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Abstract
This paper studies the interaction between natural convection and thermal explosion in
porous media. The model consists of the heat equation with a nonlinear source term
describing heat production due to an exothermic chemical reaction coupled with the Darcy
law. The conditions for the existence of unique solutions of the energy equation are
established by the Lipschitz continuity approach. The analytical solution is obtained via
Olayiwola’s generalized polynomial approximation method (OGPAM), which shows the
influence of the parameters involved on the system. The effect of changes in values of
parameters such as the Frank-Kamenetskii number, Rayleigh number, and inverse of Vadasz

number are presented graphically and discussed. The results revealed that convection can
change the conditons of thermal explosion.

Keywords and Phrases. convection; explosion; first-order reaction; OGPAM: porous medium;
thermal explosion; mathematical approach

1 Introduction

An explosion describes the spontaneous development of the rapid rate of heat release by a chemical
reacuon in an imtally nearly homogeneous system. The rate of reaction changes rapidly with
temperature. Hence, the temperature may be used to describe the changes within an explosion process

5]

The theory of heat explosion began from the classical works by Semenov [20] and Frank-Kamenetskii
[8]. In Semenov’s theory, the temperature distribution in the vessel is supposed to be uniform. An
average temperature In the vessel is described by the ordinary differential equation

do
= = exp(t?)— A0 . (1)
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- of the reacton-diffusion equation,

%?=A9+FK exp (@), -

where the first term on the right-hand side describes heat diffusion, Fj is called the

:!;
et e
-

Kamenetskii parameter. This equation is considered in a bounded domain with the zero bounc
condition for the dimensionless temperature.,

In both models, heat explosion was treated as an unbounded growth of temperature (blow-up
solution). Thus, the problem of heat explosion was reduced to the investigation of the existence,
stability, and bifurcations of stationary solutions of differential equations.

The effect of natural convection on heat explosion was first studied in [11, 16]. It was shown that
the critical value of the Frank-Kamenetskii parameter increases with the Rayleigh number and
explosion can be prevented by vigorous convection. These works were continued by [4, 6, 7, 14] where ’
new stationary and oscillating regimes were found. The authors showed how complex regimes
appeared through successive bifurcations leading from a stable stationary temperature distribution
without convection to a stationary symmetric convective solution, stationary asymmetric convecton,
periodic in-time oscillations, and finally periodic oscillations. Oscillating heat explosion, where the
temperature grows and oscillates, was discovered. The effects of natural convection and consumption
of reactants on heat explosion in a closed spherical vessel were studied in [15]. The influence of stirring

on the limit of the thermal explosion was investigated in [10]. Heat explosion with convection in a
horizontal cylinder was considered in [19].

All these works study heat explosion in a gaseous or liquid medium with its motion described by
the Nawvier-Stokes equations under the Boussinesq approximation. Thermal ignition in a porous
medium is investigated in [13]. The Darcy law in a quasi-stationary form under the Boussinesq
approximation is used to describe fluid motion. It is shown that convection decreases the maximal
temperature and increases the critical value of the Frank-Kamenetskii parameter. The interaction of
free convection and exothermic chemical reaction is studied in [21]. The authors consider zero-order
exothermic reactions in a rectangular domain and find the onset of convection by an approximate
analytical method. A similar problem with the depletion of reactants is investigated in [9]. The ignition

time of heat explosion in a porous medium with convection is found in [22]. Heat explosion in one-
dimensional flow in a porous medium is studied in [3].

In this paper, an approximate analytical solution capable of predicting the temperature distribution
in a process of thermal explosion with convection in porous media is presented.
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i d the temperature dependence of the reaction rate K(T') given by the Ar henius |

[ & e
K(T)=k, cup( RT)’ h

where E is the activation energy, T the temperature, R the universal gas constant, and k, the |

exponential factor. .

