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ABSTRACT

Most largely sparse linear systems encountered in applied sciences and engineering
requires efficient iterative methods to obtain an approximate solution. In this thesis, an
Extended Accelerated Over-relaxation (EAOR) iterative method for solving linear
systems was developed by introducing a new acceleration parameter to improve
convergence rate of family of Accelerated Over-relaxation (AOR) methods. The method
was developed through decomposition of the coefficient matrix A by the usual splitting
approach and interpolation procedure on the sub-matrices. Analysis of convergence of
the method were examined on some special matrices like L —, M —, and Irreducible
weak diagonally dominant matrices. In addition, the Refinement of Extended
Accelerated Over-relaxation (REAOR) iterative method was also developed coupled
with its convergence properties for the special matrices. To validate the effectiveness of
the proposed methods, some numerical tests including problems from fuzzy linear
systems and heat transfer were conducted to verify the theoretical results. The results
obtained indicated that the spectral radii of the proposed methods are smaller than the
compared methods reviewed in the work. Based on the spectral radii results and the
convergence results produced, it was concluded that the developed methods converge
with lower number of iterations and computational time than the compared methods.
This reveals that the introduction of a parameter to the general two-parameter AOR
family methods has improved the convergence results. From the results obtained, the
EAOR iterative method converges approximately 1.4 times faster than the KAOR
iterative method and 1.8 times faster than the Quasi Accelerated Over-Relaxation
(QAOR) iterative method. While the REAOR method converges 1.2 times faster than
the Refinement of Accelerated Over-relaxation (RAOR) iterative method.
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CHAPTER ONE

1.0 INTRODUCTION

1.1  Background to the Study
The problem of solving the linear (mostly sparse) systems

Az=b (1.1)
Where A is the coefficient matrix, b is the right hand side vector, and z is vector of
unknowns, appears as a final stage in solving many problems in different areas of
science and engineering. It is the result of discretization techniques of the mathematical
models representing realistic problems. In most cases, the number of these equations is
generally large and for this reason, their solution is a major problem itself. Accordingly,
techniques employed for their solutions are essentially the direct methods or that of the
iterative methods (indirect methods). If the coefficient matrix of the linear system is
large and sparse (most of the elements are zero), then iterative methods are
recommended against the direct methods (Youssef & Farid, 2015). Iterative methods are
more attractive since they are very effective, requires less memory and arithmetic

operations (Fiseha, 2020).

Linear systems (Az = b) are among the most important and common problem
encountered in scientific computing. The existence of solution of a linear system is
distinguished into three situations. From theoretical point of view, it is well understood
when a solution exists, when it does not and when there are infinitely many solutions. In
addition, explicit expression of the solution using determinants exists. However, from
the numerical point of view, it is far more complex. Approximations may be available
but it may be difficult to estimate how accurate they are. This clearly will depend on the

data at hand, primarily on the coefficient matrix (Saad, 2003).



Undoubtedly, Partial Differential Equations (PDE) constitute the major source of linear
systems or sparse matrix problems. One possible way to obtain solutions to such
equations is to discretize them that is by approximating them with finite number of
unknowns. Several different ways of discretizing a PDE is through some discretization
procedures such as finite difference methods, finite element methods and finite volume
method (Kiusalass, 2005).
According to Behzadi (2019), a general iterative method involves a process that
converts the system of linear equations (1.1), by splitting A into M — N and the matrix
splitting M is required to be easily invertible such that

z®D = MINzZ® + M~p,  (k=0,1,2,3,,n) (1.2)
This can be equivalently written as a system of the form

z+D = 1700 4 f (1.3)

Where J=M"IN, f = M~1bh, for some matrix J and vector f. After an arbitrary
initial guess z(® is selected, the sequence of approximate solution vectors is generated
by the iteration and the sequence (z®¥: k = 0,1,2,--,n) is required to converge to z*
where z* is the solution of Az = b. In order to solve the linear system in equation (1.1)
more effectively by using the iterative methods, usually, efficient splitting of the
coefficient matrix A is required.
Large and sparse linear systems often occur in scientific or engineering application
when finding solutions to partial differential equations. Sparse linear solvers are mainly
the iterative methods such as Jacobi, Gauss Seidel, Successive Over-Relaxation and
Accelerated Over-Relaxation methods, this is due to their fast computations of matrix
splitting techniques. The technique of iterative method in obtaining solution for linear

systems involves one in which an initial estimation is utilized in computing a second



estimation, the second estimation is equally used to compute a third estimation and it
goes on continuously until a desired result is achieved (Fadugba, 2015).

As the difference between the exact solution and successive estimation tends to zero, the
iteration procedure becomes convergent. The most important aspect of an iterative
method is that the set of iterates from the iteration should converge fast to a desired
accuracy (Anton & Rorres, 2013).

When designing an iterative method for solving systems of linear equations, the major
question is how to achieve rapid convergence, or to put this in other words, how to
construct an iteration matrix with the smallest spectral radius possible. To do this, one
should be able to exert control over the properties of iterative matrix A, and this can be
realized by the use of a special procedure called the method of relaxation. A technique
that involves the process of speeding up the convergence rate of virtually any iterative
method is known as relaxation method. This method tends to converge under general
conditions although it usually progresses slowly than competing methods, which
implies that its major setback is that of slow convergence. For example, assuming we
have an initial estimate say z™!T!AL(z!) of a quantity and we desire to advance
towards a target estimate say zTARGET (zT) by a particular method. Let the application
of the particular method change the estimate from z!NITIAL g zAPPROXIMATE (74 - f
z® isin the middle of z' and zRELAXED (ZR) "which is nearer to zT than z#, then we
can advance towards zT faster by magnifying the change (z* —z') . In order to

achieve the above aim, we ought to apply a magnifying factor w > 1 to obtain

ZR—z'= w(z? - z" (1.4)
ZR -zl = wzh — wz! (1.5)
R = wz? — wz! + 7! (1.6)
zZR= wz® + (1 - w)z' (1.7)



This amplification process is an extrapolation and it is typically an example of Over-
relaxation. Over-relaxation method is seen as a process of over estimating the
residual/error by a factor towards the true solution of the problem in a fast manner.

