NIGERIAN SOCIETY FOR ANIMAL PRODUCTION (NSAP) Proceedings of # THEME: Fast-tracking ANIMAL AGRICULTURE in a Challenged Economy Held at UNIVERSITY OF IBADAN, NIGERIA Edited by: O. J. BABAYEMI O. A. ABU E. O. EWUOLA ISSN:1596-5570 ## NIGERIAN SOCIETY FOR ANIMAL PRODUCTION To agnitogood ### PROCEEDINGS 35TH ANNUAL CONFERENCE Editors O. J. Babayemi, O. A. Abu and E. O. Ewuola OIOCHURNIUTI-DEL DEPARTMENT OF ANIMAL SCIENCE FACULTY OF AGRICULTURE AND FORESTRY UNIVERSITY OF IBADAN PASTERIORING PARISON AND AND REPORT OF THE PARISON OF THE AREA **计位于数据** Land Thingill, middle of the contract was bestition. ministry O' A tone not keep the D. Ewales OTES DESIMARE TO THE STATE OF T | Growth Performance And Nutrient | F.M. Ayanwamide, O. | O. Emmanuel Alay | ande 263 | |--|--|--|--| | Utilization of Clarias gariepinus Fingerlings Fed With Diets In Which Fish Meal Protein Was Replaced With | Okunlola and J.A. Oshinowo | | dspuffs: A renew. | | Soybean Meal Protein. | T.T. Lawal | has may be sked | cet of residual eval | | Diurnal variations in erythrocyte and haemoglobin concentration of African Giant Rat (Cricetomy gambianus) | Adewumi; 0.0. | haemacologic IU and factories and growing rabbits | eava pe 262 dats on chemical induces o | | Gross anatomy of male reproductive organs of the domesticated grasscuter (Thryonomys swinderianus, Temminick) | Olukole, S.G. Oyeyemi, M. O. and Oke, B. O. | | 268
166
RA piliga A fo also | | Nutritional Constituents of Tilapia zilli produced under different types of solar Tent driers. | Ipinmoroti, M O, Iyiola
Adams O and Adeyemi
Olusegun | UNI OSUN | rent of 12721 does | | Evaluation of processed mango seed kernel meal on nutrients digestibility of growing rabbits | R.O. Olabanji, O.A. Amao, M. D. Shittu, O.A. Aderinola and G.O. | LAUTECH Jevel behang bel sti | 172 | | growing radous | Tona, Dens ibringial | fragile ecosystem of | The state of s | | Performance and nutrient digestibility of weaned rabbits fed graded levels of | G. O. Tona, J. A. Akinlade, R.O. Olabanji, | LAUTECH
Inginium brane | 278 ense | | Piliostigma thonningii leaf meal-based diets | S. U. Onyia and A. B. Adekiitan | tidoes fed diets
(Manihot exculente | gestibility of tabb | | Performance of weaned rabbits fed graded levels of fossil shell flour-based diets | Anurudu, N. F. and Familade F.O. Mada O | med mixings ID | mong to noisular | | Antimicrobial efficacy of a new generation water sanitizer (isochlorr) in aquaculture | Orgem, C. M., Adesiyan, F.A. and Olufemi, B.E. | ical diets of | THE RESIDENCE OF THE PROPERTY OF THE PARTY O | | MONOGASTRIC ANIMAL PRODUCTION, NUTRITION AND MANAGEMENT | ibined. W. Lamidi cionil A. i. A Linnic | ginain) fed differente
entrate diets | fedible African la
Archaeltanua auar
ruda protein cenc | | Cost benefit ratio of varying levels of | A. Aremu, T.Z. Adama. | FUT, Minna | 000 | | energy and protein diets under single versus double phase feeding. | E.L. Shiawoya and B.A. Ayanwale | Musikew Bayes | 288 | | Growth performance and carcass characteristics of broilers fed three commercially produced diets | A.D. Olabode and M. U. Onyekwere | Federal College of
Agriculture, Ishiagu,
Ebonyi State. | 2929 ho toon H | | Substitution of crystalline lysine with solar-dried-blood meal: Economic implications in starter - finisher broiler diets | E.K. Ndelekwute, U. H. O. Uzegb, U. O. Inyang, I.R. Igwe, R. J. Nosike, S.E., Ogbe, D.O. Agbara and P. C. Ndukwu | | 295 Januara Ja | | Effect of Tetrapleura tetraptera under different feeding regimes on growth performance and gut microbes of broiler chicken | B.O. Nweze and A.E. Nwankwagu | esculenta) as a | 299 n to aleval (coloc) (com to memocalgen | | Vermitechnology as a potential source of earthworm meal for replacement of fishmeal in poultry diets: A review | A.A. Malik, A. Aremu
