Applied Mathematics 2016, 6(4): 65-72
DOI: 10.5923/j.am.20160604.01

A Mathematical Analysis of HIV/TB Co-Infection Model
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Abstract In this work we developed and analyzed a mathematical model of HIV/TB co infection. The model is a first
order Ordinary Differential Equations, in which the human population is divided into six mutually- exclusive compartments
namely; TB- Susceptible individuals (S), TB-Infected individuals (I), TB-Recovered individuals (R), HIV-Infected
individuals (P,), Co- Infected individuals (P;) and individuals with AIDS (A). The equilibrium states were obtained and their
stabilities were analyzed by using Bellman and Cooke’s theorem. The result shows that the endemic equilibrium state is

stable and the disease free equilibrium state will be stable if (S8,cA)/uN <(a+pu+d,).
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1. Introduction

Tuberculosis (TB) is a bacterial disease caused by
Mycobacterium tuberculosis (tubercle bacilli). Transmission
of TB occurs by air borne infectious droplets [13]. It
typically affects the lungs (pulmonary TB) but can affect
other parts as well (extra pulmonary TB) [10]. The World
Health Organization (WHO) declared TB in 1993 has a
global emergency. Nigeria ranks 10" among the 22 high
burden in the world [11]. TB is preventable and curable. A
mathematical model for TB has been a useful tool in
accessing the spread of the disease, as well as its control. See
[3] for example.

HIV stands for Human Immunodeficiency Virus. HIV is a
virus that gradually attacks the immune system and the
immune system is our body’s natural defence against illness.
If a person becomes infected with HIV, he or she will find it
hard to fight off infections and diseases. The virus destroys a
type of white blood cell called T-helper cells and makes
copies of it inside them. T-helper cells are also referred to as
CD4 cells [16]. There is no cure or vaccine for AIDS [5].
However, antiretroviral (ART) treatment improves health,
pro-longs life, and substantially reduces the risk of HIV
transmission. In both high-income and low-income countries,
the life expectancy of patients infected with HIV who have
access to ART is now measured in decades, and might
approach that of uninfected populations in patients who
receive an high HIV treatment [5].

Co-infection of TB and HIV is when someone has both
HIV and TB infections. When someone has HIV and TB,
HIV infection accelerates the activation of tuberculosis and
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tuberculosis increases the rate at which HIV infection
develops into AIDS [9]. It is worthy of note that HIV
infection and infection with TB bacteria are two different
infections as established in [6].

Co-treatment of HIV related TB improves survival
especially in patients with CD4 counts <50 ells/mm’ [8].
Globally, one-third of the 34 million people living with HIV
are infected with TB [14]. In 2014, about 400 000 people
who had both TB and HIV were estimated to have died, in
addition to the 1.1 million people who died from TB alone
and 800 000 deaths from HIV alone. So in 2014 more people
died from TB than from HIV related infections [15].

[2] in his work, formulated a sex-structured model to
capture the effect of complacency on the dynamics of
HIV/AIDS but did not include how TB will affect the mix.
But, recently a lot of great work has been done in the
mathematical modelling of co infection of different
pathogens though very little was done in the modelling of
HIV-TB co infection. [13], [12], [6], [7] developed a
mathematical model of HIV/TB co infection under TB
treatment. Their work did not include anti-HIV treatment. [4]
Developed a TB-HIV/AIDS co infection model and optimal
control treatment. In this paper we incorporate all aspects of
TB transmission dynamics as well HIV transmission
dynamics to come up with a mathematical model of HIV/TB
co-infection. This paper incorporate antiretroviral therapy
for individuals infected with HIV. We investigate the effect
of treatment on the TB in HIV/TB co infection and also
investigate the effect of co treatment of HIV/TB co infection.

The paper is organized as follows. Section 1 is
introduction. The model formulation, the positive invariant
region, the positivity of solutions, equilibrium states and the
basic reproduction number are obtained in Section 2. The
stability analysis of the model and concluding remark are
carried out in sections 3 and 4 respectively.
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2. Model Formulation

The model subdivides the human population into six
mutually —exclusive compartments, Namely TB-susceptible
individuals (S), TB-infected individuals who have active TB
diseases and infectious (I), TB-recovered individuals (R),
HIV-infected individuals (P;), co-infected individuals (P,)
and full blown AIDS (A).

