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Ornstein-Uhlenbeck Operator for Correlated
Random Variables

Adaobi M. Udoye, Yisa Yakubu, Emmanuel O. Adeyefa, Eka O. Ogbaji and Lukman S. Akinola

Abstract—We investigate Ornstein-Uhlenbeck operator which
serves as an important tool with application in many fields,
including sensitivity analysis involving Lévy processes using
Malliavin calculus. Some processes with multivariate random
variables have feature of correlation among the random vari-
ables. Hence, there is need to obtain the Ornstein-Uhlenbeck
operator for such phenomenon. This paper was therefore de-
signed to derive the Ornstein-Uhlenbeck operator for correlated
multivariate random variables.

Index Terms—Gaussian random variables, Skorohod inte-
gral, Ornstein-Uhlenbeck operator.

I. INTRODUCTION

HE Ornstein-Uhlenbeck (O-U) operator is employed in

sensitivity analysis of financial instruments using Malli-
avin calculus, and has applications in other fields, namely,
geometry, functional calculus and analysis, etc. Bally et
al. [1] applied the operator in providing numerical algorithm
for sensitivity computation in a model driven by a Lévy
process. Bavouzet and Messaoud [2], Bavouzet et al. [3],
Bally & Clement [4] and Udoye et al. [5] used the operator
in the sensitivity analysis in a jump-type market model, while
Udoye and Ekhaguere [6] applied the operator in deriving the
greeks delta and gamma of an interest rate derivative driven
by a variance gamma Lévy process.

Chang and Feng [7] studied the operator with quadratic
potentials. Otten [8] applied the operator as a basis for
proving exponential decay of revolving waves. Metafune [9]
studied LP-spectrum of the operator. Chen and Liu [10]
derived complex form of the operators and semigroups.
Cappa [11] studied the operator in convex domains of Banach
spaces. Cerrai and Lunardi [12] proved Schauder estimates
for stationary and evolution equations under the operator in
a separable Banach space, endowed with a centred Gaussian
measure. Feo et al. [13] discussed Gaussian symmetrization
method and regularity approximations for solutions to non-
local equation of fractional powers of the O-U operator while
Casarino [14] considered an O-U semigroup on R™ with
covariance matrix. Wei et al. [15] discussed the problem in
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the parameter estimation for the squared radial O-U process
under an a-stable noises for distinct observation.

A good model of a financial derivative with correlated
random variables should be able to consider the feature of
correlation in order to avoid wrong forecasting and hedging
by a risk manager. The O-U operator for correlated random
variables is an important tool to be considered. Di Bernardino
et al. [16] discussed some phenomena in both physical and
biological sciences that can be understood mathematically by
taking into account statistical properties of level crossings
of random Gaussian processes and emphasized that some
of them require consideration of correlated level crossings
emerging from multiple correlated processes. Zubeldia and
Mandjes [17] considered acyclic network of single-server
queues along with heterogeneous processing rates and pre-
sumed that each queue is fed by the superposition of a
large number of i.i.d. Gaussian processes having stationary
increments and positive drifts that can be correlated across
different queues. Rau et al. [18] applied hierarchical logistic
Gaussian processes to deduce redshift distributions of galax-
ies samples, by means of their cross-correlations through
spatially overlapping spectroscopic samples. Perger et al.
[19] discussed auto-correlations functions of astrophysical
processes and correlated time variations in the structure of
Gaussian processes. Hong et al. [20] discussed estimation of
models with multivariate, multimode and nonlinear processes
involving correlated noises. Hence, in this paper, we derive
the O-U operator for correlated Gaussian random variables.

The rest of the paper is organized as follows: Section
2 discusses important tools needed in the work, Section 3
derives the results, and concludes the work.

II. MATHEMATICAL FOUNDATION

Let (Q,F,P) be a probability space. For p,n > 1,
define CP(R™) as functions F' : R”™ — R that are p
times continuously differentiable. Let X1, ..., X, denote a
sequence of random variables and let S, ;) be a set of simple
functionals such that F' = ﬁ(Xl, ey Xp) € S while P, ) is
the space of simple processes U; = wu;(X1, ..., X;,) of length
n, where u; € CP(R"), i =1,...,n.