and A.H. Dikko | FUT, Minna | 302 Harmotien | | Evaluation of nutritive and anti-nutritive | C. O. Obun,., S M Yahaya, | Federal College of Wildlife | 305 | | | A.N. Fajemisin, A.A. | FUTA | 604 | |--|--|--|--| | Sunanea And Fermented Rumen Digeste | Fadiyimu and J.A. Alokan | hability performance of | isn no ammur | | And Cage Hen Droppings Diets | olt W. H. H. Nwallor | se quail (Commit com | eggs of Japane | | | | cally fairricated kentsen | inported) in le | | Growth and performance characteristics | Okukpe K.M, Belewu | UNILORIN | rotedanei | | The state of s | M A Dodman A TT A | The state of s | 608 | | the curcas seed | | eviation of poverty and | its effect on al | | ake. | 11. | ers in Aug-OxforOta Ler | the rund durel | | Nutrient Digestibilty By Kano Brown | Nayawo, A. A. Maigandi, | Sa'adatu Rimi | 612 | | TO THE PARTY OF TH | | Calles CEL | 612 | | Waste As A Replacement For Wheat | R. | Conege of Laucation | faming how'e | | Total protein and cholesterol | R A M ben dobit 1 3 | THE PERSON NAMED IN THE PERSON NAMED IN | Nigeria | | anagetestions in the | T. Ahemen,* I.I. Bitto and | UMUDIKE | 616 | | oncentrations in the reproductive tract of | F. O. I. Anugwa | gg provincens | A WASSELLE STREET | | rails during sperm maturation in | A R OF THE RESIDENCE OF THE PARTY PAR | odelika e in com a de de de | Hoom State, but | | he southern guinea savanna. | - eximate | of the domestic chicke | Hee broaucitoi | | he performance of West African Dwarf | Okukpe K.M., Adeloye | UNILORIN | 618 | | Wad) goats fed tridax and siam weed in icus based diet | A.A and Olaniran T.O. | and a solution and all | Diodo non area | | | The State of S | O main'Thy Wash Warner | Secritive S | | Grazing Behaviour Of Cows And Ewes In | O.S. Iyasere., J.O. | TRYAND | 622 | | own Pasture | Daramola., O.A. | iv in Minna, Nigeria | The second of th | | Odd GLAMINU Lo | Osinowo., B.R. | g Ratio, ben's Weigin B | the Manager | | | 11010.,111.1. Dataill., L.O. | bus yilling no me | w2 or its dear | | | Obanla., O.A. | the Japanese Octail | production of | | | Ogunsola.,O.E. Oke., J. | nix Japonica) eugs | Life of the state | | in RSUST | Ochefu and O.M. | it analysis of incorporal | Smed trop cell | | Offect Of Combined I and a Of D | Onagoosan. | carrie famile, some class | al 13 minutes | | Effect Of Combined Levels Of Panicum | A.M. Ogungbesani: O.O. | OOU | 625 | | naximum (Jacq) And Gliricidia sepium | Emolorunda': O.A. | d economic implication | MG Discoloid acre | | Jacq) Wale On The Antiquality Factors | | nonlouborg tidden ni at | the some of the be | | Digestibility In West African Dwarf Does
Fed Cassava Offal Basal Diets | Lamidi and E.Mbomie | oren fish in ibadan | The Latin Action | | | Innight O A series | he Account to the second secon | and the same of th | | n Vitro Degradation And Methane Gas | Isah, O. A. and Gazaly, | UNAAB | 628 | | Production Of Selected Browse Plants | M.B. | | | | Consumed By Small Ruminants In | mid., M. Lina, Shim | diworg no bollom | Fifteet of rearis | | Western Nigeria | G.I. Lyeghe-Erakpanola | Flora hasima enalioned to | of aracteristics o | | A STATE OF THE PARTY PAR | and recovered to the transfer | | 4847.81.54 | | TTTTO ON A CONTRACTOR OF STREET STREET | Sec. (C. St.) Sec. 14 (Rev. Car.) 1984 - Complete Comple | A CONTRACTOR OF THE PARTY TH | 632 | | LIVESTOCK | | | | | | ns L.O.Estevo and L.L. | lobal information system | n le reiteailem | | ECONOMICS AND | ns LOEsievo and L.L. Otova | lohal information tyster | n le reitsailem | | ECONOMICS AND EXTENSION | Diroid | manaqulavel | noplication of g | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals | O.O. Egbewande, | manaqulavel | n le reiteailem | | ECONOMICS AND EXTENSION Survey of Prices of Ruminant Animals | O.O. Egbewande, M. K. Yusuf, H. Ibrahim | manaqulavel | to