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Abstract 

 

This paper lays emphasis on formulation of two dimensional differential 

games via optimal control theory and consideration of control systems whose 

dynamics is described by a system of Ordinary Differential equation in the 

form of linear equation under the influence of two controls U(.) and V(.).  

Base on this, strategies were constructed.  Hence we determine the optimal 

strategy for a control say U(.) under a perturbation generated by the second 

control V(.) within a given manifold M. 
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Introduction 

 

 The study of differential games was initiated by Rufus Isaacs in the early 1950’s. In 

his pioneering work, Isaac tacitly assumed that the notion of strategy had been defined, that a 

saddle point existed and that the game had a continuously differentiable function [1]. The 

natural extension of both discrete and continuous games into the dynamic case yield what is 

known as differential game [2]. Basically a differential game is a mathematical model 
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designed to solve a conflicting situation that changes with time.  A strategy ⎡ for control U is a 

sequence of instructions ( ⎡n ) and a strategy ∆ for control V is a sequence of instructions (∆n). 

 The saddle point condition  

P(t,x,u,v*) < P(t,x,u*,v*) < P(t,x,u*,v) (1) 

Suggested that if the game had a value for every initial (t,x) and if a saddle point existed; then 

the optimal trajectories would be solutions of a minimum and maximum problem in the 

calculus of variations. 

 

Statement of Optimal Control Problem 

 We consider a problem of the following form;  

∫
T

dtttutxF
0

)),(),((max  

 The basic optimal control problem can be stated as [3]: 

Find the control vector U through 

{ }n
T uuuU ..,.........., 21=  

which minimizes the functional called the performance index 

J = ∫
T

dttuxf
0

0 ),,(  
(2) 

{ }n
T xxxX ...,.........., 21=  

; is called the state vector; t is the time parameter, T is the terminal time and f0 is a function of 

x, u, and t 

 The state variable Xi and the control variables Ui are related as; 

dxi/dt = fi(x1, x2………xn; u1, u2……um: t),    i=1,2…..n 

That is, 

x- = f(x, u, t) (3) 

The statement of optimal control theory as explained above is important tools in the 

derivation of the necessary conditions for the solution of Differential games. Necessary 

conditions for Differential games can be derived through the optimal control using the 

following problem. 

 Find u that minimizes 
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J = ∫
T

dttuxf
0

0 ),,(  
(4) 

 Subject to 

X  = f(x, u, v, t) 
(5) 

With the boundary condition X (0) = k1

 We first consider the Euler-Lagrange equations given as [4] 

d2/dx2(∂F/∂ui
’’ )- d/dx(∂F/∂ui

’ ) + (∂F/∂ui)= 0 (6) 

 To solve the above control problem we introduce a Lagrange multiplier λ and define 

an augmented functional J* as 

J* =  + λ [f(x, u, t) – ∫
T

dttuxf
0

0 ),,( X )]dt 
(7) 

 Since the integrand 

F = f0 + λ(f – ) X (8) 

is a function of the variables X and U. 

 We can write the Euler-Lagrange equations [with u1 = x, u1
’ = ∂x/∂t = , ux 2 = u and 

u2
’ = ∂u/∂t = ] in equation (6) as; we first take ∂f/∂uu i - d/dx (∂F/∂ iu′ ) = 0 from (6) 

 Therefore, ∂f/∂u1 - d/dx (∂f/∂ ui
’) = 0 

 We then have ∂f/∂x - d/dt (∂f/∂ ) = 0 x

where ui
’ = ∂x/∂t =  x

Therefore, 

∂f/∂u1 - d/dx(∂f/∂ u1
’) =0 

= ∂f/∂x – d/dt(∂f/∂x) =0 

(9) 

 Similarly, 

∂f/∂u2 - d/dx (∂f/∂ ) =0 2u′

 We have 

∂f/∂u - d/dt(∂f/∂u ) = 0 ′ (10) 

where  = ∂u/∂t = u  2u′

 In view of relation (8), equation (9) can be expressed as 

∂f0/∂x + λ ∂f/∂x +  = 0 λ (11) 

where  = ∂λ/∂t λ

 That is, λ( x ) from the relation 
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F = f0 + λ (f – ) = ∂λ/∂x x ∂x /∂t x

where ∂ x/∂t= x, ∂λ/∂t =  λ

 Similarly, we have  

∂f/∂u + λ ∂f/∂u = 0 (12) 

 That is from the relation 

F = f0 + λ (f – ) and equation (10) x

We define a new functional H called the Hamiltonian functional as 

H = f0 + λf (13) 

 From equation (11), that is, ∂f0/∂x + λ ∂f/∂x +  = 0 λ

 We set f0 = H – λf from equation (13). That is, 

∂f0/∂x = ∂H/∂x - λ ∂f/∂x = 0 (14) 

 Substituting equation (13) in equation (11), we have 

∂H/∂x - λ ∂f/∂x + λ ∂f/∂x +  = 0 λ

∂H/∂x + λ = 0 . 

⇒  = - ∂H/∂x λ (15) 

 Similarly from equation (12) 

 That is, ∂f/∂u + λ ∂f/∂u = 0  

 We set f0 = H - λ f from equation (13). That is,  

∂f/∂u = ∂H/∂u - λ ∂f/∂u (16) 

 Substituting equation (16) in equation (12), we have ∂H/∂u - λ ∂f/∂u + λ ∂f/∂u = 0 

⇒∂H/∂u = 0  or ∂H/∂v = 0 (17) 

 The necessary conditions stated above are important tools in the solution of 

differential games.  