Definition IL.1. The O-U operator L : S, 2y — S(n,0) ON
F' is defined as

n

LF == [(05F) (X1, oo Xn)+6:(2:) (0:F) (X1, ..., X)),
i=1
where
fi(%)
¢i(wi) = O0x; In[f(x)] = =
(32) = 0, 0l ()] = 715
otherwise, ¢;(x) = 0, where f; is the density function of the
random variable X;,i =1, ...,n.

, J(xX)#0;1<i<n
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Definition I1.2. Let Z; and Z; be non-zero correlated Gaus-
sian random variables. The correlation coefficient between
Z; and Z; is given by
COV(Zi7 ZJ)
pZiZj =

\/Var(Z;)+/Var(Z;)
where Var(Z;) = E[(Z; — E(Z;))?], i = 1, ..., n, is the vari-
ance of Z; and Cov(Z;, Z;) = E[(Z;, —E(Z,))(Z,; —E(Z;))),
i=1,...n; j =1,...,n, is the covariance between Z; and
Z;.

Ois
= i —1 S PZVZZ,- S 1

)
0i0;

In what follows, ¥ is an n X n covariance matrix of a
multivariate Gaussian random vector Z.

Definition II.3. The probability density function of a mul-
tivariate Gaussian random vector Z ~ N (u, ) is given by

1 1 Tyr—1 >
———exp| —=(z— ¥ (z—
2r)" dot (D) ( p s m) 2 (e )
where 1 € R™ is a vector denoting E[Z] (expectation of Z;,
i=1,.,n); % R  Z=[Z,2,..,72,)F € R"
is a Gaussian random vector, 7 denotes transpose, det(X)
denotes the determinant of 3.

f(z) =

In the next section, we derive the O-U operator for
correlated random variables.

III. THE O-U OPERATOR FOR CORRELATED GAUSSIAN
RANDOM VARIABLES

The derivation of O-U operator for correlated Gaussian
random variables is as follows:

Theorem IIL.1. Let 0;; be the diagonal entries of the inverse
of the covariance matrix X and let 0;; be other entries,
i,7 = 1,...,n. The density function f of n-dimensional
correlated Gaussian random variables 7, ..., Z,, satisfies the
following:

n

1) Inf(z) =K — 1 [Z(Zz — 1)’

2|4
=1
+20) 0 (a2 — )0
i,j=1
1<j
where n 1
K = —5 In(2r) — 5 In(det(X)) (1)

is a constant.

2) 0., In f(z1,22, ...y 2n)
=- [(zi — )ow+ Y (2 - /ij)%']
J#i
21
where z =
Zn

Proof: In general, from the density function

S
(2m)™ det(X)

-exp ( — %(z -w)'= (2 - N)>7

fz) =

Inf(z) = —% In(27) — %ln(det(z))

5[z ) — )
= K gl S 5 )

1
where K = — In(27) — 3 In(det (X)) is given by equation
(D).

Let ¢;; denote the elements on the position ith row
and jth column of the covariance matrix.
3 is the covariance matrix given by

C11 Ci12 (13 Cin
C21  C22 C23 Con
3 — |€31 €32 C33 C3n
Cnl Cn2 Cp3 Cnn
[ E(Zi—m)? E(Z1 — p1)(Zn — pn) ]
E(Z2 — p2)(Z1 — pa) E(Z2 — p2)(Zn — pn)
= )
LE(Zn — pn)(Z1 — ) E(Zn — pn)?
7z, — E|Z4]
Zy — E|Zs]
(z—p) = |Zs—El&l) 4 =E[z).
Z, — E[Z,]
Let
011 012 013 O1ln
021 022 023 O2n
>»-1_ |031 032 033 O3n
Onl On2 0On3 Onn

be the inverse of the n X n covariance matrix.

The result is trivial for n = 1.
Let n = 2, then;
012} |:Zl - M1:|
022 [22 — M2
012} {21 - H1:|
022 |22 — M2

T
_ (21 — p1)o11 + (22 — po2)oi2 Z1 — [
(21 — p1)o12 + (22 — p2)o22 22 — 2

011

[21 — M1 22— Mz} o1

011
012

=P1u1@mw

=(z1— u1)2011 +2(z1 — p1) (22 — p2)oiz + (22 — H2)2022~

Therefore, )
In f(z1,22) = K- 5[(21 —m)?on

+2(21 — p1) (22 — p2)orz + (22 — p2)*02].
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Thus, for n = 2;
Oln f(zy, z 1
# = —5[2(,21 — p1)o11 + 2(z2 — p2)o12]
= —[(z1 — p1)oi1 + (22 — p2)or2].
Oln f(z, # 1
M = —2[2(z1 — p1)o12 + 2(z2 — p2)o2s]
0z 2

= —[(22 — p2)oaa + (21 — pu1)o12).

