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HYDROMAGNETIC BOUNDARY-LAYER FLOW OF A
NANOFLUID PAST A STRETCHING SHEET EMBEDDED IN A
DARCIAN POROUS MEDIUM WITH RADIATION ;

AIYESIMI, Y. M. *YUsSUF, A. AND JiYA, M.

ABSTRACT
e ——

The problem of laminar fluid flow which results from the

stretching of a flat surface in a nanofluid has been obtained using

the Adomian Decomposition Method. The model used for the

nanofluid was presented in its rectangular form. The model is
considered in a porous medium and incorporates the magnetic
effect, thermal radiation effect and the effect of Brownian motion
and thermophoresis. A similarity solution is presented which
depends on Darcy number, magnetic effect, inertia coefficient,
Prandt] number, Radiation, Lewis number, Brownian motion
number and thermophoresis number. In the results presented
graphically, it is observed that the Darcy number enhances
the velocity, temperature and concentration profile of the fluid.

1. INTRODUCTION

Nanofluid belongs to a new class of heat transfer fluids which consist of both
base fluid and nanoparticles. The use of additives is a technique applied tq en-
hance the heat transfer performance of base fluids. The thermal cond}lctmty
of the ordinary heat transfer fluids is not adequate to meet today’s cooling .ra}te
requirements. Nanofluids have been shown to increase the thermal conductivity
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ansfer performance of the base liquids. N@l()ﬂ\\id:ﬁ are H‘.H,ds
articles. Nanofluids are engineered colloids made of a base
Nanofluids have novel properties that make them‘ pot,fnh
lications in heat transfer, including microele(‘:tr.()m(;s, fuel
and hybrid—powered engines. Nanopartlclc_ts are of
re effectively a bridge between bulk materials and

In the past decades, heat transfer enhancement

Schnology has been developed and widely applied to hen’ eRCLER BT TR
for example, refrigeration, automotives, process Ys : =
Nanofluid coolants showing an improved thermal performance are ‘bemg consid-
ered as a new key technology to secure nuclear safety and economics. .The term
was coined by Choi (1995). The characteristic feature of nanofluids is thermal
conductivity enhancement, a phenomenon observed by Ma.sud.a et al. (1993).
This phenomenon suggests the possibility of using nanofluids in advanced nu-
clear systems Aiyesimi et al. (2013). A benchmark study on the thermal con-
ductivity of nanofluids was made by Buongiorno et al. (2009). Yenerus et al.
(2010) have studied the viscosity measurements on colloidal dispersions (panoﬂu_
ids) for heat transfer applications. Gharagozloo et al. (2008) have examined the
diffusion, aggregation, and the thermal conductivity of nanofluids and Philip et
al. (2008) have presented the nanofluid with tenable thermal properties. For the
porous medium the Darcy model has been employed. Naturally, the enhancement
of thermal conductivity and dispersion of nanoparticles bring about additional
thoughts to the heat transfer community that we can use those for a variety of
heat transfer applications in terms of heat transfer and thermal management ef-
ficiency. Further, Kuznetsov and Nield (2009) have examined the influence of
nanoparticles on natural convection boundary-layer flow past a vertical plate, us-
ing a model in which Brownian motion and thermophoresis are accounted for. In
this pioneering study they have assumed the simplest possible boundary condi-
tions, namely those in which both the temperature and the nanoparticle fraction
are constant along the wall. Nield and Kuznetsov (2009) have analyzed the effect
of nanoparticles on natural convection boundary-layer flow in a porous medium
past a vertical plate and employed the Darcy model for the momentum equation.
Bach et al. (2010) have studied theoretically the problem of steady boundary-
layer flow of a nanofluid past a moving semi-infinite flat plate in a uniform free
stream and it is found that dual solutions exist when the plate and the free
strearfl flow move in the opposite directions. The problem of laminar fluid flow
resulting frox.n the stretching of a flat surface in a nanofluid has been investi-
gated numerically by Khan and Pop (2010). Recently, Aiyesimi et al. (2015)
carried s analytical investigation of a convective boundary-layer flow of a
n.anoﬁmd past a stretching sheet with radiation using the Adomian Decomposi-
tion Method. We found it to be appropriate to consider the work of Khan and
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Subject to the boundary conditions:
y =0:u=az, v=0, ey g C =Cw }
(2.6) : y__q)oo:'u.—*)O, s B b ol iy 85

along the and y axes respectively,
permeability of the porous
inertia coefficient, Bois an external magnetic field, pg
fluid, o is the electrical conductivity, a is the thermal
k*is the thermal conductivity, Cp is the
a is a positive constant, Dpg is the
¢ diffusion coeflicient and

are the velocity components

where u and v .
is the porousity, k is the

p is the fluid pressure, ¥
media, ¢ 18 Forchheimer’s
is the density of the base
diffusivity, vis the kinematic viscosity,
specific heat capacity at constant pressure,
Brownian diffusion coefficient, Dt is the thermopheri

T = %f is the ratio between the effective heat capacity of the fluid with p being
oefficient and pp is the density

the density, ¢ is the volumetric volume expansion ¢
of th particles g is the acceleration due to gravity, 3 is the volumetric coefficient
of thermal expansion, g, is the radiative heat flux.

