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Abstract   
 
This paper proposes Chebyshev-dependent inhomogeneous second order differential equation 
for the m-Boubaker polynomials (or Boubaker-Turki polynomials). This differential equation 
is also presented as a guide to applied physics studies. A concrete example is given through 
an attempt to solve the Bloch NMR flow equation inside blood vessels.   
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1.  Introduction 
 
The Boubaker polynomials are the components of a special function which was established 
while studying an applied physics model by Chaouachi et al. (2007). This special function 
and its usefulness have been discussed in several studies by Boubaker (2007, 2008). The 
modified Boubaker polynomials (or Boubaker-Turki polynomials) is an enhanced form of 
these polynomials. Oppositely to the earlier defined polynomials, the Boubaker-Turki 
polynomials have a characteristic differential equation established by Labiadh et al. (2008) as 
well as an original ordinary generating function demonstrated by Awojoyogbe et al. (2009). 
 
In this paper we tried to establish, for the first time, a Chebyshev-dependent differential 
equation for the Boubaker-Turki polynomials as a guide to particular applied physics studies.  
 

 
2.  Historic preview   
 
2.1.  The Boubaker Polynomials  
 
 
According to their first definition in an attempt to solve the heat equation, the Boubaker 
polynomials have the explicit expression: 
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where the symbol   designates the floor function. Their coefficients could be defined 
through a recursive formula (2) that yields the first few polynomials (3): 
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2.2. The Modified Boubaker Polynomials  
 
 
The Modified Boubaker polynomials have been proposed through a specialized study. They 
are defined by (4):  
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They are solutions to a second order characteristic equation (5): 
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The modified Boubaker polynomials have a recursive monomial definition expressed by 
equation (6): 
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This definition allowed an establishment of a quasi-polynomial expression (7) of the m-
Boubaker polynomials: 
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3.  The Ordinary Generating Function of the Boubaker-Turki Polynomials 
 
 
H. Labiadh et al. (2007) succeeded to establish an ordinary generating to the Boubaker-Turki 
polynomials that verifies (8): 
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This ordinary generating function is expressed by (9):   
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4.  A Chebyshev-dependent Second Order Differential Equation for the 
Boubaker-Turki Polynomials 

 
According to the recent results, the Boubaker-Turki polynomials can be expressed by (10):  
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where Tn(X), for n > 2, are the Chebyshev  first order polynomials. 
 
Equation (10) gives (11) 
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using the third order differential equation (13) 
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we obtain the second order differential equation (14) 
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5. Application of the Boubaker-Turki Polynomials in Applied Physics 
Problems  

 
 
5.1.  Magnetic resonance blood flow imaging  
 
It is known, as confirmed by M.B. Scheidegger et al. (1992), P. Boesiger et al. (1992), Liu 
(1992), Stahlberg (1992) and Schmalbrock (1990), that there are three main ways of 
generating magnetic resonance (MR) signals: Free induction decay (FID), Spin Echo (SE), 
and Gradient Echo technique. Integrating these signal types with the gradient sequences 
necessary for spatial encoding produces the fundamental magnetic resonance imaging 
sequences. All other imaging Magnetic resonance sequences can be characterized using these 
three basic ways of MR signal generation.  In the following discussion, attention will be 
focused on quantitative blood flow imaging based on the phase contrast method. 
 
Phase contrast technique employs the phase shift in the MR signal that is induced by the 
flowing blood. Blood spins moving along an applied gradient acquire a phase shift which is 
proportional to the strength and duration of the gradient and the motion of the spins. 
Therefore, with phase contrast method, complete suppression of stationary tissue can be 
achieved. This means that small blood vessels can be clearly visualized, even with slowly 
flowing blood.  

 
5.2.  Spatial magnetization equation  

 
The Spatial magnetization component M is a solution of the equation (15) as mentioned by 
Awojoyogbe (2002, 2003, 2004): 
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where  is the gyromagnetic ratio of fluid spins, B1(x,t) is the rotating field,  T1  T2 are the 
spin lattice and spin-spin relaxation times respectively and v is the fluid velocity. 
 
If we assume that the rotating field, which is a controlled item, can be expressed as a 
proportional function to the right term in the expression (14), the m-Boubaker polynomials in 
equation (14) are consequently solutions of a general second order non homogeneous 
differential equation (15) derived from the Bloch NMR flow equation. 
 
Identification of the left term of equation (15) allows assuming that we can write (16) 
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  (16) 

 
Hence, the properties of the established generating function (9), the Boubaker-Turki 
polynomials and the Bloch NMR flow equations discussed above can be very significant to 
extract relevant flow parameters for quantitative analysis of blood flow especially under 
pathological conditions 
 

 
5.3.  A Solution to the Heat Transfer Equation  
 
Ghanouchi et al. (2007) proposed a solution of a heat transfer problem in the case of a 
modulated heat supply targeting a plate surface. In this study, the source term in the main 
heat transfer equation was decomposed in a spectral domain of Boubaker-Turki polynomials. 
The authors took benefit from the arithmetic and differential properties of these polynomials 
in order to discuss a particular problem that several precedent studies tried to explain: the 
establishment of non-Gaussian isothermal generative lines beneath a plate surface targeted by 
a Gaussian beam. 
 
 

6.  Conclusion  
 
 
The present work is a continuation of the previous publications on the Boubaker polynomials. 
The obtained differential equation was inhomogeneous with a Chebyshev-dependent second 
term. This equation can be a first order supply to investigations of mathematical models 
involving mathematical modeling of physical and biophysical systems like the studies 
published by Riahi (2007), Slama et al. (2008), Srivastava (2007) and Marik (2006). Further 
investigations are focused on properties that lead to a characteristic homogenous equation. It 
was interesting to note that equations (9), (14) and (15) can play fundamental roles in the 
search for the best possible data obtainable on highly complex blood flow conditions. This 
will be the focus of our next investigation. It may be particularly interesting to note that the 
NMR flow parameters such as the flow velocity, T1  T2 NMR relaxation parameters for a 
sample can be uniquely determined through the first few m-Boubaker polynomials.  
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