Figure 1. The diagram for the flow of the model

2.1. Basic Assumptions

» Individuals can only get TB through contact with TB
infectious individuals (I and P ,).

» Individuals may become HIV infected only through
contact with HIV infectious individuals (P; and P,).

» The infectious I, both TB and HIV infectious P2 and
AIDS individuals are considered too ill to remain
sexually active and they are unable to transmit HIV
through sexual activity.
W=N-I-P,-A=S8S+R+F, is the active
population.

To represent this mathematically, we have the following
system of differential equations:

ds
E:A+rR—(/1T + A, +u)S

dl

dt
‘2—1::411—(/1}[ +r+y)R
%:(MR)AH +bP, — (A +e+d,; + )P, (24)
dP,

dt

@.1)
=28 (A, +a+d, +u)l 2.2)

2.3)
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dA
Z:epl +dP, —(d , + u)A
Where N=S+I+R+P;+P,+A.

The force of infection A , associated with TB infection is

I+P,

2.6)

/IT :ﬂTC

The force of infection A 5 » associated with HIV infection
is
P+P,

ﬂ‘H =ﬂH5 N

Table 1. Definition of State Variables and Parameters Used in the TB/HIV
Model

Symbol Definition
N total population
S number of susceptible (that is no infection)
I number of persons with active TB
R number of persons recovered from TB
P, number of persons with HIV infection
P, number of persons with both HIV and TB infection

A number of persons with AIDS

w number of active population
A constant recruitment rate
B Probability of transmission of TB infection from an active
T

to a susceptible per contact unit time

Probability of transmission of HIV infection from an

ﬁH infected person to an uninfected person per contact unit

time.
per capita contact rate for TB

o per capita contact rate for HIV

u Natural death rate

a treatment rate of active TB individuals

b treatment rate of infectious TB in HIV individuals

d AIDS progression rate for individuals in P,

e AIDS progression rate for individuals in P,

. rate at which TB recovered individuals become
susceptible to TB

dr active TB induced death rate

di death rate due to both HIV and TB infection

dy HIV induced death rate

da AIDS induced death rate
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2.2. The Positive Invariant Region

The total population size is
N=S+I+R+P +P, +4
dN _dS dl dR dP, +aVP2 +dA

— =t —+
dt dt dt dt dt dt dt

dN
" A-—puS—pl —uR—puB —uP,— 2.8)

~dy —d, —d,, —dA

.7)

The positive invariant region can be obtained by using the
following theorem.

Theorem 2.1

The solutions of the system of equations (2.1) to (2.6) are
feasible for # <0 if they enter the invariant region D.

Proof

Let D= (S,], R,P,P,, A) € R%. be any solution of
the system of equations (2.1) to (2.6) with non-zero initial
conditions.

Assuming there is no disease equation (2.8) now becomes

dN

—<A- 2.9
0 uN (2.9)
dN
—+uN <A (2.10)
dt
The integrating factor for (2.10)is (IF) ="
Multiply both sides of (2.10) by e gives
dN
e =+ uNe" < Aet" (2.11)
dt
d(Ne'") < Ae*dt (2.12)
Integrating both sides we have
Lt
N@e =D L. (2.13)
7]
N(t) = A et (2.14)
7
Applying the initial condition #=0; N,(0)=N,
N0§A+C:>NO—A§C (2.15)
H u
A A
SNS—+(Ny——) g™ (2.16)
H H

Therefore, as t—> 00 in (2.16) the human population N

approaches g zé (Thatis, N > K :A) the parameter
H H

K= A is called the carrying capacity.
y7,
Hence all feasible solution set of the human population of
the model equations (2.1) to (2.6) enter the region

(S.1,R,R,P,,A) eR*:S>0,1>0,R>0,

D= A
R20.P20,420N<—

Therefore, the region D is positively-invariant (that is the
solution is positive for all times, (t) and equations (2.1) to
(2.6) are epidemiologically meaningful and mathematically
well-posed in the domain D. Hence in this model it is
sufficient to consider the dynamics of flow generated by the
model (2.1) to (2.6). In addition, the existence, uniqueness,
and continuation of results hold for the system.

