gated the quality of injection molded component, based

FIGURE 6.—Classification of simulation-based optimization techniques [1].
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on optical coordinate measuring machine. The measure-
ments were analyzed by statistical quality control tools
to determine the process parameter which influence the
mechanical parts produced.

Applications

The demand and manufacturing of complex, intricate
miniature parts and microdevices by MIM has been on
the increase. Table 2 presents some major applications.
However, a brighter area of application is the microde-
vices and medical implants [156]. According to German
[157], medical applications are growing from an early
base of endoscopic devices and will become enormous
as MIM becomes widely accepted.

Applications of injection molding to product manu-
facturing have changed product design significantly
across all sectors. Meanwhile, the technique has some
challenges just like other manufacturing techniques.

RESEARCH CHALLENGES AND FUTURE WORKS

Despite achievements and research breakthrough
recorded, there are still problems that need attention
as they affect the finished part quality. Recently, Annic-
chiarico and Alcock [113] discover a gap of inadequate
information for the evaluation of molded part specimen
shrinkage with dimensions less than 10mm. Likewise,
Attia and Alcock [9] observed disparities of design of
microparts for mPIM. Indeed, these problems and others
have raised concern among researchers for the need of
standard priniciple and practicse of mPIM as it affects
the finished part quality.

Materials

Material selection has been identified as a critical
factor that influences part quality. It direclty affects
the strength and shrinkage of the finished part quality.
Therefore, the formulation of the feedstock matrix,
i.e., the binder constitutes and powder loading, needs
to be addressed for the fact that researchers usually
report a relatively mean design point of their study as
the optimal powder loading of specimen as presented
in Table 1.

According to Li et al. [46], it is almost in possible to
determine the critical powder loading in practice, but
the optimal powder loading lies just slightly below the
critical one. Meanwhile, Kong et al. [47] determined
critical powder loading using four different approaches.
It is, therefore, established from the literature that a
feedstock at the optimal powder loading produces the
best quality part having good rheological properties
during mixing—little shrinkage and warpage with good
mechanical properties.

It is then important to study the material properties of
the feedstock. The current research trend focused on the

FIGURE 7.—The interactions of critical factors influencing part quality of injection molding products.

TABLE 2.—Market partition by region and application as percent sales for

2007 [157].

Application North America Europe Asia ROW

Automotive 30 28 18 0

Consumer 0 32 15 0

Dental 18 14 0 8

Electronics 6 0 41 0

Firearms 6 9 0 66

Hardware 0 0 1 0

Industrial 6 3 14 24

Medical 34 2 2 1

Military 0 1 2 1

Other 0 9 5 1
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developmenet of new feedstocks such as aluminium- and
copper-based feedstocks as well as the introduction of
nanoparticles into the feedstocks. This now drives
research to micro-nano and bimodal injection molding,
as illustrated in Fig. 1. These materials were selected
based on their physical, mechanical, and thermal
properties; for instance, aluminium has been selected
due to its light weight and relatively high thermal con-
ductivity which are required in the development of heat
sinks for electronics application. Likewise, research
effort is ongoing to reduce product cycle time to the
market, achieved through design innovations and
process optimization.

Part and Mold Design

Fabrication of micro-metal parts by mMIM has been
developed and gaining acceptance. It is a net-shape
process of fabricating 3D microcomponents by replicat-
ing the features of the mold cavity to produce the green
part. It is then imperative that the contributions of part
and mold design were decisive among the critical factors
that influenced finished part quality.

It started by part drafting after material selection, part
dimensions, rib design, and stress analysis are among the
consideration as illustrated in Fig. 7. Therefore, the
design of both the part and mold are interoven as both
influenced part quality. However, researchers focused
their attention on part design in an effort to combat part
shrinkage and other defects which affect the finished part
quality at microscale and applied optimization techni-
ques to the process parameters during molding section.

Machine and Process Conditions

Researchers and stakeholders are working very hard to
develop further the entire process of mMIM. This
involves the development of custom-made micro-injec-
tion molding machine(s) and process optimization for
best part quality. Attia and Alcock [124] develop a robust
DOE to optimize process conditions for multiple quality
criteria in micro-injection molding. However, more work
still needs to be carried out in terms of molded part qual-
ity and process parameters for a clear and thorough
understanding of the mMIM process. System develop-
ment and quality improvement of product is sustained
by robust design.

The post-molding processess of mMIM are not left out
as debinding, sintering, as well as inspection and quality
control have received tremendous attention by research-
ers. However, the challenge of testing and inspection still
remain an issue. This is because most measuring systems
are found not suitable for micro-molded parts.
Meanwhile, efforts are ongoing to develop suitable
inline quality control system [28, 155].

Future Works

An empirical relationship between process parameters
and quality response such as: dimensional accuracy, part

weight, and mechanical properties will improve finished
part quality. Therefore, the following is recommended
for further investigation:

1. Instrumentation and control capability of the
custom-made mMIM machine needs to be strength-
ened. This is the act of measuring and monitoring
of the processing parameters which influences part
quality from the machine.

