ASSESSMENT OF WIND ENERGY POTENTIAL FOR ELECTRICAL POWER SUPPLY IN MINNA, NIGER STATE, NIGERIA

 \mathbf{BY}

GIMBA, Michael

MTech/SPS/2017/6875

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF TECHNOLOGY (MTECH) IN APPLIED ATMOSPHERIC PHYSICS

SEPTEMBER, 2021

ABSTRACT

Electricity is very important and crucial in the development of any economy; Niger State is currently experiencing serious electricity supply problem. This research assessed the potential for using wind energy for electric power supply in Minna, located on latitude 9° 36′ 50"N and longitude 6° 33′ 25"E. Five years wind speed data (2012 – 2016) of five minutes integration time was obtained from the atmospheric weather station of Physics Department, Federal University of Technology, Bosso campus, Minna, using Davis Vantage Pro 2 atmospheric measuring instrument and was converted to monthly and annual mean wind speeds. The monthly and annual mean wind speeds were extrapolated from values at 4 m to heights of 10 m, 30 m and 50 m above ground level. The Weibull 2-parameter Probability Distribution Function (PDF) and its corresponding Cumulative Distribution Function (CDF) were used in the analysis of the wind potential and the wind distribution pattern in Minna. The results of the study show that the annual average wind speed from 2012 to 2016 are respectively 1.35 ms⁻¹, 0.82 ms⁻¹, 0.91, ms⁻¹ 1.06 ms⁻¹ and 0.74 ms⁻¹. Furthermore, the average wind speed for the various heights of 4 m to 10 m, 30 m and 50 m are respectively 0.98 ms⁻¹, 1.11 ms⁻¹, 1.30 ms⁻¹ and 1.40 ms⁻¹. Annual wind speed for the PDF are respectively 1.10 ms⁻¹, 1.50 ms⁻¹ ¹, 1.90 ms⁻¹ and 2.30 ms⁻¹; the annual cut-in wind speeds are also respectively 0.5 ms⁻¹, 0.7 ms⁻¹, 1.10 ms⁻¹ and 1.30 ms⁻¹ and the cut-out wind speed for all the heights is 4.7 ms⁻¹. The annual wind power densities are respectively 0.66 Wm⁻², 1.29 Wm⁻², 3.41 Wm⁻² and 5.77 Wm⁻². Also, the annual wind energy resources assessments are respectively 0.02 kWhm⁻², 0.04 kWhm⁻², 0.14 kWhm⁻² and 0.25 kWhm⁻². Thus, from the wind power density obtained, Minna is classified into class 1 of the PNL wind power classification and therefore not suitable for sustainable electricity generation by wind energy. Further study on assessment of wind energy potential in Minna and other parts of Niger State such as Bida, Suleja, Kontagora, especially rural areas with reduced cluster of building and trees is recommended, and for longer duration.

TABLE OF CONTENTS

Conto	ents	Page
Decla	aration	ii
Certification		iii
Dedication		iv
Ackno	owledgement	V
Abstr	ract	vii
Table	of Contents	viii
List o	of Tables	xi
List o	of Figures	xiii
Abbre	eviations, Glossaries and Symbols	xv
СНА	PTER ONE	
1.0	INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Research Problem	4
1.3	Justification of the Study	5
1.4	Scope of the Study	5
1.5	Aim and Objectives of the Study	5
1.6	Study Area	6
СНА	APTER TWO	
2.0	LITERATURE REVIEW	9
2.1	Wind	9
2.2	Wind Speed	10
2.2.1	Wind speed scale	11
2.2.2	Wind direction	12

2.2.3	Wind energy	12	
2.3	Extrapolation of Wind Speed	13	
2.4	Model for Statistical Analysis of Wind Resources	14	
2.4.1	Weilbull parameters for extrapolation	15	
2.4.2	Wind power	16	
2.4.3	Wind turbine parameters	17	
2.5	Wind Power Density (WPD)	17	
2.5.2	Wind Energy Density (WED)	18	
2.5.3	Classification of wind power	18	
2.6	Wind Power Generation	19	
2.6.1	Mechanical power generation from wind	20	
2.6.2	Wind pump	21	
2.6.3	Electrical power generation from wind	23	
2.6.3.	1 Horizontal axis wind turbine	24	
2.6.3.2	2 Vertical axis wind turbine	25	
2.7	Wind Farm	28	
2.7.1	Wind farm in Nigeria	28	
2.8	Review of Related Works	29	
CHA	CHAPTER THREE		
3.0	MATERIALS AND METHOD	36	
3.1	Materials	36	
3.2	Method	36	
3.2.1	Wind speed data collection	36	
3.2.1	Data analysis technique	37	
3.2.2	Wind data analysis	37	