Suppose the midway estimate (zR) tends to exceed or surpass the target estimate (z7),
then one will have to apply w < 1 which is known as Under-relaxation. Examples of
Over-relaxation methods are the methods of Successive Over-relaxation (SOR) and

Symmetric Successive Over-relaxation (SSOR).

1.1.1 Sparse matrix

A sparse matrix is a matrix in which majority of its coefficients are mostly zero values.
Such matrices are different from matrices that contains mostly non-zero coefficients
which are termed dense matrices. These matrices are generally common and occur
mostly in areas such as machine language, data representation and others. Additionally,
sparse matrices are quite expensive computationally to work with compared to dense
matrices. One possible way to improve their performance is through the use of
representations and operations that can handle sparsity of the matrices specifically. The
main interest in sparsity of a matrix stems from the fact that exploitation of such
matrices leads to great computational savings and practically, various large matrix
problems that occur are sparse (Duff et al., 2017).

Matrix sparsity are measured by a certain computed score, this score is represented as

Number of zero values in matrix

Sparsity of a matrix =
p ty Total Number of entries in matrix

For example the matrix below

100000 O
/0320050\
B=|0 04 2 0 0 0 (1.8)
00007 70
0000UO0TO 06



Contains 26 zero values out of the 35 entries in the matrix, thereby giving a sparsity of
0.7428571429 or approximately 74%. A lot of memory is required by numerous large
matrices. More so, representing the zero values in a 32-bit or 64-bit is a clear waste of
memory because those values (zero) do not contain any vital information. It is quite
wasteful to utilize some general methods on sparsity problems due to the fact that most
mathematical operations of 0(n?) designed to compute the linear equations constitute
zero operands. This leads to an associated problem of increased in time complexity of
matrix operations that increases with the size of the matrix. There are several efficient
ways in storing and working with sparse matrix, although, iterative methods provides an
excellent implementation that one can utilize directly with respect to sparse matrices

(Strang, 2016). The survey of iterative methods will be carried out in the next chapter.

It is an undisputable fact that in real world, time is of essence that is no one wants to
waste time. In regards to the solution of linear system of equations, it can sometimes be
more desirable to get a close approximation of the solutions than to get the exact
solution, when time is taken into consideration, this is where the proposed Extended

Accelerated Over Relaxation (EAOR) method comes in to play. The Gaussian

3
elimination method which is an exact solution techniques requires approximately %

operations to solve the system, which becomes time-consuming when n gets big. The
proposed EAOR iterative method on the other hand, even though it only produces an
approximation, can give us these approximations much faster than Gaussian

elimination.

1.2  Statement of the Research Problem
Many physical problems in science and engineering are modelled into differential

equations. The discretization of these equations in most cases results into a system of



linear equations. These linear equations are usually large and sparse which necessitates
the application of iterative solution method such as Jacobi and Gauss-Seidel methods. A
basic requirement of such iterative method is convergence, it is not just enough for a
method to converge, we are equally interested in how fast a method converges. This
goes a long way in saving storage, time and reducing cost. The search for automation
and increasing the efficiency of iterative methods led to the discovery of Successive
Over Relaxation (SOR) method. The Accelerated Over Relaxation (AOR) iterative
method is a two-parameter modification of the SOR method that results into better
convergence and greater efficiency in certain cases. Several researchers have also
worked on modifications of the AOR method including generalizations, extrapolation,
block and refinement form. Yet, most of these methods fail for some kind of matrices,
and even with very high number of iterations before convergence could be achieved.

This present work is a further attempt at developing an iterative method that would be
effective and efficient, towards solving real life problems that are modelled as system of
linear equations, which will in turn help to reduce the iteration number, computational

time and storage capacity.

1.3 Aimand Objectives of the Study
The aim of this research work is to construct a parameterized iterative method and a
Refinement version of it for solving linear systems, especially those arising from
discretization of partial differential equations.
The objectives are to:

I.  develop an Extended Accelerated Over Relaxation (EAOR) iterative method.

Il. investigate the convergence of the proposed Extended Accelerated Over

Relaxation method.



1. determine the conditions placed on the coefficient matrix with regards to the
proposed method.

IV.  develop a Refinement version of the Extended Accelerated Over Relaxation
method.

V. investigate the convergence of the proposed Refinement of Extended
Accelerated Over-Relaxation method.

VI.  undertake some numerical experiments including fuzzy linear system and a real

life problem for the purpose of evaluating and validating the new methods.

1.4 Justification of the Study

The proposed iterative method is required for usage in areas like computational fluid
dynamics, oil and gas industry, machine learning, structural engineering, linear
elasticity and others.

Given that real life problems are usually transformed into mathematical equations or
linear algebraic equations, therefore finding solutions of such equations becomes
paramount for researchers in the quest to obtain solutions to real world problems.
Solving large systems of linear equations cannot be handled by direct methods,
especially in a case where the matrix of the system is sparse, thereby requiring an
iterative method for obtaining its solution.