reinstillaria | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, | IBB, Lapai deit mace | to reinsilging and isometrical and the second t | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals In Four Market Locations in Niger State. Factors Affecting Honey Production | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, | IBB, Lapai de de de la coma | le reinsilent is me | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals In Four Market Locations in Niger State. Factors Affecting Honey Production | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. | IBB, Lapai Sa'adatu Rimi College of | to reinsilgadical in a continuity of the continu | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa | IBB, Lapai Sa'adatu Rimi College of Education, Kano. | 633 mannings no signature de company comp | | EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. Effect of Sex on Carcass Characteristics | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa S.S.A. Egena, A.H. | IBB, Lapai Sa'adatu Rimi College of | 633 mannor | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. Effect of Sex on Carcass Characteristics | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa S.S.A. Egena, A.H. Dikko, D.N. Tsado, A.A. | IBB, Lapai Sa'adatu Rimi College of Education, Kano. | 633 manings at the first transfer to the street transfer to the street transfer tran | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. Effect of Sex on Carcass Characteristics of Intensively Reared Guinea Pig (Cavia Porcellus) | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa S.S.A. Egena, A.H. Dikko, D.N. Tsado, A.A. Malik and H. Ibrahim | IBB, Lapai Sa'adatu Rimi College of Education, Kano. FUT, Minna | 633 malion 636 636 636 637 640 | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. Effect of Sex on Carcass Characteristics of Intensively Reared Guinea Pig (Cavia Porcellus) Determinants of access to credit among | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa S.S.A. Egena, A.H. Dikko, D.N. Tsado, A.A. Malik and H. Ibrahim D. A. Babalola and G. O. | IBB, Lapai Sa'adatu Rimi College of Education, Kano. | 633 mannings no signature de company comp | | EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. Effect of Sex on Carcass Characteristics of Intensively Reared Guinea Pig (Cavia Borcellus) Determinants of access to credit among | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa S.S.A. Egena, A.H. Dikko, D.N. Tsado, A.A. Malik and H. Ibrahim D. A. Babalola and G. O. | IBB, Lapai Sa'adatu Rimi College of Education, Kano. FUT, Minna | 633
636
640 | | ECONOMICS AND EXTENSION A Survey of Prices of Ruminant Animals in Four Market Locations in Niger State. Factors Affecting Honey Production Under Improved Method of Beekeeping in Kano State, Nigeria. Effect of Sex on Carcass Characteristics of Intensively Reared Guinea Pig (Cavia Porcellus) | O.O. Egbewande, M. K. Yusuf, H. Ibrahim and A. L. Boku, A. U. Shu'aib, , S.Isyaku, A. A. Nayawo and I. A. Kurawa S.S.A. Egena, A.H. Dikko, D.N. Tsado, A.A. Malik and H. Ibrahim D. A. Babalola and G. O. | IBB, Lapai Sa'adatu Rimi College of Education, Kano. FUT, Minna Babcock | 633
636
640 | # VERMITECHNOLOGY AS A POTENTIAL SOURCE OF EARTHWORM MEAL FOR REPLACEMENT OF FISHMEAL IN POULTRY DIETS: A REVIEW A.A. Malik¹, A. Aremu¹ and A.H. Dikko¹ Department of Animal Production, Federal University of Technology, Minna, Niger State. Corresponding author's e-mail: delemalik@yahoo.com #### ABSTRACT Earthworms are regarded as ecosystem engineers for their ability to modify soils and plant communities. They are a good source of protein and are therefore used as live fish food and bait. Recently, they are being fed to livestock and fish as high quality protein supplements to replace fishmeal in fish and poultry diets because