3.2.3	Wind power density (WPD)	38
CHAPTER FOUR		
4.0	RESULTS AND DISCUSSION	39
4.1	Presentation of Wind Speed Data	39
4.2	Weibull Frequency Distribution Functions of Wind Speed Data	42
4.2.1	Annual frequency distribution function	48
4.3	Characteristics of Wind Speed and Wind Power Density of Minna	49
4.3.1	Wind energy potential at various heights in Minna	54
4.3.2	Variation between the actual and Weibull power densities	55
4.3.3	Summary of findings	56
CHAPTER FIVE		
5.0	CONCLUSION AND RECOMMENDATIONS	58
5.1	Conclusion	58
5.2	Recommendations	60
REFERENCES		61
APPENDIX		67

LIST OF TABLES

Table		Page
1.1	Global renewable energy usage by 2040	3
1.2	Monthly temperature and mean precipitation in Minna	6
2.1	PNL wind power classification	19
2.2	Large onshore wind farms	28
2.3	Wind speed at 30 m height in different locations across Nigeria	32
2.4	Wind speed at 25 m height in different locations across Nigeria	33
2.5	Weibull distribution parameters of rainy and dry seasons	
	in Borno State (1995–2004)	34
2.6	Power density (W/m ²), energy density of the wind for 12 months	
	of 1995-2004 and monthly wind energy (kWh/month)	
	at hub height of 25m	35
4.1	Monthly and average wind speed at various heights	41
4.2	Summary of the monthly wind speed data spread	
	from the various PDF plots	47
4.3	Summary of the monthly wind speed data spread	
	from the various CDF plots	47
4.4	Annual mean wind speed for the various heights	49
4.5	The CDF curves parameters	49
4.6	Wind speed characteristics and Weibull parameters at 4 m	50
4.7	Wind speed characteristics and Weibull parameters at 10 m	51
4.8	Wind speed characteristics and Weibull parameters at 30 m	52
4.9	Wind speed characteristics and Weibull parameters at 50 m	53
4.10	Annual wind speed characteristics and Weibull parameters at various	

	heights above ground level	54
4.11	Wind power density at various heights	55

LIST OF FIGURES

Figure		Page
1.1a	Map of Nigeria showing position of Niger State	7
1.1b	Map of Niger State showing position of Minna	7
2.1	Wind speed distribution in Nigeria	11
2.2a	A windmill	21
2.2b	A multi-blade wind pump	22
2.3	Wind energy conversion system	23
2.4	Horizontal axis wind turbine	25
2.5	Vertical axis wind turbine	26
2.6	Typical wind turbine components	27
2.7	Wind Farm	29
2.8	Predicted monthly mean wind speed (m/s) for the month of December	30
3.1	Davis Vantage Pro 2	37
4.1	Five years average monthly wind speed	39
4.2	Annual average wind speed	40
4.3	Monthly mean wind speed for Minna at 4 m, 10 m, 30 m and 50 m	41
4.4	Monthly mean wind speed distribution for Minna at	
	4 m (a) PDF and (b) CDF	43
4.5	Monthly mean wind speed distribution for Minna at	
	10 m (a) PDF and (b) CDF	44
4.6	Monthly mean wind speed distribution for Minna at	
	30 m (a) PDF and (b) CDF	45
4.7	Monthly mean wind speed distribution for Minna at	
	50 m (a) PDF and (b) CDF	46

4.8	Annual wind speed distribution for Minna (a) PDF and (b) CDF	48
4.9	The variation between the actual and Weibull power densities	55

ABBREVIATIONS, GLOSSARIES AND SYMBOLS

AGL = Above Ground Level

ANN = Artificial neural network

AVG = Average

CDF = Cumulative Density Function

EWEA = European Wind Energy Association

HAWT = Horizontal Axis Wind Turbine

MAX = Maximum

NIMET = Nigeria Meteorological Agency

PDF = Probability Density Function

US = United State

VAWT = Vertical Axis Wind Turbine

 V_E = Maximum energy carrying wind speed

 $V_F = Most probable wind speed$

 V_m = Mean Wind speed

WED = Wind Energy Density

WP = Wind Power

WPC = Wind Power Class

WPD = Wind Power Density

WPDa = actual Wind Power Density

WPDw = Weibull Wind Power Density

WS = Wind Speed