Hence, the result holds for n = 2.

Assume that the result holds for n = k&,
lnf(zh 22523y +ens Zk) =

k
K — 1 [Z(ZZ — Mi)zo'ii + 22(21 — MZ)(z] — /’('j)o-ij .

i=1 i#j
ey Rk 1
) = D) {((21 - u1)2011
1

+(z2 — M2)2022 +- (2 — /lk)zakk)
0
+2—((21 — p1) (22 — p2)o12

+(z21 = pa)(z3 — p3)ors + -+
+a = (e = o) +

1
= —5[(2(21 —,ul)an +0+ +0)

+2((22 — p2)o12 + (23 — p3)o13
+o (ke — p)or)]

= (1 =)o + 221425 — wy)o).

Oln f(z1, ..., 2k)
82’2

1[ 0
= 3 8722((21 - M1)2011 + (22 — M2)2022

0
- (2 — ) ?onk) + 237((22 — p2)
z2

(23 — p3)o2s + (22 — p2) (24 — pa)o2g + - -

+(2z2 — p2)(2k — pr)o2r) + 0]

1
= —5[(2(252 — p2)o22 + 0+ -+ 0)

+2((23 - M3)0'23 + (2’4 — M4)024 + ...
+(zr — px) o2k

= —[(22 — p2)o22 + Z(Z] = 1j)02;]-
2#7

Oln f(z1, ..., zk)

8Zk
1l o

3 87%((21 - M1)2011 + (22 — ,u2)2022 + -

0
+(z — pr)?ok) + 287((21 — p1)(22 — p2)o12
2k
+(21 — p1) (23 — p3)orz + -
+(21 = pa) (2 — pr) o1k + (22 — p2) (23 — p3)o23
+(22 — p2) (24 — pa)oos + -+
+(z2 — p2)(2k — pr) ook + (23 — p3) (24 — p1a)034

+(23 — p3) (25 — ps)o3s
+ 4 (23 — p3) (2 — k) o3k

(24 — pa) (25 — p5)0us + (24 — pa)(26 — t6) 046

+o (20 — pa) (26 — pr)Oar

+(zrp—2 — tk—2)(Zh—1 — fk—1)0k—2,k—1

+(zp—2 — tk—2) (26 — Uk)Ok—2,k
+(zh—1 — pk—1) (2 — pk)ok—1%) |-

Oln f(z1, ..., zx)
(9Zk-

+((z1 — p1)o1k + (22 — po)oop + - -

= —[(zr — 1) owr

+(zp—2 — tk—2)0k—2k + (Zh—1 — Pk—1)0k—1k)]

—[(zx — ) okr + Z(Zj —wj)okil, j=1,. k—1.
Ak

Since it is true for n = k; there is need to show that it is

true forn = k + 1.

In f(z1, 22,y 2pt1) =

k1
1
K-35 { E (2i = pa) 0 +2 E (2 = pi) (2 — p3)ois |-
i=1 i<j

Assume that the derivative is true for z;,7 = 1, ..., k respec-
tively, we show that it is true for z1.
Oln f(z1, ..., 2k, Zk41)
8Zlc-H

1[8

2

B ((z1 — p1)®011 + (22 — p2) 002 + -+
Rk+1

+(zk+1_,Uk+1)20'k+17k+1)+287((21 — 1) (22 — p2)oi2

k1

+(21 — pa)(23 — pa)ors + -+ (21 — ) (2k — pk) o1k
+(21 = 1) (Zha1 — Ph41)01 k41

+(22 — po)(23 — p3)oa3 + (22 — p2) (24 — pa)oog + - - -

+(z2 — p2) (2K — pr)oak + (22 — p2) (Zh+1 — Lhk+1)02 k41
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(21 — pr—1) (26 — pr)Ok—1,1 + (Zh—1 — pix—1)

(Zht1 — Pht1) k=1 k+1 + (26 — i) (Zag1 — ,uk+1)0'k-,k+1)]

1

= *5[2(%4—1 -

+(22 = p2)oz g1+

Pkt1)0kt1,k+1 + (21 — 1) o1 kg1

+ (Zh—1 — Mh—1)0k—1 k+1

+(2k — )Tk ket1))

1
=3 2(Zh41 = Hhk+1) Okt 1, k41 + Z
J#k+1

— ) Oht1j |-

Therefore, the result is true for all n. [ |

Corollary IIL.2. Let o;; denote the diagonal entries of the
inverse of the covariance matrix X. The density function f
of n-dimensional uncorrelated Gaussian random variables
21, ...y Ly satisfies the following:

1) Inf(z) =K - % [Z(zi

— ui)20”} where
i=1

n 1
K= —3 In(27) — 3 In(det(X))

is a constant.