Following Roseland approximation we have ¢, = 4—5‘5—*%7—;, where o* and ¢ are

the Stefan-Boltzmann constant and the mean absorption coefficient respectively.
The temperature differences within the fluid is assumed sufficiently small such
jchat T4 may be expressed as a linear function of Temperature . Expanding P
in Taylor’s series about T, and neglecting higher order terms, we get

2.7) T4 = 4TTS - 3T,

Therefore,
oq s 1661
o . Ay | 30 Oy>
ning the dimensional stream function (¢(z,y)) in the usual way such that

_ o E oy '
B and v = 3= and using the following dimensionless variables:-

e (-—) b = (ap)baf(n),

(2.8) ©
T-T,
= 220 C —
e 5‘__%.0‘

where 1, £(1), 6( -
’ , 0(n), x(n) are the dimensionl id di

es :

temperature profile, and nanoparticle concentrat?oimd distance, velocity profile,

An order of magni
gnitude analysis of : :
mal to the sheet) usi ysis of the y direction momentum :
o %u o )shusmgt}f;he él; ual boundary layer approximatif)(rl;atlonh(nor-
10y D735 Dy T 10WS = . we have:-
) and { at 3y = 0 substituting the expressions in (2.8) into

(2.1)-(2.5) and (2.6)
- : .6) and neglecting th :
to the following similarity solution:g- SR i GRS seduces

2.9 14 "
(2.9) P+ =1+ ¢)f% -~ (D'a- M)f' =
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(317) (—(—-3—;4{%(7)') (Ll g [nzz::ocn} B NbL2 [nzzo ] + Nelo [,L:(’ })
= Ny o [ ]
(3.18) i_Xn+l(77) = —LeLEI[’;Fn] S ’1\7:;[41 1[7;011
n=0

here b, ¢, and h are all constants to be determined for actual solutions.
W : ) b

The general solutions are:

(3.19) f) =) fmm)=fot+tH+fa-
m=0
(320) 0n) =Y Om(n) =60+ 61 +062+
=0
(3.21) x(m) =D xmm) =xo+x1+x2+-
m=0

for conveniences, we used Maple-18 to compute the integrals.
Table 3.1 Comparison between Numerical method and the present work for

£(0) at ¢p=1
M | Da Numerical Present work
0.1 1 |1.6702706590802672 | 1.85678160
1 1 |1.9169861441991335 | 2.07706528
10 | 1 |3.5587173882820053 | 3.638850095
30 | 1 |5.7154007886807818 | 5.766624927

1 10.1]3.5587173882820053 | 3.638850094
I | 1 [1.9169861441991634 | 2.077065282
1 | 10 | 1.6702706590802672 | 1.856781605
1 | 30 | 1.6507085596419419 | 1.839644225

4. RESULTS AND DISCUSSION

The nonlinear coupled differential equations (2.9) to (2.11) with boundary
conditions (2.12) are solved using the Adomian Decomposition Methods. In order
to assess the accuracy of the present method, we have compared our solution for
for different values of Magnetic parameter (M), and Darcy number (Da) at with
the numerical method (shooting technique) as shown in Table 3.1.

It was observed that the e ;
present method is in good a ' cal
method except for M = 1 and Dty g greement with the numeri
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profile reduces. Reduction in the velocity profile implies that the fluid under
consideration becomes more viscous which leads to reduction in the temperature
of the fluid and consequently decrease in the nanofraction concentration. Figures
4.4 to 4.6 depict the effect of Darcy number on the velocity, temperature and con-
centration profile. It is observe from the figures that when Darcy number is less
than one (ie permeability is less than the squire diameter of the fluid particles),
the fluid is laminar while it is turbulent if other wise (ie permeability is greater
than the squire diameter of the fluid particles) in the porous medium. Increase in
the Darcy number enhances both the fluid temperature and concentration profile.

Figures 4.7 to 4.8 present the effect of Prandtl number on the temperature dis-
tribution and nanofraction concentration. It is observe that as prandtl number
increases the thermal boundary layer thickness reduces which enable heat to dif-
fuse away from the system for higher values of prandtl number. The nanofraction
concentration is enhancing as prandtl number increases.

Figures 4.9 to 4.10 shows that the Lewis number has no significant effect on the
temperature profile but enhances the nanofraction concentration as it increases
in the porous medium.

Figures 4.11 to 4.12 shows the effect of Radiation on temperature and nanofrac-
tion concentration profile. As the radiation parameter increase the thermal
boundary thickness increases while the nanofraction concentration reduces within
the porous medium.

5. CONCLUSION

The problem of laminar fluid flow resulting from the stretching of a flat sur-
face of a nanofluid in a porous medium with magnetic effect and radiation has
been obtained using the Adomian Decomposition Method for the first time. The
model used for the nanofluid was presented in its rectangular coordinate system
and incorporates the effect of Brownian motion, and thermophoresis parameter.
A similarity solution was presented which depends on the Darcy number, mag-
netic parameter, coefficient of inertia, Prandtl number, Lewis number, Brownian
motion, thermophoresis number, and radiation. It was found that:-

(1) The fluid becomes more viscous as the velocity profile reduces due to

increase in the magnetic parameter; which leads to reduction in the fluid
temperature.

(2) When Darcy number is less than one, the flow is Jaminar and turbulent
if other wise.

(3) Smaller values of Prandtl number are equivalent to increase in the thermal
conductivity of the fluid and therefore heat is able to diffuse away from the
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