2.3. Positivity of Solutions

Lemma 2.1
Let the initial data be

{5(0) > 0,(1(0), R(0), P,(0), P, (0), 4 > 0)} e D

Then the solution set {S JI,R,P,P,, A}(t) of the system
of equations (2.1) to (2.6) is positive for all # >0

Proof

From the first equation (2.6), we have

‘Zj:AwR—(ﬂT + Ay +1)S > (A, + A, +1)S (2.17)

% > (A + Ay, +u)S (2.18)

Separating the variables and integrating both sides we
have

%S > (A, + Ay +u)dt (2.19)
InS > (A, + A, +u) t+c (2.20)
S(t) = eVt tiiC 2.21)

S(t) = Ke s hyu Where K= ¢
Using the initial condition =0 = S(0) > K
Therefore, S(¢) > S(O)e—(iﬁlyw)t >0

From equation (3.2)

%:AT S—(ﬂ,H+a+dT+y)12—(/1H+a+dr+ﬂ)l (2.22)

% > (A, +a+d, +p)l (2.23)
# > (A, +a+d, + u)dt (2.24)
Inl > (A, +a+d, +uk+c (2.25)
I(t) > Ke Vutetdrsrt (2.26)

Applying the initial condition 1 =0 = I(0)> K
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Therefore, Therefore the disease-free equilibrium state of the model
I(t) > I(O)e—(lH +a+dyp+p)t (227) 18
Similarly, it can be verified that the rest of the equations (xl,xz’x3’x4,x5 x6) = [A,0,0’O’0,0J
are positive for all ¢ > () since ¢® >( forall e R. ’ H

2.4. Equilibrium States 2.4.2. The Endemic Equilibrium State of the Model

2.4.1. The Disease Free Equilibrium State of the Model The equilibrium state of the model is;

The equilibrium state with the absence of infection is
known as Disease Free Equilibrium or Zero Equilibrium.

Aldy ratdr+p)( Ay +r+p) A (Ay +r+p A
(xl,X2,X3,x4,x5,x6): (H TC )( H )’ }‘T( HC )’ aﬂg ’

AbA, Ay (ﬂH +V+/J) N (aAdy +AN(Ap +a+dp + ) ( Ay +r+ 1) Ay

B

A A
AbAy Ay (A +r+ 1)
(Ap+e+pu+dy) B (A(ﬂT+a+dT+,u)(lH+r+y)+aﬂTA)ﬂH
b +(aﬂ¢A+A(ﬂT+a+dr+u)(/1ﬂ+r+y))/1H B bC ’
A
(A +e+ u+dy ) (AbAp Ay )(Ap +r+ 1)
AbAy gy (Agy +7+ p1) b 4
e y d (aﬂTA+A(ﬂT+a+dT+y )(/17+r+,u ) Ay
w+dA (aATA+A(AT+a+dT+,u)(/1H+r+y))ﬂT +y+dA " A
* 4 _(A(AT+a+dT+y)(/l,+r+y)+aﬂTA)/1H)
bC

A:((/'LH +a+dT + 1) Ay +r+ Ay + A+ u)—ariy)
(b+d+pu+dy)) Ay +e+d+dy)—-bAy)
where B=((4, Ta+d + )y +r+u)(Ay + g + p)—ark)
(b+d+pu+dy)) Ay +e+d+dy)—ariy)
C :((/”LH +a+dT + 1) Ay +r+ Ay + A +p)—ariy)
2.5. Basic Reproduction Number R,
A8
(S +R)A, +bP,
T\ 4B+ A,1
eB +dP,

(2.28)