2. Development and characterization of mMIM feed-
stock to be guided by a standard or unify principle.

3. Process integration and development to enhance
capability and wider application. This could be inte-
gration of mixing mechanism and injection process
via rapid prototyping and or additive manufacturing
techniques with mMIM.

4. A multiple quality characteristics relationship based
on process conditions will enhance finished part
quality.

5. Shrinkage and warpage measures to cover part
dimension less than 10 mm. This will enhance process
development of micro-nano and bimodal injection
molding.

CONCLUSIONS

This study presents a glance evolutionary overview of
mMIM. This manufacturing technique is found suitable
for large volume production of various consumer
products and applications. The following conclusions
were drawn:

1. Powder characteristics and sintering temperature
greatly influenced part quality; this is monitored by
response factors such as dimensional accuracy,
mechanical properties, surface quality, shrinkage,
and warpage of the finished part.

2. The critical factors that influenced part quality are
part design, mold design and fabrication, material
selection, process conditions, and machine selection.

3. Part quality is improved with the application of opti-
mization techniques to process parameters which are
mold temperature, melt temperature, injection speed,
injection pressure, cooling time, packing, and
holding parameters.

4. Development of new feedstock and introduction of
micro-nano particles improve finished part quality
for specific application.

5. Process development continues to reduce cycle time
to meet up with market demand, especially for medi-
cal and electronics applications.
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25. Gorjan, L.; Kosmač, T.; Dakskobler, A. Single-step wick-
debinding and sintering for powder injection molding.
Ceramics International, 2014, 40 (1), 887–891. DOI:10.1016/

j.ceramint.2013.06.083.
26. Md Ani, S.; Muchtar, A.; Muhamad, N.; Ghani, J.A.

Fabrication of zirconia-toughened alumina parts by powder
injection molding process: Optimized processing parameters.
Ceramics International 2014, 40 (1), 273–280. DOI:10.1016/
j.ceramint.2013.05.134.

27. Wongpanit, P.; Khanthsri, S.; Puengboonsri, S.; Manonukul,
A. Effects of acrylic acid-grafted hdpe in hdpe-based binder
on properties after injection and debinding in metal injection
molding. Materials Chemistry and Physics 2014, 147 (1–2),

238–246. DOI:10.1016/j.matchemphys.2014.04.035.

PROCESS DEVELOPMENT AND PRODUCT QUALITY 1385

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

al
ay

a]
 a

t 1
1:

29
 2

5 
Ju

ly
 2

01
5 

http://dx.doi.org/10.1088/0960-1317/21/4/043001
http://dx.doi.org/10.1002/pen.10130
http://dx.doi.org/10.1016/j.ceramint.2013.06.083
http://dx.doi.org/10.1016/j.ceramint.2013.06.083


28. Zhao, P.; Zhou, H.; He, Y.; Cai, K.; Fu, J. A nondestructive
online method for monitoring the injection molding process
by collecting and analyzing machine running data. The Inter-
national Journal of Advanced Manufacturing Technology
2014, 72 (5–8), 765–777. DOI:10.1007/s00170-014-5711-0.

29. Enneti, R.K.; Shivashankar, T.S.; Park, S.-J.; German,
R.M.; Atre, S.V. Master debinding curves for solvent
extraction of binders in powder injection molding. Powder
Technology 2012, 228, 14–17. DOI:10.1016/j.powtec.2012.

04.027.
30. Liu, L.; Loh, N.H.; Tay, B.Y.; Tor, S.B.; Murakoshi, Y.;

Maeda, R. Effects of thermal debinding on surface rough-
ness in micro powder injection molding. Materials Letters
2007, 61 (3), 809–812. DOI:10.1016/j.matlet.2006.05.070.

31. Li, S.; Huang, B.; Li, Y.; Qu, X.; Liu, S.; Fan, J. A new type
of binder for metal injection molding. Journal of Materials
Processing Technology 2003, 137 (1–3), 70–73. DOI:10.1016/
s0924-0136(02)01069-5.

32. Wen, G.A.; Cao, P.; Gabbitas, B.; Zhang, D.; Edmonds, N.
Development and design of binder systems for titanium
metal injection molding: An overview. Metallurgical and
Materials Transactions a-Physical Metallurgy and Materials
Science 2013, 44A (3), 1530–1547. DOI:10.1007/s11661-
012-1485-x.

33. Hausnerova, B.; Kuritka, I.; Bleyan, D. Polyolefin backbone
substitution in binders for low temperature powder injection
moulding feedstocks. Molecules 2014, 19 (3), 2748–2760.
DOI:10.3390/molecules19032748.

34. Onbattuvelli, V.P.; Enneti, R.K.; Park, S.J.; Atre, S.V. The
effects of nanoparticle addition on sic and aln
powder-polymer mixtures: Packing and flow behavior. Inter-
national Journal of Refractory Metals & Hard Materials
2013, 36, 183–190. DOI:10.1016/j.ijrmhm.2012.08.014.