2) 621 lnf(zh 22y ey Zn) = - |:(Z’l - MZ)J’LZ:| .

Theorem IIL3. Let (€2, F,P) be a probability space. Let
F = F(Zy,...,Zy,) be a functional where F : R" — R.
Assume that Z1, ..., Z,, is a sequence of correlated Gaussian
random variables, then,
1) the Skorohod integral operator 6 : P, 1y — S(n0)
given for simple process U € P, 1y satisfies

n

SU)(Zry oo Zn) ==Y [(‘%ui —~ ((zi — 113) T

i=1
+>
J#i
where U;(Z1, ..., Zp)(w) = u;i(Z1(w), ...
R" >R i€ N, we
2) the Ornstein-Uhlenbeck operator L : S, 2y — S(n,0)

— I O'U>ui:| (Z1y s Zn)

s Zn (W) u;

satisfies
LF(Zy,....Z,) = — [BEF(Zl, s Zn)
< /147, Ju"_z /'I‘j Uzg>aiF(Zly-'~7Zn>:|~
JFi
Proof:
1) In general
8i x (U214, ..., Zy,)

= —[81‘(71'1‘1“) + (wiui)azi In f](Zl,

Since Z;’s are Gaussian random variables, its density
function f;, i = 1,...,n is everywhere differentiable
on R. Its weight function m; = 1 and its derivative

s Zn)-

7 = 0.
= 0(U)(Z1, .y Zn) =
— Z[(m&ui + uﬂm) + (mui)(?zl In f](Zl, ceey Zn)

=1

== [Osui + w0z, In f)(Z1, .., Zn).
=1

By Theorem III.1, we get
(U Z1y ey Zn)

= — Z {&-ui + u;0;, In (1
(2m)" det ()

i=1

exp ( _
n

S i [@ui + u; 0., (K - % |:Z(Zi

i=1 i=1

%(z RS e m))] (Z1, iy Zn)

— pi)’0ii

ILLL 0-7/L+Z

J#i
s Zn).-

]

(Z, ...

2) The Ornstein-Uhlenbeck operator
L =06: 84,2 — Sen,o) satisfies
LF(Zy,....2Zy)

n

_ >a [a.mpazi In (m)ldet@)

< *(z—u))ﬂ(zh...zﬂ)

= -3 [aiaip + O;F0,, (K - % {Z(zi -

i=1 i=1

l\')\n—l

n

(= )z = )| )| (21,2

,uz Oii + Z

— Hj Uw)
J#i

-&-F} (Z1, s Z).

Corollary III4 Let (2, F,IP) be a probability space. Let
F = F(Zl7 vy Zy) be a functional such that F:R" >R
Assume that Z1, ..., Z, is a sequence of uncorrelated Gaus-
sian random variables. Then,

1) the Skorohod integral operator § : Py, 1y — S0
given for simple process U € P, 1) satisfies

SUNZrs s Zn) = = {Diui(Zl, s Z)

i=1

_(Zi - /M)Uiiui(Zh ooy Zn)] ,
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where o;; denote the diagonal elements of the n X
n inverse covariance matrix. Uy(Zy,...,Z,)(w) =
wi(Z1 (W) ooy Zp(w)); u; :R*" >R, i€ N, we Q.

2) the Ornstein-Uhlenbeck operator L : S(, 2y — Sn.0)
satisfies

LiF(Zy,..,2,) = —|D2F(Zy, ..., Z,)

IV. CONCLUSION

We have derived the expression of the Ornstein-Uhlenbeck
operator for correlated Gaussian random variables. This is
to be adopted when computing sensitivities using Malliavin
calculus in financial markets and phenomenon involving
correlated multivariate random variables. The operator makes
it easier to compute the greeks of financial instruments
in a given Lévy market involving more than one random
variables. The greeks deal with the effect of changes with
respect to parameters of a given model. For future research,
we suggest its application in a phenomenon with correlated
random variables.
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