Ay +a+d, + )l
_ (A4 +e+d, + WA
| (+d+p+dy)P,

(u+dA)A

(2.29)

the next generation matrix Fy~' is given by
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ﬂTCA 0 ﬁTCA
UN (a+dp+ ) uN(b+d+pu+dy)
0 _ PO B\ +b 0
uN(e+d, +p) pN(b+d+u+d,,) (2.30)
0 0 0 0
e d
0 -—c -« 0
e+d, +u b+d+u+d,,
Therefore, the basic reproduction number R, = p(F v ): spectra radius of Fy'
cA
=R, = __Freh (2.31)
ﬂN(a +dr + /J)
3. Stability Analysis of the Model
3.1. Stability Analysis of Disease Free Equilibrium (DFE)
Jacobean matrix of the system of equations at disease-free equilibrium is
i BreA B oA (ﬂ,c/\ B, 6Aj |
—u e r — - —+—— 0
UN UN UN UN
A A
o Lih_ (a+u+d,) 0 0 Bich 0
MUN UN
A
J(—,0,0,0,0,0)— 0 a —(r+nu) 0 0 0
7]
oA AB, O
0 0 0 P —(e+u+d,) Al 0
N UN
0 0 0 0 —(b+d+u+d,,) 0
| 0 0 0 e d —(dA+p)
The characteristic equation is
- BrcA By, SA ([ Breh oA |
H—A LN r LN LN + LN 0
BreA B BreA
0 1N (a+,u+dT) A 0 0 1N 0
(J-1)=| O a —(r+up)-4 0 0 0
ByoN B AB,S
0 0 0 N (et+u+dy,)-2 i +b 0
0 0 0 0 —(b+d+ptdy,)-2 0
0 0 0 e d —(dA+y)—/1
Therefore,
cA
A== or A, ==F _(a+,u+dr) or /13=—(r+,u)
cA
or 4, =—'BT——(e+y+dH) or A =—(b+d+u+d,,) or A4, =—(dA+u) 3.1
UN
From (3.1)
Ay Ay A As g <0 and 2y <O | i Preh 450 i i
1Ay, Ay, As, Ay <0 and A, <O if and only if <(a+,u+dT) and A, >0 if and only if
BreA

>(a+u+d,)
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Hence, the DFE is stable if Breh < (a + U+ dr) and otherwise unstable.
UN

3.2. Stability Analysis of Endemic Equilibrium State (EE)

The characteristic equation is obtained from the Jacobi a determinant with the eigenvalues A

__ﬂl -A -5 r -5 b4 0
Bs  Bs=A 0 —p Py

( J—Ia )= 0 a “Bo=4 =P —Bu
P —Bis Bis Pis=4 P

0 Bis 0 Bo P-4
0 0 0 e d —dA—pu—2|

~(dA+p+ A) 2+ (=B + Bog + B+ Bg = B)A + (=B + By + B + Bog) By + (B = By = Bio) oo
+(1816 +ﬂ6)ﬁ1 +ﬂ7ﬂ13 +ﬂ19ﬁ17 _ﬂzﬂs _ﬂléﬂG _ﬂloﬂls _ﬂ3ﬂ12 +181858)/13 + (((ﬂl _ﬁs _ﬁm)ﬁzo
+(1816 +ﬂ6)ﬂl _ﬂléﬂé +1818ﬁ8 _ﬂsﬂz +ﬂ19ﬂ17 +ﬂ71313 _ﬂ3ﬂ12)ﬂ9 +((_1316 _ﬁ6)ﬁ1 +ﬂ3ﬂ12 +ﬂ5ﬂ2
+B165s + BroBs = BrBi3) Bag + (Bro 7 = BioBis + B i3 + BBy = B P) B+ (B By +ar— B By
+ﬂ16ﬂ2 )ﬂs + (_ﬂlsﬂu _ﬂ13ﬂ8 _ﬂ4ﬂ12 _ﬂnﬂe )1319 + (ﬂIOIBlS +ﬂ3ﬂ12)ﬂ6 + (_ﬂlor +ﬂ2ﬂ7 )ﬂ12
+(_ﬂ17ﬁ7 _ﬂsﬂm)ﬂw —aﬂ7ﬂ15)/12 + ((((_/316 _ﬂé )ﬂl +/35/Bz + ﬂ3ﬂ12 + ﬂsﬂm _ﬂ7ﬂ13)ﬂ20
+(_ﬂ16ﬁ6 + ﬁwﬁn + ﬂ71813 + ﬂgﬂls)ﬂl + (ﬂ3ﬁ12 _ﬂ4ﬁ18 + :Blsﬂz)ﬁs + (_ﬂmﬂs _ﬂ4ﬂ12 _ﬁ17ﬂ6)1819
+ﬂ31312ﬂ6 +ﬂ21812ﬂ7 _(ﬂ7ﬂ17 + ﬂ8ﬂ16)ﬂ18)ﬂ9 + ((ﬂ16186 +18101315 _ﬂ7ﬂ13)ﬂ1 + (_131 6ﬂ2 _ﬂsﬂm
—ar) B +(15= B, = BioBi35) Bs + (Bior = Bol) By + a1 B5) Bog + (= 55 = Bis (3.2)
_ﬂwﬁx)ﬁw + ﬂéﬂl OﬂIS + (_:6'1 7ﬁ7 _ﬂSﬂlé)lBIS _aﬂ7ﬂ]5)ﬂl + ((ﬂ4ﬂl3 "‘ﬂnﬂz)ﬂw + (184ﬂ16