Application of a speedy converging iterative method with regards to solution of linear
systems would save computational time and considerable resources. Hence the desire to
develop a speedy converging iterative method that would solve large linear systems
efficiently. The basic idea behind constructing the proposed method is mainly to speed

up convergence rate.

1.5  Significance of the Study



The results and conclusion of this study are important, because iterative methods have
important relevance in real world applications in the fields of computational fluid
dynamics, mathematical programming, linear elasticity, machine learning, among many
others. In dynamics, for example, the study of heat conduction, turbulent flows,
boundary layer flows or chemically reacting flows are some of the application areas
where the proposed Extended Accelerated Over Relaxation iterative method is
important for both researchers and policy makers. In essence, real life problems

encountered in areas of science and engineering would be simplified.

1.6 Scope and Limitation of the Study

In a quest to improve the convergence speed of parameterized stationary iterative
methods, the need to introduce an efficient iterative method becomes pertinent, this
research study strives to do just that. A new parameter is introduced into the family of
general Accelerated methods to formulate the proposed iterative method in order to
improve convergence rate. Certain restrictions placed on the coefficient matrix of the
linear system Az = b are derived, analyzed and discussed extensively. The study will
also advance convergence theorems and establish their proofs. More so, it covers the
development of the Refinement version of the proposed Extended Accelerated Over
Relaxation (REAOR) method. Irreducible weak diagonally dominant, L- and M-
matrices are investigated. This study is limited to Extended Accelerated Over
Relaxation (EAOR) method for solving linear systems of the form Az = b, where A is
a square non-singular coefficient matrix, b is a column vector of constants and z is the

solution vector to be determined.

1.7 Definition of Terms
Basic iterative method: Is a single-step method of the form z®&*D = jz(®) + £ for

some invertible matrix P, where J=1—P 4 and f =P 'b which involves
8



obtaining successive approximate solutions from an initial estimation to the true
solution of a linear system Az = b.

Lower triangular matrix: Is a square matrix in which all the entries above the
diagonal entries are zero thatis a;; = 0 whenever i < j.

Upper triangular matrix: Is a square matrix in which all the entries below the
diagonal entries are zero thatis a;; = 0 whenever i > j.

Triangular matrix: A square matrix which is either upper triangular or lower
triangular matrix is called a triangular matrix.

Strictly lower triangular matrix: Is a lower triangular matrix in which all its main
diagonal elements are zero that is a;; = 0 whenever i <j

Strictly upper triangular matrix: Is a upper triangular matrix in which all its main

diagonal elements are zero thatis a;; = 0 whenever i > j

Nonsingular matrix: A square matrix (Aij)mxm is said to be nonsingular if its

determinant is not equals to zero, that is to say det A # 0.
Diagonally dominant (weak) matrix; A square matrix A is said to be diagonally

dominant or weak diagonally dominant if and only if

n

la;;| = z lag|,  i=12,n (1.9)

j=1,j#i
Irreducibly diagonally dominant matrix; A square matrix A is said to be irreducibly
diagonally dominant if matrix A is irreducible and satisfy the condition
n
lag| = z la|,  i=1,2-n (1.11)
j=1j#i
With strict inequality for at least one row.
Directed graph: Let matrix A = [a;;] with any m distinct points Ty, Ty, -+, T, in the
plane called nodes, then for every nonzero entries a;; of the specific matrix, the set of

9



connected nodes T; to T; through a directed path TT; is called a directed graph
denoted as G (A).

Strongly connected graph: A directed graph of square matrix A = [a;;] is said to be
strongly connected if it possess a directed path from T; to T; and a directed path from

T; to T; for every pair of the nodes (i, /). For illustration, the directed graph of A; =

1 2 0
<O 3 4) shown in Figure 1.1 is strongly connected since it is possible to reach any
5 6 7

of the points starting from a specific point.
Figure 1.1: Directed graph of A

1 0 O
Similarly, the directed graph of matrix A, = <4 2 3) shown in Figure 1.2 is not
5 6 7

strongly connected since it is not possible to reach T, or T5; from T;.

(T
e‘
()
Figure 1.2: Directed graph of 4,

Irreducible matrix: A matrix A = [a;;] is irreducible if and only if its directed graph

G (A) is strongly connected. For example, from figures 1.1 and 1.2, G(A,) is irreducible

10



because its directed graph is strongly connected and G(A4,) is not irreducible since its
directed graph is not strongly connected.

Refinement iterative method: A Refinement iterative method is an iteration technique
for improving the estimate solutions to the true solution of the linear system Az = b. It
involves the process of calculating the residual r = b — Az, solving the specified
iterative method z = Jz + f, forming the updates Z=z+Y(b— Az) for some
invertible matrix Y and repeating these steps as necessary until accuracy is achieved.
Sparse matrix: Is a matrix in which most of its elements are zero with few non-zero
elements. A special type of sparse matrix is the band matrix.

Nonnegative matrix: A matrix A = [a;;] where a;; =0 (i,j = 1,2,---,n)

Hermitian matrix: A hermitian matrix is a complex square matrix that is equal to its
own conjugate transpose. If the conjugate transpose of a given matrix A is denoted as
AH then the hermitian property is expressed as A = A",

L-matrix: Is a square matrix A = [a;;] € R™" where a;; < 0 (i # j) with a; >0,
i=12-,n.

M-matrix: Isan L -matrix A = [a;;] € R™™ where A is nonsingular and A~* > 0.
H-matrix: A matrix A = [a;;] is said to be an H-matrix if its comparison matrix, that
is, the matrix (A) with elements «a;; = |la;;|, i=1,2,---,nand a;; = —|a;|, i #j is
an M-matrix.