of the high cost of fishmeal, and for their high protein contents (above 60%). Large scale production of earthworm meal can be achieved through vermicomposting and vermiculture technologies: which are inexpensive and locally-available, using epigeic and endogeic species of earthworms that are prolific breeders and have high biomass production. The dynamic and growing poultry industry in Nigeria require a cheap, non-conventional but high quality animal protein ingredient that is readily available in large commercial quantities throughout the year to replace fishmeal. And earthworm meal produced through vermitechnology has the greatest potential of meeting this need, thus saving the nation millions of naira expended yearly on the importation of fishmeal from all parts of the world. #### INTRODUCTION Earthworms are soil invertebrates that belong to the phylum Annelida and are found throughout the world. They are commonly referred to as ecosystem engineers for their ability to modify soils and plant communities (Hale et al., 2005). They improve the physical structure of the soil, improve soil fertility and improve plant growth and health. Also, large population of earthworm suppresses weed growth, clean up dangerous chemicals in the environment (such as hexachlorocyclohexane) and improves water absorption capacity of the soil, thus preventing soil erosion (Barley, 1961). In aquaculture, earthworm has been found to be a good source of protein and is therefore used as live fish food and bait. Ita et al. (1984) reported that the most preferred bait by anglers for sport fishing in the Kainji Lake was earthworms while Tomlin (1983) observed that in North America, there was a strong demand from about 50 million anglers for baitworms. Recently, because of the increased price of fishmeal (which is the sole animal protein source in poultry diets), earthworm is being fed to livestock and fish as a high quality protein supplement (Ravindran et al., 1993). To ensure regular supply of this non-conventional animal protein source throughout the year, large scale cultivation and culturing of earthworms and vermicomposting through vermiculture technologies are being developed, for partial or total replacement of fishmeal in poultry diets. Why Earthworm Meal? Earthworm meal prepared from different earthworm species have been reported to contain high protein. Sogbesan et al. (2007) reported a crude protein value of 63.04% for Hyperiodrilus euryaulos as compared to 71.64% for Clupeid fishmeal (Table 1). Guerrero (1983) reported 69.8% CP for Perionyx excavatus while Medina et. al. (2003) reported 61.8% for Eisenia foetida. Also, the essential amino acids profile of earthworm meal compares favourably with that of fishmeal; with earthworm meal having a higher percentage of methionine than fishmeal (Table 2). Vermiculture and vermicomposting technologies Vermicomposting is the biological thermophilic decomposition or degradation of organic matter when earthworms feed on organic waste materials. It is used as a popular waste management option in the Americas, Europe and the Indian sub-continent, producing organic fertilizers called vermicomposts as well as earthworm biomass (Mainoo, 2007). The vermicomposts contain not only earthworm castings, but also bedding materials and organic wastes at various stages of decomposition. Hence, vermicomposts often contain 5 to 11 times more nitrogen, phosphorus and potassium than the surrounding soils and is superior to the original manure as a fertilizer. This is because secretions in the intestinal tracts of earthworms, along with soil passing through their gut, make nutrients more concentrated and available for plant uptake, including micronutrients (Dickerson, 2009). Many earthworm species used for vermicomposting around the world are