BB =B Bis + BBy —aBy) Bis —r(apPis — BB Bs + (BB + Bish) By

=By By = B By +aBsBy) Bro+ B BsBror + (B By + BBy Big —afir) By, +

ﬁlSﬂls (ﬁIOﬁS + ﬂl 1ﬂ7 DA+ (((ﬂmﬁé - ﬁ7ﬂ13)ﬂ1 + (_1816ﬂ2 - /B13ﬂ3 )ﬁ3 - ﬂlz (ﬂ6ﬂ3 + ﬂzﬂ7 ))ﬂzo
+((_1813:B8 _1817ﬂ6)ﬂ19 - (ﬁ17ﬂ7 +ﬂ8ﬂ16)1318)ﬁ1 + ((ﬂ4ﬂl3 + ﬁnﬂz)ﬂw _ﬂIS(ﬂ3ﬂ17 _ﬁ41816))ﬁ5
_((ﬂzﬂg _ﬂngs )ﬂ19 _(ﬂ7ﬂ4 +:Bgﬂ3 ),Blz)ﬂg + (1815(_ﬂ6ﬂ10 + aﬂ7 )ﬂ] + ((ﬂ] oﬂz + aﬂ} )ﬂ]s

+r(aps = BB Bs+ Bar (=B Bro+al)) + (BB +afy) Bo+ Bis (BB + B ) Bish

(L, By—aP)Pis— (=B L +abi) Bio = Bis(BroBy = B ) Bis + (B By = Br1Prs)) Bs
(B Bs+aB) Big + BBy + b1 B:) Bipr) =0

S O o O

Where

/31:ﬂTC(in]+x5)+ﬂH5()]c\;+x5)+ﬂ’ ﬂ;%, b= ﬂ’;\fx‘,
ﬂ4=%+%,ﬂ5:_ﬁﬂ(’;+xs B, = ﬁ;j«\clxl (ﬁﬂ5(>;+x5)+a+ﬂ+dr)’
ﬂ7:ﬂ,},\fx2 B - ,HT]\c]x1 B, e WJWHL ﬂm=%,
ﬂn=ﬂ’ix3 B = W B, = ﬁfcx‘* B= W
,816:(x]+x2)/3]1z]5_(,3TC();i]+x5)+e+,u+dH), x17:(x1+x2)%+b_%’

B :ﬂrcx4+ ﬂH5(x4+x5) B, = IBTC(X2+XS) IBH5x2
N N C e N N
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By = ﬂT;’“‘* + ﬁ'ﬁcz (b+d+u+d,,).