35. Kate, K.H.; Enneti, R.K.; Onbattuvelli, V.P.; Atre, S.V.
Feedstock properties and injection molding simulations of
bimodal mixtures of nanoscale and microscale aluminum
nitride. Ceramics International 2013, 39 (6), 6887–6897.
DOI:10.1016/j.ceramint.2013.02.023.

36. Liu, Z.Y.; Loh, N.H.; Tor, S.B.; Khor, K.A. Characterization
of powder injection molding feedstock. Materials Characteri-
zation 2003, 49 (4), 313–320. DOI:10.1016/s1044-5803(02)

00282-6.
37. Bricout, J.; Gelin, J.-C.; Ablitzer, C.; Matheron, P.; Brothier,

M. Influence of powder characteristics on the behaviour of
pim feedstock. Chemical Engineering Research and Design
2013, 91 (12), 2484–2490. DOI:10.1016/j.cherd.2013.02.023.

38. Kong, X.; Quinard, C.; Barrière, T.; Gelin, J.C. Mixing and
characterisation of stainless steel 316 l feedstock. Inter-
national Journal of Material Forming 2009, 2 (S1), 709–712.
DOI:10.1007/s12289-009-0652-0.

39. Wang, Q.; Yin, H.; Qu, X.; Johnson, J.L. Effects of mold
dimensions on rheological of feedstock in micro powder
injection molding. Powder Technology 2009, 193 (1), 15–19.
DOI:10.1016/j.powtec.2009.02.001.

40. Supati, R.; Loh, N.H.; Khor, K.A.; Tor, S.B. Mixing and
characterization of feedstock for powder injection molding.
Materials Letters 2000, 46, 109–114.

41. Suri, P.; Atre, S.V.; German, R.M.; de Souza, J.P. Effect of
mixing on the rheology and particle characteristics of
tungsten-based powder injection molding feedstock.

Materials Science and Engineering: A 2003, 356 (1–2), 337–
344. DOI:10.1016/s0921-5093(03)00146-1.

42. Sun, C.-H.; Chen, J.-H.; Sheu, L.-J. Quality control of the
injection molding process using an ewma predictor and mini-
mum–variance controller. The International Journal of
Advanced Manufacturing Technology 2009, 48 (1–4), 63–70.
DOI:10.1007/s00170-009-2278-2.

43. Quinard, C.; Barriere, T.; Gelin, J.C. Development and
property identification of 316 l stainless steel feedstock for
pim and mpim. Powder Technology 2009, 190 (1–2),
123–128. DOI:10.1016/j.powtec.2008.04.044.

44. Ye, H.; Liu, X.Y.; Hong, H. Fabrication of metal matrix
composites by metal injection molding—a review. Journal
of Materials Processing Technology 2008, 200 (1–3), 12–24.
DOI:10.1016/j.jmatprotec.2007.10.066.

45. Chen, C.-S.; Chen, S.-C.; Liaw, W.-L.; Chien, R.-D.
Rheological behavior of pom polymer melt flowing through
micro-channels. European Polymer Journal 2008, 44 (6),

1891–1898. DOI:10.1016/j.eurpolymj.2008.03.007.
46. Li, Y.; Li, L.; Khalil, K.A. Effect of powder loading on

metal injection molding stainless steels. Journal of Materials
Processing Technology 2007, 183 (2–3), 432–439. DOI:10.

1016/j.jmatprotec.2006.10.039.
47. Kong, X.; Barriere, T.; Gelin, J.C. Determination of critical

and optimal powder loadings for 316 l fine stainless steel
feedstocks for micro-powder injection molding. Journal of
Materials Processing Technology 2012, 212 (11), 2173–
2182. DOI:10.1016/j.jmatprotec.2012.05.023.

48. Choi, J.-P.; Lyu, H.-G.; Lee, W.-S.; Lee, J.-S. Investigation of
the rheological behavior of 316 l stainless steel micro-nano
powder feedstock for micro powder injection molding.
Powder Technology 2014, 261, 201–209. DOI:10.1016/j.powtec.
2014.04.047.

49. Hossain, A.; Choudhury, I.A.; Nahar, N.; Hossain, I.;
Mamat, A.B. Experimental and theoretical investigation of
powder-binder mixing mechanism for metal injection mold-
ing. Materials and Manufacturing Processes 2015, 41–46.
DOI:10.1080/10426914.2014.930955.

50. Jung, I.D.; Kim, S.H.; Park, S.J.; Kim, S.J.; Kang, T.G.; Park,
J.M. Rheological modeling of strontium ferrite feedstock for
magnetic powder injection molding. Powder Technology
2014, 262, 198–202. DOI:10.1016/j.powtec.2014.04.073.

51. Quinard, C.; Song, J.; Barriere, T.; Gelin, J.C. Elaboration
of pim feedstocks with 316 l fine stainless steel powders for
the processing of micro-components. Powder Technology
2011, 208 (2), 383–389. DOI:10.1016/j.powtec.2010.08.033.
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