Property A: An m x m matrix A = [a;;] is said to possess property A if there exists a
set W from matrix A containing the union of two disjoint subsets V and U, such that if
eithera;; # 0ora;; # 0,thenj €U and i EVor i €U and jEV.

Consistently ordered matrix: A square matrix A = [a;;] is considered a consistently
ordered matrix if it is obtained from permutation of columns and corresponding rows of

a given matrix provided the given matrix possess Property A.

11



Splitting: The decomposition of any given matrix A into the form A = M — N where M
Is @ non singular matrix is called a splitting of A. And such splitting is:

I.  Nonnegative if M~1 >0

II. Regularif M1 >0 and N >0
l1l.  Convergentif p(M™IN) < 1
Usual splitting: For any matrix A, the splitting A = D, — L, — U4, where U, is the
strict upper component of A, L, is the strict lower component of A and D, is the
diagonal part of A, is referred to as the usual splitting of A. Also, if matrix A is
assumed to have a non-vanishing diagonal elements, then the usual splitting becomes
A=I1—L—-U where U=D,"*U;, L =D, 'L, and I = D,~'D,.
Spectral radius: is the greatest value among the absolute values of the eigenvalues A;
of a square matrix, denoted as p[A] = max;, eal|Ax|.
Fuzzy Number: Fuzzy number is a generalization of a regular, real number in the
sense that it does not refer to one single value but rather to a connected set of possible
values, where each possible value has its own weight between 0 and 1. It is an ordered
pair (u, H) on the functions u(a),u(a), 0 < a <1 that satisfies the requirement;

I.  u(a) isabounded non-decreasing function over [0,1]

Il.  u(a) isabounded non-increasing function over [0,1]
.  u(a) <u(a), 0<sa<1
Fuzzy Linear System: Fuzzy linear system are systems of linear equations in which
coefficients and variables are uncertain and this uncertainty is expressed using fuzzy
numbers. Fuzzy linear system are used in practical situation where some of the system’s

parameters or variables are uncertain.
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CHAPTER TWO
2.0 LITERATURE REVIEW
2.1 Basic Iterative Methods
Numerical methods in approximating solutions of linear system allow the possibility of
obtaining values of the roots system with the desired accuracy. This procedure of
developing such sequences is referred to as iteration. While the direct method tries to
compute the true solution in a finite number of steps, iterative method begins with an
initial guess and produces successive improved estimations in an infinite sequence
whose limit is the true solution. Practically, the iterative technique has more advantage
due to the fact that the direct solution is subjected to rounding errors (Karunanithi et al.,
2018).
As discussed in chapter one, a general linear iterative scheme of the form z =Jz + f is
termed stationary if J and f are not dependent on the iteration count z. This implies
that at every step of the iteration, / and f remain constant. Such stationary iterative

methods are the Jacobi, Gauss-Seidel, Successive Over-Relaxation methods and others.

Jacobi method and the Gauss-Seidel method are well known classical iterative methods
introduced in the late eighteenth century for solving linear system. Solution of linear
system of small dimension usually do not require an iterative technique, simply because
time needed for necessary accuracy exceeds that of the direct methods. Large linear
system with high percentage of zero elements which is usually obtained when solving
partial differential equations and boundary value problems, usually requires an iterative
method for their solutions. An iterative procedure for solving m x m linear system

Az = b, begins with an initial guess z(® to the solution z and produces successive

estimations of vectors [z(")]:_o which converge to z (Kisabo et al., 2016). A very

basic idea that leads to effective iterative solvers is to split the matrix of a given linear
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system in the sum of two or three matrices that would lead to a system that can easily be

solved.

For example, the classical Jacobi and Gauss-Seidel iterations are obtained by splitting
the matrix A into its diagonal and off diagonal parts A = D — L — U and the coefficient
matrix A can be further transformed into D=4 = I — L — U, where I is the unit matrix
of order N, —L is the strictly lower triangular and —U is the upper triangular parts of A

respectively.

2.1.1 The Jacobi method
As discussed by Markatos and Karabeks (2015), the Jacobi method is an iterative
method that cycles through each of the variables z%, z2, z3,---, z¥ in turn to refine an
initial guess. The main idea of the Jacobi method is to determine the kth variable of the
next approximate solution in z®*! in relation to the other variables. The iteration
method involves solving one variable at once for a single step of the iteration process or
simply, at each iteration stage. That is to say, we use the values of z* to update the
zk*1 at each stage for each iteration. The matrix form of the Jacobi method is
formulated from the linear system in equation (1.1) based on the splitting of A =D —
U — L, and its matrix form is given as:

z® =D YU+ L)z*D + D 1p k=1,2,,N (2.1)
And the general iterative form of (2.1) is denoted as

2+ = 700 Ly (2.2)

Where ] = D71(U + L) is the Jacobi iterative matrix and V = D~1h. The algebraic

form of the Jacobi method above is expressed as;
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Where the z; are the elements of z, b; are the elements of b and the a;; are the

elements of the coefficient matrix A = (a;;) respectively.

Salkuyeh (2007) in an attempt to enhance the rate of convergence of the Jacobi method
proposed the generalized Jacobi (GJ) method and states that the generalized Jacobi
method is convergent for M —matrix, strictly diagonally dominant matrix and
symmetric positive definite matrix. It was revealed that the generalized Jacobi method
performed better than the conventional Jacobi method based on the outcome that the
Jacobi method took a longer time to converge to the true solution than the generalized

Jacobi method.

Tesfaye (2016) introduced the second degree generalized Jacobi iteration method. The
convergence rate properties and the spectral radius of the method were studied and
discussed. The method was validated and it proves that the method converges faster
than first degree Jacobi, generalized first degree Jacobi and second degree Jacobi
methods. Also, the method can be further improved by the application of extrapolating

procedures.