 Optimal control theory is equivalent to a differential game with only one player and 

control problems can be extended to differential games by adding an opponent. 

 

 

Statement of Differential Game Problem 

 
Given the dynamic system  

x = f(x,u,v,t), x(to) = xo (18) 

The terminal constraints are 
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ψ(x(tf),tf )= 0 (19) 

and the performance criterion is 

P=  Ø(x(tf),tf ) + ∫
T

0 0 t)dtv,u,(x,f  
(20) 

 We then find uo and vo such that 

P(uo , v) ≤ P(uo , vo) ≤ P(u ,vo) (21) 

 

 

Saddle Point Property for Differential Game Problems 

 
The saddle point property of differential games can be visualized as follows:  

We have a Hamiltonian function as defined in equation (13) as; 

Ho
uu  ≥ 0,   Ho

vv ≤ 0 (22) 

or alternatively 

H(x,λ,t) = min max H(x,λ,u,v,t), uєU vєV 

for P(uo,vo) = min P(u,vo) 

    u  

(23) 

Where vo = v(t;xo,to) (24)

And similarly for 

P(uo,vo) = max P(uo,v) 

          v  

where uo = u(t;xo,to) 

(25) 

 To establish the saddle point we must show that uo, vo in (3.7) and (3.8) are the same. 

 

 

Solution Strategy by Equation of Motion 

 
 Let x(t) be an n-dimensional phase vector which indicates the state of the controlled 

system at time t.  Its dynamics is described by a system of n differential equations [5-6]; 

dx(t)/dt = f(t, x(t), u(t), v(t) ) (26) 

with initial condition 

x(to) = xo (27) 
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u(t) is a p-dimensional vector which characterizes the controlling action at time t. The w-

dimensional vector v(t) correspond to the disturbance acting at time t. 

Besides, 

u(t)∈  U⊂Rp ;  v(t)∈V ⊂ Rq (28) 

Where U and V are compact sets.  Vectors u(t) and v(t) are called controls for u-player and v-

player respectively. 

 It will be assumed that u(.) and v(.) are measurable functions, a condition which in 

general is necessary for equations (26) and (27) to make sense. 

 The game begins at a given x(to) and ends when x(t) reaches a given terminal closed 

manifold.  

 Differential games can be formulated in the form of a linear equation where the 

control system is formulated in form of linear equations [7-8]. 

 We consider a control system; 

uxx 221 +=  (29) 

vxx +−= 12  (30) 

Where ⎪u⎪ ≤ 1;  ⎪v⎪ ≤ 1 

 Let M be the plane x1 = 0.  The Hamiltonian results 

H = ψ1x2 - ψ2x1 + 2ψ1u + ψ2v  (31) 

being 

1ψ ′  = - ∂H/∂x1 = ψ2 (32) 

2ψ ′ = - ∂H/∂x2 = -ψ1 (33) 

 Now integrating equation (32) and (33) in a periodical form (since the game is a 

repeated motion) about sine and cosine in a sinusoidal pattern we obtain  

ψ1(t) = k cos(t + φ ) (34) 

ψ2(t) = - k sin(t + φ ) (35) 

where φ is a phase difference and  

 k a constant (dimension of length)  

 To fix the final condition, we may assume that the final time is 0. 

 Let us assume  

x1(0) = 0;  x2(t)= arbitrary 
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ψ2(0) = 0;    ψ1(0) arbitrary i.e.  ψ1(0) = 1 

We then have by definition; 

1 = k cos (0+0) =1 = k cos0; k = 1 - assuming t=0, φ = 0 or π 

 Replacing these in equation (3.17) and (3.18), we have 

φ = 0 or φ = π : k = 1 

The optimal strategies are: 

ū = sgn ψ(t) = sgn cos t  

= sgn cos(t+ π ) (36) 

v = -sgn ψ(t) = sgn sin t  

= sgn sin(t+ π ) (37) 

 The path equations are as follows: 

1x′= x2+ 2u sgn cos t 

=x2  + 2 sgn cos(t+ π ) 

2x′  = - x1+ sgn sin t 

= - x1  + sgn sin (t+ π ) 

 

 

Discussions 

 
 We considered a control system described by a system of ordinary differential 

equations, we want to determine the best strategy for a control which will assure a definite 

quality under a perturbed system generated from the opposite side.  

We employed the solution strategy of two dimensional differential games using 

specifically the Hamiltonian principle to arrive at solution strategies, base on this we then 

finally want to find the best strategy a control will take to counteract the effect from the 

opposing control. 

 

Conclusion and Recommendation 

 
We now consider which of the two possibilities φ = 0 or φ = π is better. Just before the 

ending of the game, that is for t negative small, u tries to accelerate and v to delay the 

termination. And so the point x must be near the axis x1 = 0,  
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 From x1
’= x2+ 2u it results that u wants to make x1 as negative as possible and chooses  

u=-1. 

 In this case in equation (3.19) it is better to take  ū = sgn cos(t+ π ); that is, 

u = cos180 

u  = -1;  

 It is worth noting that under a control system described by a system of ordinary 

differential equations, it is necessary to construct a strategy (control) which will assure a 

definite quality for the process controlled under specified conditions when the system is 

subject to perturbation or a controlling action from the opposite side. Differential games could 

also be used to study the problem of system design in which the system is subjected to 

unknown perturbation (disturbances), and the disturbances are considered to be chosen by 

player II.  Player I choose the design parameters to give the best possible system performance 

in the event of the worst possible disturbances. 
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