Next we shall apply the result of Bellman and Cooke’s (1963) to (3.2) to establish the stability or otherwise of the model we

have;

F(0)=—

F'(0)=0 (3.3)
[ (dA+ t)((~P1Br = aB) Pis — (=P Bis +aBis)) o |
—Bis((BroPs — P11B3)Ps — B2 (B Bz + B2B7)) Pao
(=L B3 — Bi7B6) Bro — (L1757 + Bs Prs) Pis) Py
+((BaPis + Pi752) Bio — Bis (B3 Bi7 — PaPie)) Ps
—((L2Bs — BaBe) Pro —(B74 + Bs53) Big) PBi2) Po (3.4)
+(Bis(—LsPio +aB) B+ (Lo +afs) s
+r(afie — ProPi3)) Ps + Biar (=B Pro +aB7)) Pro
+((B11Bs +aBs) Pio + Pis(PioBs + Li1i3) P Pis
| H((Bi1Bs +als) Pio + Bis(BioPs + Bii1B7)) Piar |
G0)=0 (3.5)
G'(0)=[ —(dA+)((~Prs—Bs) i+ Ps B+ B3 Pra + BisPs — al1813) Pao
+(=Pi6Ps + BroPr7+ BBz + BisBs) B + (B3 By — BaBis + PreP2) Ps
+(=L13Bs = Babro = BsP17) Pro + BriaBs Bz + BraBa B — (Bi7. 57 + P Bie) Pis) Po
H(Bi6Ps + PioPrs = B18i3) By + (= Pi6 o — Bs 13 —ar) fs + (=B B2 — ProPris) Bs
+(Bior = BB Bio + a1 5i5) Pag + (= P17 Bs — PisPiy — BsBi3) Bro + B Probis
+(=B1757 = BsBi6) Bis —aB:85) B + (BaBis + Bi752) Bro + B ProPis
+(=P1757 = B Pr6) Prg —aP185) By + (B3 fa+ Pr152)Bio
+(Babr6 = B3Py = Piir) Big + (=Profr —af3) Pis —r(apis — Probi3)) Ps (3.6)

H((ByBia + BB Bs + (LB — L) B +aBoBis) Bro + BB Pro”

+((B7 84+ B3B) Bis —aBr) B + BisBis(BroPs + BiifBr)
—(((=Bi1Br—aB)Bis —r(=BuBis+abir) Pro — Pis((BioBa— BB bis
+r(Brobi7 = BB Bs —(((Bs Brs — B 813) By + (=B Bie — B3 Bi3) Ps
—Pr12(Bs3Bs + 1520 Pao + (B33 = Pi7156) Pro = (B7 Pr7 + Be Prs) Pig) i
+((Ba B3+ B1752) Bro — Bis (B3 By17 — BabBie) Bs — (Lo By — PaBs) Pio

—(B7 B4+ B353) i) Bi2) Po — (Bis(—PBsPio +ab7)) Bag — (L1 5s +als) Pro
+B1s(BioBs + BB B Brs — (B Bs +aBs) Bro + Pis(BioBs + BB Biar |

Since F'(0)=0,G(0)=0,F(0)#0and G'(0)=0

Hence F(0)G'(0)— F'(0)G(0) # 0 3.7)

Therefore, the non —zero equilibrium state is stable.

4. Conclusions

In this study, we developed and analyzed a mathematical
model of HIV/TB co infection. The model subdivides the
human population into six compartments namely;
Susceptible TB individuals S, TB-infectious individuals I,
TB-recovered individuals R, HIV-infected individuals Pl )

co-infected individuals P, and individuals with full blown
AIDS A.

The model solution was found to be positive (establishing
the fact that human population cannot be negative) for all
time ¢ >0 provided that the initial data set is positive.

The stability analysis of the Disease Free Equilibrium
State (DFE) of the model shows that it will be stable if

M < (a +u+ dr) that is the population is sustainable.
MUN

The analysis of the Endemic Equilibrium State (EES) shows
that it is stable. This is in conformity with the real life
scenario. That is, whenever HIV is present, the patient may
likely be infected with TB if proper and timely care is not
given. Also early detection of HIV and TB cases and
provision of early treatment can help to control the disease.
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