epigeic (i.e. they live in the upper litter layer of the soil, typically ingesting litter materials extensively). Examples include the following: Eisenia foetida, Eisenia andrei, Eisenia hortensis, Eisenia veneta, Perionyx excavatus, Eudrilus eugeniae, Amynthas cortices and Amynthas gracilis. Of all these species however, only Eudrilus eugeniae (Kinberg) and Perionyx excavatus (Perrier) are the most commonly used earthworms for vermicomposting in tropical and sub-tropical countries (Giraddi., et. al., 2002). For example, in a 20 day trial in Accra, Ghana, Mainoo (2007) determined that Eudrilus eugeniae decomposed 99% of pineapple fibres and 87% of pineapple peels supplied indicating that this earthworm species is a good vermicomposter. Vermiculture, on the other hand, is the household rearing of earthworms, using locally-available and inexpensive technology, to produce them in large commercial quantities. Species of earthworm most suitable for vermiculture are endogeic earthworms (i.e. those found in the first 10 to 20cm layer of the soil). In Nigeria, the most culturable species is the semi-arid zone earthworm, *Hyperiodrilus euryaulos* (Sogbesan et. al., 2007). But anecic earthworms are deep burrowing earthworms that come to the surface only to feed. A good example is the *Lumbricus terrestris* (the North American Night Crawler). It is not good for vermiculture. During vermiculture, the earthworms are fed fermented, sun-dried and grinded poultry droppings and vegetables (Amaranthus species) at 10% of their body weights. This is because the growth rate of earthworms have been shown to strongly correlate with the particle size of organic materials ingested; and finer materials are more preferred and readily ingested and assimilated than coarse ones (Curry and Schmidt, 2007). # ECONOMIC POTENTIAL OF EARTHWORM MEAL AS A FISHMEAL REPLACER Earthworm meal can be used to replace fishmeal completely in fish feed without any adverse effect on the growth performance of the fish species (Ogbe et. al., 2004). Earthworm can be cultured in wooden boxes initially lined with banana leaves and old newspapers and covered with substrate of up to 5cm level before the worms are introduced (Sogbesan et. al., 2007). Worm bins can also be made of plastic or from recycled containers like old bathtubs, barrels or trunks. And earthworms have high reproductive rate and biomass production. Sogbesan et. al. (2007) reported highest biomass production of 25.7g earthworm/week in cellulose substrate, 22.9g earthworm/week in dry neem leaves and soil substrate and lowest value of 17.8g earthworm/week in soil substrate for Hyperiodrilus euryaulos (Clausen); while Giraddi et. al. (2008) reported mean fecundity of 6.75 cocoons/week and 2.63 cocoons/week for E. eugeniae and P. excavatus respectively. Hence, earthworms can be regarded as prolific breeders. #### CONCLUSION The dynamic and growing poultry industry in Nigeria requires a non-conventional feed ingredient that is cheap, of high protein quality and readily available in large commercial quantities throughout the year to replace fishmeal in poultry diets. Earthworm meal produced through vermiculture and vermicomposting technologies has the greatest potential of meeting this need, thus saving the nation millions of hard-earned foreign exchange expended each year on the importation of fishmeal from all parts of the world. Table 1: Proximate and Mineral Composition (DM %) of tested Animal Protein Sources | Composition | Earthworm Meal | Clupeid Fishmeal | 4.4 | |---|----------------|------------------|------------------| | Crude protein % | 63.04 | 71.46 | Contract Service | | Ether extract % | 5.90 | 7.97 | | | Crude fibre % | 1.90 | 1.18 | | | Ash % | 8.90 | 18.22 | | | Nitrogen Free Extract % | 13.76 | 3.17 | | | Moisture % | 8.6 | 8.89 | | | Dry matter % | 91.40 | 90.21 | | | Gross energy kJ/100g | 1968.24 | 2074.09 | | | Sodium (g/100g) | 0.43 | 0.91 | | | Socium (g/100g) | 0.53 | 3.53 | | | Calcium (g/100g) | 0.62 | 0.96 | | | Potassium (g/100g) | 0.94 | 2.40 | | | Phosphorus (g/100g)