2.1.2 The Gauss-Seidel method

The Gauss-Seidel iterative method is a modification of the Jacobi method and
essentially superior to the Jacobi method. This iterative scheme is also known as
successive displacement method which is based on the process of updating the kth
iterative values as soon as the new estimates are available. Regarding the method of

Jacobi, the estimates of z* obtained in the kth iteration remains unchanged until the
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entire (k + 1)th iteration has been computed. With regards to the Gauss-Seidel iterative
method, we utilize the new estimates zf*! as soon as they are known, (Saha and
Chakrabarty, 2020). For illustration, once we have calculated z¥*1 from the first
equation, its estimate is then utilized in the second equation of the linear system to

obtain the new estimate zX*1. The algebraic form of the method is given as

i— n
1 z z i=12,n
Zl-k-'-1 = a— bi — aiijk — Cl'jZ-k k=012 N (25)
(22 j=1 j=i+1 ) 4y &y )

while the matrix form formulated from splitting of (1.1)into A=D — U — L is
zMt =[(D-L)"'U]z¥+ (D—-L)"b (2.6)
This is represented in the general iterative form as
zM = Josz¥ + Vg (2.7)

where Jzs = U(D — L)~ is the Gauss-Seidel iteration matrix and V;, = (D — L)~ !b.

In a quest to enhance the rate of convergence of the Gauss-Seidel method, Salkuyeh
(2007) presented a modified form of the Gauss-Seidel method called generalized Gauss-
Seidel (GGS) method. The convergence properties of the GGS for M —matrix, strictly
diagonally dominant matrix and symmetric positive definite matrix were studied.
Analysis of the results indicates that the generalized Gauss-Seidel method is superior to

the classical Gauss-Seidel method.

On the other hand, Tesfaye (2014) presented a method called second degree generalized
Gauss-Seidel method (SDGGS) and studied the convergence of the method for
symmetric positive definite matrix, strictly diagonally dominant matrix and irreducible
matrix. It was revealed that the second degree generalized Gauss-Seidel method in

comparison with methods of first degree Gauss-Seidel and generalized Gauss-Seidel
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performs better, due to the fact that the spectral radius of the second degree generalized

Gauss-Seidel method is lesser than those of the methods examined in the work.

Sebro (2018) improved on the refinement of Generalized Gauss-Seidel iterative scheme
through extrapolation procedures and developed the scheme called Extrapolated
refinement of Generalized Gauss-Seidel (ERGGS) method. The method was validated
and compared with methods of Refinement of generalized Jacobi, generalized Gauss-
Seidel and refined version of generalized Gauss-Seidel. It was shown that the
convergence rate of the Extraolated refinement of Generalized Gauss-Seidel (ERGGS)

method is higher than other methods considered for comparison.

2.2  Development of Successive Over-relaxation (SOR) Method

Over the years, iterative methods of solving large sparse linear systems have been
introduced starting from the Jacobi to Gauss-Seidel methods which are non-
parameterized. In an attempt to rectify the setback (low convergence rate) associated
with non-parameterized iterative methods, some researchers came up with the idea of
developing parameterized methods so as to achieve greater convergence rate. Examples
of such parameterized methods are the Successive Over-Relaxation and Accelerated
Over-Relaxation which has proved to outperform the existing Jacobi and Gauss Seidel

methods.

As discussed in Hadjidimos (2000), the method of Successive Over-relaxation (SOR)
was invented with the aim of solving linear systems on digital computer
(computationally). This method essentially seeks to reduce the number of iterations
needed to minimize the error of an initial guess of the solution through a predetermine
factor and application of extrapolation on the Gauss-Seidel method. The main idea of

this method is taking an average weight of the previous iterates and the new computed
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iterates for each component successively. Setting z‘}‘ as the Gauss-Seidel kth

component, the iteration of the SOR method is given by the relation below

zf = wzf + (1 — w)zf™ (2.9)
where the variable w[0 < w < 2] is the relaxation parameter. This implies that the
accepted value at step k is extrapolated from the Gauss-Seidel value and the previous
computed values. The concept is to select a suitable value for w that will improve the
convergence rate of the Gauss-Seidel method to the true solution. The SOR method

reduces to that of Gauss-Seidel when w = 1, the algebraic form of the SOR is given

below as

i—

n
1
K _ E k E k-1 k-1
zZj = w)— bi— ) a;jz"— a;jz; + (1 - w)z;
121

j=1 j=1+1
k=1,2,3,,N (2.10)
while the matrix form is represented as
zF=(D —wl)™ (1 —w)D + wU]z* 1+ (D — wL) wb (2.11)

and the general iterative form is denoted as

7% = Jsorz" " + Csor (2.12)
where Jsor = (D — wL)™[(1 — w)D + wU] is the iteration matrix of the SOR method
and Cgor = (D — wL) twh. It is well known that SOR iterative method are convergent

for linear systems.

Mayooran and Elliot (2016) discussed and analysed the significance of the Successive
Over-relaxation iterative method for improving solutions concerning real world
problems. They examined the performance of the classical SOR scheme by solving an
heat equation when a steady boundary temperature is been applied to a flat plate,

through finite difference approach. The result indicates a remarkable convergence rate
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due to the fact that the SOR method is an effective iterative solver in the case of large
sparse matrices. Future work was recommended to construct an AOR algorithm that

could generate better and closer result to the true values.

2.3 Variants of Successive Over-Relaxation Method
Many researchers have shown interest in magnifying the convergence rate of the SOR
method by developing several modifications and versions of the SOR iterative method

used for computations of the linear system (Az = b).