The system is considered in a 2D square domain, 0 < x< L, 0< y < L. Depletion of reactants in

the heat balance equation is neglected. It is a conventional assumption in the theory of heat explosion.
The model consists of the 2D reacuon-diffusion equation with convective terms, continuity, and
non-stationary Darcy equations for an incompressible fluid:

B o, ©
ox Oy
N+ 2 _ o (6)
@ K OX
ov u Op
—+—=V+—= L -1,),
K 4 Y gﬂp( u) (7)
0T oOT oT k (8°T &°T)\ gk, E
e — vV — = — e 14 exp | (8)
ot Ox oy pc,\ox" oy ) pc, RT
The 1nitial and boundary conditions are specified as:
u(x,y,O) =1 ]
v(x, y,0)=0 " 9)
oT oT
T(I,y,0)= TO(E (x+y)+1), S =0, T(X,O,f): TD! — =0, T(X,L,I):TD
a'x x=0 ax x=L J

Here u denotes the fluid velocity along the x -axis, v is the fluid velocity along the y -axis, p is the
pressure, kK the thermal conducavity, 4 the kinematic viscosity, p the density, g the heat release,
g is the acceleration due to gravity, I the characteristic value of the temperature, U, the
characteristic value of the velocity, K the permeability.



Using (10), and after dropping the prime, equations (5) - (9) become

ox oy
Ou op
O—+u+—=0, 12
ot Ox e
a@+v+—aE—R 0, (13)
Ot b
e (a2 2n)
a—-+u¥+v-@6—’= e 5? +5exp( 4 ), (14)
ot ox oy \ox* o I+ €6
u(x,y,O) —
v(x, y,0)=0 p (15)
8(x,7,0)=(x+y), L =o 6(x,0,1)=0, 22 ~—o O(x,1,¢)=0
ax x=0 5)( x=] }
where
o
O = sz = i stands for the inverse of the Vadasz number, V. = —— P = el s the Prandtl
pe,L°pu 'V, D, k
K kLd o
number and D, = 7] is the Darcy number, 0 = Z UT e """ is the Frank-Kamenetskii parameter,
S
Kpc,LeT, K el ac.l’
R gﬂp C> = ’20 R,R = 8p € Topx, 1s the Rayleigh number.
4 ku L k,u

Introducing the following new space vanable (Olayiwola [18]):
F=x+Y.
Then, equations (11) — (15) reduce to
oUu e

oz
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|
6(z,0) = z, o
az z=0 z=2
where
U=u+v.

3.2 Properties of solution ks
Theorem 1: Then there exists a unique solution U (z, t), p(z, l), 9(2,! ) of (17) = (19) which sausfies ™
(20). -
g A
I+ €6

Proof: Clearly & exp( ]is Lipschitz continuous. Hence by Ayeni [2], the result follows. This

completes the proof.
( 3
E]—z < t |, 77=\/52.Then a—¢—3_>0.
\ 4 8 F ot
In the proof, we shall need the following lemma of Kolodner and Pederson [12].
Lemma (Kolodner and Pederson [12]): Let u(y,?) = O(t:-?'r"l”| ) be a solution on R" X [O,tu) of the

differential inequality

Theorem 2: Let Q(Z,I) = ¢(z,t)exp

Z—“—Au+k(y,t)uzo (21)
[

where k£ is bounded from below. If u(y,O) > 0, then u(y,t)Z O for all (y,t) e R” x[O,tO).

Proof of Theorem 2: Let 9(2’5) 5 é( ’




Hence by Kolodner and Pederson lemma p(r],t) 20, ie. %ﬂ 2 0. Hence ¢(Z,t) i1s a non-decreasin
r 5
function of .

3.3 Analytical solution via Olayiwola’s generalized polynomial approximation
method

Here, in the limit €— 0, and by introducing the following new space variable:
z

" = 22
17 > (22)

Equatons (17) — (20) can be solved analytcally using Olayiwola’s generalized polynomial
approximation method (OGPAM) in [17]. Follow the idea in [1], that:

exp(@)=1+(e-2)8+ 6% (23)
Take QE— = bexp(- it) and let 0 < RP_ sl VDI aRp such that
on

Vi) =Uula1)+ R0, 10)+.) y
O(n,t)=60,(n.t)+ R,6,(n,1)+...

and using OGPAM 1n [17], we obtain the solutions to (17) - (20) as:

1 ( \ )
m,
( \ e — er/{z m T ] {m; IJ
A ] 0 ) g
U( ,t):/}’ 89 sz F R — £(37]—3772+773] o (25)
\ / o\ m 2myt —m,




6
1 oA —1 / 1 Pl : 1
m2=(;_cﬂji mJZﬂ( ]: m4=,6’ ) m5= m2 ) m6:(5+cﬂ)! m7=%_!

» My =(m7 +C0)~ m, = (mo "ms)i m =(m7 +2C0), m, =(2m0 _ms)ﬁ m, =(m5 +Cﬁ)v

The computation was done on equations (25) and (20) using the computer symbolic algebraic package
MAPLE 2021 version.