Magnesium (g/100g) | NA | 0.08 | | Source: Sogbesan et al. (2007) Table 2: Essential amino acids composition (a/16Ng dry matter) and amino acids indices of earthworm | meal and Clupeid fishmeal | | Clupeid Fishmeal | | | |----------------------------------|--|--|--|--| | Amino acid composition | Earthworm Meal | 3.34 | | | | Arginine | 2.83 | 4.19 | | | | Histidine | 1.47 | 2.62 | | | | | 2.04 | 8.31 | | | | Isoleucine | 4.11 | 10.96 | | | | Leucine to supplied the last | 6.35 | 2.26 | | | | Lysine | 5.30 | 5.52 | | | | Methionine | 6.26 | 5.28 | | | | Phenylalanine | The state of s | 5.88 | | | | Threonine | 4.43 | | | | | Valine | 4.43 | 0.97 | | | | Tryptophan | 0.88 | 51.33 | | | | Total essential amino acids | 37.99 | 71.64 | | | | | 63.04 | 96.70 | | | | Crude protein % | 71.50 | 48.80 | | | | EAAI (%) | 36.10 | 0.72 | | | | Chemical score/protein score (%) | 0.60 | atternation of the second seco | | | | TEAA: Crude protein | Wight Miles U.UU | THE RESIDENCE OF THE PARTY T | | | Source: Sogbesan et al. (2007) #### REFERENCES Barley, K.P. (1961). Advances in Agronomy, Vol. 13, pp. 262-264. Curry, P.J. and Schmidt O. (2007). The feeding ecology of earthworm – A review. *Pedobiologia* 50:463-477. Dickerson, G.W. (2009). Vermicompost. www.earthwormvietnam.com, downloaded in January, 2009. Guerrero, R.D. (1983). The culture and use of Perionyx excavatus as protein resource in the Philippines. In: J.E. Satchell (Ed.), Earthworm Ecology, Chapman and Hall, London: 309-319. Giraddi, R.S., Tippannavar, P.S. and Kulkarni, K.A. (2002). Utilization of peregrine earthworm, Eudrilus eugeniae (Kinberg), for bioconversion of agriculture, animal and agroindustrial wastes into manure. Proc. 7th Int.Symp. Earthworm Ecol., Cardiff Univ., UK, p.248. Medina, A.L., Cova, J.A., Vidna, R.A., Pujic, P., Carlos, M.P. and Toress, V. (2003). Immunology and chemical analysis of proteins from Eisenia foetida earthworm. Food and Agricultural Immunology, 15 (3-4): 251-263. Ogbe, F.G., Tiamiyu, L.O. and Eze, P.N. (2004). Growth performance of Clarias gariepinus fingerlings fed earthworm meal (Lumbricus terrestris) as replacement for fishmeal. Conf. Proc. Fisheries Soc. Nig., pp. 214-218 (2004). Ravindran B., Ravindran, V. and Blair, R. (1993). Feed resources for poultry production in Asia Giraddi, R.S., Gundannavar, K.P., Tippannavar, P.S. and Sunitha, N.D. (2008). Reproductive Potential of Vermicomposting Earthworms, Eudrilus eugeniae (Kinberg) and Perionyx excavatus (Perrier), as influenced by seasonal factors. Karnataka J. Agric. Sci., 21(1): 38-40. Hale, C.M., Frelich, L.E., Reich, P.B. and Pastor, J. (2005). Effects of European earthworm invasion on soil characteristics in Northern hardwood forests of Minnesota, USA. *Ecosystems* 8, 911-927. Ita, E.O., Omorinkoba, W.S. and Bankole, N.O. (1984). Preliminary report of Sport Fishing records in KLRI Reservoirs. Kainji Lake Research Institute Annual Report, 1984. Mainoo, N.K. (2007). Feasibility of low cost vermicompost production in Accra, Ghana. M.Sc. Research Thesis of McGill University, Montreal, Canada. and the Pacific: Animal protein sources. World's Poultry Sci. J., 49: 219-235. Sogbesan, O.A., Ugwumba, A.A.A. and Madu, C.T. (2007). Productivity potentials and nutritional values of Semi-Arid Zone earthworm (Hyperiodrilus euryaulos; Clausen, 1967) cultured in organic wastes as fish meal supplement. Pakistan J. Bio. Sci., 10 (17): 2992-2997. Tomlin, A.D. (1983). The earthworm bait market in North America. In: Earthworm Ecology. Ed. Satchell, J., Chapman & Hall, London