The Symmetric Successive Over-Relaxation (SSOR) method combines two SOR
processes together in such a manner that the resulting matrix becomes a symmetric
matrix. It is an iteration process where one of the two iterations is that of the forward
SOR and the other iteration is that of the backward SOR. The forward SOR iteration is

given as
1
22 = (D — wl) (1 — w)D + wU]z¥1 + (D — wL) wb (2.13)
while the backward SOR is given as
1
7z = (D — wU) (1 - w)D + wL]z" 2+ (D — wU) *wb (2.14)

Hence combining equations (2.13) and equation (2.14), gives rise to the SSOR iterative

matrix form as

2" = Jesorz® + Fssor (2.15)
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where we have F=w2—w)(D—wlU) DD —-wL) b and Jssor = (D —
wl) wL + (1 —w)D] X (D — wL) wU + (1 — w)D]z* is the SSOR iteration

matrix.

Youssef (2012) developed a version of the SOR method called modified Successive
Over-Relaxation (KSOR) method. The method is based on the treatment of assumption
that recent value can be utilized in the evaluation along with the most current computed
values as in SOR method. Apart from the range of values of SOR method, the KSOR
method is capable of taking values from w € [—2,0]. It also possess the same structure
as the SOR method and advantage of the method over some iterative methods is that of
updating the first computation from the first step, thereby reflecting rapid convergence
from the start of the iteration process. Also, consistency, spectral radius, theoretical
conditions and convergence of the KSOR method were proved in the research work.
The spectral radius of the method was examined and the outcome reveals that KSOR
spectral radius appears comparable to SOR spectral radius for a certain value of the
relaxation parameter (w) which corresponds to optimal (w).

Yousef and Taha (2013) presented some modifications of the KSOR method in three
different forms called MKSOR, MKSOR1 and MKSOR?2 is a subclass of consistently
ordered matrix. The three schemes are improvements on the SOR and modified
Successive Over-Relaxation (KSOR) methods, through the process of updating the
residue simultaneously with the solution and utilizing the most current computed
solution at the same time. They established the functional relationship between
eigenvalues of Jacobi method and those of the MKSOR methods with restrictions on the
relaxation parameters. Theoretical properties, consistency and convergence of the
methods were proven. Validation of the methods were performed and compared with

the MSOR method where it reveals that the MKSOR methods are more efficient. The
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outcome of their research agrees with the theoretical findings, leading to the suggestion
that acceleration procedures combined with SOR and KSOR formulas can be more
efficient, however, determination of optimal values for the relaxation parameters was

not considered in their work.

Zhang et al. (2016a) extended the convergence of SOR method for non-Hermitian
positive definite matrices in their paper. Some sufficient conditions for convergence as
regards the SOR method were presented and they discovered that these conditions
appear theoretically relevant but difficult in application to practical calculations.
Numerical samples were verified to ascertain the convergence of the SOR method for
non-Hermitian positive definite matrices, the results analysis indicates that the SOR

iterative scheme converges for a non-Hermitian positive definite matrix.

Zhang et al. (2016b) in an attempt to verify if the SOR method is convergent for
system of linear equations whose coefficient matric is a weak H —matrix, presented a
convergence analysis of the SOR method for linear system with weak H —matrix in
their work. They surveyed the convergence analysis of forward Successive Over-
Relaxation [FSOR] method, backward Successive Over-Relaxation [BSOR] method and
symmetric Successive Over-Relaxation [SSOR] method for weak H —matrix [whose
comparison matrix is a singular M-matrix] and proposed some sufficient conditions for
the methods to converge to the real solution. Evaluation and validation of the
convergence of SOR methods for weak H — matrices were carried out through some
numerical samples and the results obtained reveals that the FSOR, BSOR and SSOR
iterative methods are convergent for weak H —matrices having singular comparison
matrices. They suggested the idea of investigation on the convergence of Accelerated

Over-Relaxation method for linear system with weak H —matrices.
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Chunping (2017) presented a generalization of the SSOR method with 3 parameters
called 3 SSOR-like iteration method for solution to saddle point problems. Convergence
of the method was discussed extensively. Numerical validation conducted confirms the
theoretical proofs and effectiveness of the method. Although, the 3 SSOR- like
parameters are not optimal and therefore further study on determination of optimal

values was suggested.

Vatti et al. (2020a) studied the Second Degree Successive Over-Relaxation (SDSOR)
Method and compared its performance with other methods such as Jacobi, Second
Degree (SDJ), Gauss-Seidel, Second Degree Gauss-Seidel (SDGS) and SOR methods.

It was observed that the SDSOR iterative method exhibits higher rate of convergence.

Firew et al. (2020) improved on the convergence rate of the Generalized Successive
Over Relaxation (GSOR) method and developed the Second Degree Generalized SOR
method. They discussed the convergence properties and compared the method with
SOR and GSOR methods. It was reported that the SDGSOR iterative method converges
faster than Successive Over Relaxation and Generalized Successive Over Relaxation

methods.

2.4 Development of Accelerated Over-Relaxation (AOR) Method

The Accelerated Over-relaxation (AOR) iterative method which has been proven to be a
powerful technique for solving linear systems of equation was developed by Apostolos
Hadjidimos in 1978. The Accelerated Over-relaxation method which is viewed as an

extrapolation of the Successive Over-relaxation method, having over-relaxation
parameter (r) and extrapolated parameter (sz%), was derived through the

interpolation procedure with respect to the sub-matrices in application of general linear

stationary schemes. It is an improvement on the Successive Over-relaxation iterative
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method which involves two parameters generalization of the Successive Over-relaxation
scheme to accelerate the convergence of the Successive Over-relaxation method. The
presence of two parameters used in speeding up the convergence of the AOR method
instead of the usual one parameter in speeding up convergence of an iterative method
proves the powerfulness of AOR method when compared with conventional method
such as Successive Over-relaxation method. More so, exploiting the presence of these
two parameters provides numerical solvers with a method that converges faster than any

other equivalent method.