4 Results and discussion

The simulation was carried out to show the impact of the model parameters by employing Olayiwola’s
Generalized Polynomial Approximation Method (OGPAM) on the equatons (17) — (20). We are

concerned with the nature of the solutions obtained for different values of 0, RP and o . The

computation of equations (25) and (26) was done using the MAPLE 2021 version.

Figure 1 shows the temperature history at x =1, y =1 for 0=2, R, =0.1 § =0.4, 0.6, 0.8. The

graph displays an increase in maximum temperature with ame as the Frank-Kamenetsku number
increases. If O is sufficiently large, the temperature becomes unbounded, which corresponds to the |

thermal explosion.

Figure 2 displays the temperature topography for o=2, R, =0.1 6=04,0.6,0.8. m
reveals a decrease in temperature along the spaual coordinates while this temperature increa
Frank-Kamenetskil number increases.

f" :
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Figure 3 shows the temperature history at x =1, y =1 for 6 =04,0=2 ﬂ‘ 0.1, ¢
plph displays an increase in maximum temperature with ume as the Rayleig .

ol



first oscillation thc graph dxsplays a upld transition to a smdy solution. Mean
an incrnse in maximum velocity with tume as the Rayleigh number hmem

Figure 5 displays the velocity topography for 6 =0.4,0 =2 R, =0.1, 0.2, 0.3. The g

stcady velocity along the spaual coordinates while this vcloc:ty increases as the RQW
Increases.

Figure 6 shows the temperature history at x=1, y =1 for 6 =04, R, =0.1, 0 =0.2, 2, 20 which .

an increase in temperature exists when o 2> 2. When 2 < o < o0 (convection), the solunon remains
bounded (no explosion) but when o — 0, Ul(x, y,1) — © (convection), however, oscillations are

generated (no explosion). It can be stationary or oscllatng with convection. When
i o—>x, U (x, y,t) — 0 (no convection), then stationary solutions do not exist, and the solution of

the evolution problem grows to infinity (Q(x, y,t)—)m). This case corresponds to the thermal
explosion.

Figure 7 depicts the temperature topography for 0 =0.4, R, =0.1, =0.2, 2, 20. The graph

reveals a decrease 1n temperature along the spatial coordinates while this temperature tends to zero
when o — oand 1t 1s at maximum value when o — 0.

l Figure 8 shows the velocity historyat x =1, y =1 for 0 =0.4, R, =0.1, 0 =0.2, 2, 20 which there

1s a rapid transition to a steady soluttion when o =0.2and o =2. Stable solutions exist after
oscillation and are achieved faster when o =0.2, o =2 than when o = 20.

l Figure 9 displays the velocity topography for 0 =0.4, R, =0.1, o =0.2, 2, 20. The graph reveals a

steady velocity along the spatial coordinates while this velocity tends to zero when o — o0 and it 1s at
maximum value when o — 0.
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: Figure 1: Temperature history at x =1, y =1 for o = 20,R, =0.1, 6=0.4,0.6,0.8.

Figure 2: Temperature topography for 0 =2.0, R, =0.1, 6§ =04, 0.6, 0.8.
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igure 5: Velocity topography for 0 =2.0,0=04, R =0.1, 0.2, 0.3.

=Lry=l for 0 = 0.4, Rp =0.1, =02, % 20. ' ‘ 

Figure 6: Temperature history at x
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Figure 8: Velocity history at x = l, y=1for 0=04, R, =0.1, 0=02, 2, 20.
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Figure 9: Velocity topography for 0 = 0.4, RP =0.1, 0=0.2, 2, 20.

It 1s worth pointung out that the effects observed in Figures 1 - 9, are important to guide explosive
materials manufacturers to provide safety precautions during storage and usage.,

5 Conclusion

Here, we have presented the model describing the interaction between natural convection and thermal
explosion 1n porous media, established the conditions for the existence of a unique soluton of the
model, and provided the approximate analytical solution. The existence of a unique solution to the
problem implies that the problem represents a physical situation under specific conditons. The
simulation results revealed the impact of the model parameters and the following conclusion can be

drawn:

Temperature 1s a non-decreasing functuon of time.
1f the Frank-Kamenetskii number is sufficiently large, a thermal explosion can occur.

Convection can change the conditions of a thermal explosion.

Therefore the established conditions and the results obtained are not expected to guide manufacturers
of explosive materials but provide safety precautions during storage and usage.
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