The AOR method is considered as an improvement on the Successive Over-relaxation
(SOR) method for the sole purpose of speeding up the convergence rate of the SOR
method. He utilized the splitting A =D — U — L to established the below splitting
method with an over-relaxation and acceleration parameters r and w of the coefficient

matrix A of the linear system Az = b.

A= %[Mw_r — Ng,r | (2.17)
where M,,, = %(D —rL) and N,, = 5[(1 — w)D + (w — )L + wU ] and the
AOR method is governed by the relation

zD =g 20+ (2.18)

where J,, =D -rL)'[1-w)D+ (w—-7)L+wU] and S,,= (D—rL) *wb
By so doing, he introduced one more parameter into the Successive Over-relaxation
method to obtain a faster convergence rate in the AOR method. He also made an effort
to investigate the constraints or limitations enforced on the accelerated and relaxation
(r and w) under different notions on the original matrix A to enable the convergence of
the AOR method. He obtained some convergence theorems based on the assumptions

with regards to the original matrix A and equally established the proofs of the theorems

23



in his work. His theorem on an irreducible weak diagonal matrix states that: the AOR
method tends to converge for values of 0 <r <1 and 0 < w <1 whenever the
original matrix is an irreducible weak diagonally dominant matrix. For L — matrix, the
convergence theorem states that: if the original matrix is an L — matrix such that
0 <r<w<1, then the AOR method converges if and only if the Jacobi method
converges. The main results from his findings indicates that the AOR iterative method
converges for some specific values of r and w when the coefficient matrix is L —
matrix, irreducible weak diagonally dominant matrix or consistently ordered matrix.
Numerical experiment performed showed the superiority of the AOR method over the

SOR method.

Finding an optimal acceleration parameter of the AOR method for a consistently
ordered matrix is often associated with the relationship between the eigenvalue (1) of
Jacobi iteration matrix with eigenvalue A of AOR iteration matrix which is given as
A-—14+w)?=wp?(rl -1+ w) (2.19)
Hadjidimos (1978) considered the convergence analysis of a consistently ordered matrix
with regards to the AOR method during his research work in 1978. He established a
sufficient and necessary condition for the convergence of AOR method when the Jacobi
method possesses real eigenvalues only. It was shown in the result that convergence
domain of r relies on the estimate of w. He also established the fact that when the over-
relaxation and acceleration parameters are easily obtainable, the AOR tends to converge
fast when compared to other iterative methods. Hence the matter of determining the

optimal acceleration and over-relaxation factors requires further investigation.

2.5 Variants of Accelerated Over-Relaxation Method
Many researchers have been encouraged and are still interested in exploring the AOR

method for solution of the linear system (Az = b). This led to several modifications
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and versions of the AOR iterative method used in magnifying the convergence rate of

the AOR method.

Darvishi et al. (2011) considered the improvement of the AOR scheme and proposed a
numerical method known as Symmetric Modified Accelerated Over-relaxation iterative
method (SMAOR) They investigated the convergence region of the scheme and carried
out numerical experiment of some problems for comparison of the method with AOR
method. Their finding indicated that the SMAOR performs better than the AOR method
as it shows that the convergence rate of the SMAOR method is greater than the

convergence rate of AOR.

Salkuyeh (2011) by applying the idea of Hadjidimos (1978), parameterized the AOR
method and developed a new proposition of the AOR method called generalized
Accelerated Over-Relaxation (GAOR) method. The splitting of matrix of the form

A=T,

» — E, — E, was considered, where T,, = (t;;) is a banded matrix with bandwidth

2p+1, —E, and —F, are strictly lower and upper part of the matrix A —T,. The
method is formulated as;
-1
z**) = (T, —yE,) [(1— )T, + (w —Y)E, + why|z®
+o(T, —VE,) b k=0,1,2,N (2.32)
He studied the convergence property of the GAOR method for M matrices, established

that the generalized Accelerated Over-relaxation method converges for M matrices and

proves that the GAOR method converges faster than the classical AOR method.

On the other hand, Nasabzadeh and Toutounion (2013) utilized a block splitting of the

Aa Ab

coefficient matrix where the block matrix form is A; = (A A
c d

) Wlth Al = VD —
V, — Vy, a different approach from Salkuyeh (2011), developed an improved version of
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the AOR method called the generalized Accelerated Over-Relaxation method which is

designated as

20 = Vp =yV,)HA = 0)Vp + (0 =)V, + (UVU]Z(k)
+w(Vp —yV,)" b, k=0,1,2,--,N (2.30)
while the GAOR method of Salkuyeh (2011) is convergent for M — matrices, this
GAOR method has been proved to be convergent for other matrices such as L — matrix,
strictly diagonally dominant matrix, Hermitian positive definite matrix and H —matrix.
Also, the GAOR iterative method has shown to be more efficient than the basic AOR

iterative method.

Shaikh et al. (2013) further improved on the AOR method and presented a generalized
one-parameter reduction of the AOR method called Critical Accelerated method. They
applied a splitting of the form A =AY + D, D is the diagonal part and AY is
combination of both the strictly lower and strictly upper triangular matrices of matrix A4,
unlike the usual splitting of A = D — U — L in Gauss-Seidel, Jacobi, SOR and AOR
methods. The Critical Accelerated method is denoted as

25D = (1 =) —1A"}2z® + wP (2.27)
where A’ =D 'AY and P = D~'b, The method converges to the true solution for
system of linear equations when 0 <r < 1. They investigated and discussed the
restrictions on the acceleration parameter in the method to ascertain convergence of the
method for irreducible diagonally dominant and positive definite matrices. It was
observed from the outcome of the study that the critical accelerated method is more
efficient and superior to SOR and AOR Gauss-Seidel. They recommended more
research on determination of the optimal values of the acceleration parameter provided

it will provide the Critical Accelerated method a fast convergence than its present form.
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Wu and Liu (2014) presented a new version of the AOR method called Quasi
Accelerated Over-Relaxation (QAOR) iterative method. Based on induced splitting of
the AOR method, the Quasi Accelerated Over-relaxation iterative method is established
as
2D = [(14 w)D —rLy] D + (w — 1)L, + wlU,]z*
+[(1 4+ @)D — 7L, *wb, k=012, (2.25)
They examined some special matrices and obtained sufficient conditions with regards to
the convergence analysis of the matrices. Findings from the convergence analysis
indicates that QAOR method converges for an irreducible matrix with weak diagonal
dominance with values —1 <r <landw >0, for H—matrixwith0 <r < w (v #
0), for L — matrix with 0 <r < w, (w # 0) and for symmetric positive definite
matrix. The effectiveness and attainability of the QAOR iterative was examined and
compared with the modified Successive Over-relaxation (KSOR) method by Yousef
(2012) and AOR methods. Although the QAOR method is effective but not as efficient
as the KSOR, that is to say the KSOR method performs better than the QAOR method
under some conditions.
Youssef and Farid (2015) through the use of extrapolation approach on the modified
successive over-relaxation method (KSOR) method by Youssef (2012) from the AOR
point of view, formulated the KAOR iterative method represented as;
zE) = (r+ DI =) T +1-w)l+ (0w — 1)L + wU]z®

+o((r+DI—rL)'D"%b k=012, (2.26)
Discussion and investigation for the convergence of the method were carried out in the
study for matrices such as irreducible weak diagonally dominant matrix, L — matrix
and consistently ordered matrix. The study indicates that the method converges faster

than the AOR iterative method however, this was possible due to the fact that they
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considered the negative value of the acceleration and relaxation parameters which was
ignored in QAOR method by Wu and Liu (2014). Otherwise, the AOR method

converges faster than the KAOR iterative method.

By avoiding the computation of the spectral radius of the AOR method and employing
the minimization of the residual properties of AOR method, (Luna et al., 2016)
presented a method known as Asymptotically Optimum Accelerated Over-Relaxation
(AOAOR) method. The method is an optimization procedure in finding optimum
parameters of the AOR method. Optimum acceleration parameters for symmetric
positive definite matrix and non-symmetric matrix were investigated, analyzed and
discussed extensively. They were able to prove the efficiency of the AOAOR method
over the AOR method and established the fact that the method is more robust than the

AOR method in terms of larger intervals of the parameters.

Akhir and Suleiman (2017) applied the idea of the classical Accelerated Over-
Relaxation scheme and considered a combination of triangle element approximation
with the AOR method to produce an excellent iterative solver for a 2D Helmotz
equations. Performance of the method was clarified through a numerical test. The result
reveals that the associated Accelerated Over-Relaxation method as regards the 2D
Helmotz equations exhibited greater convergence improvements as compared to the

Successive Over-Relaxation method.

Dahalan et al. (2018) proposed a method named Quarter- sweep Accelerated Over-
Relaxation (QSAOR) method, a family of AOR method for solving robotic problem
such as free collision path from an initial location to a specific end within their
environment. By application of finite difference procedures on the Laplace equation

which was modelled from the problem, the numerical test conducted indicates that it is
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able to generate smooth path between starting positions to specified destinations. Also.
Based on their simulation result, performance of the QSAOR methods is far better and

gives smooth path in comparison to previous research in literature.

In an attempt to ensure high rate of convergence, increasing the number of parameters
has proven to accelerate convergence.

Recently, in a quest for improvement on existing two-parameter stationary iterative
methods (Vatti et al.,, 2019a) modified the AOR method and developed a three-
parameterized method called Parametric Accelerated Over-Relaxation (PAOR) method.
The method is a modified version of the AOR method through introduction of a new

acceleration parameter a and it is represented as;

204D = ((a + DI — wL))_l[(a +1-1)I+ @ —w)l+rU]z®

b (@t Di—ol) D a%-1, k=012 (2.28)
Convergence condition with regards to consistently ordered matrices for the method
was studied and choices of the PAOR parameters were obtained in respect to the
eigenvalues of the Jacobi iteration matrix. Efficiency of the method was verified and the
result shows that the PAOR method although reduced to AOR method with a = 0, its
spectral radius is smaller compared to spectral radii of AOR, SOR, Gauss Seidel and
Jacobi methods. This confirms that the PAOR method for any a # —1, performs better

than the other methods examined in the research work.

Furthermore, Vatti et al. (2019b) generalizes the Parametric Accelerated Over-
Relaxation (PAOR) method for solving non-square linear systems. It was reported that

the generalized PAOR method converges faster compared to AOR method.

Again, Vatti et al. (2020b) embarked on modification of the AOR method and
developed an iterative method called Reaccelerated Over-Relaxation (ROR) method.

29



Eigenvalues of the ROR method were obtained and choices of its parameters were
equally established. The method is represented in the form;

zED = (J—wl) How+1-1I+ G0 —rw—w)l+ @ —rw)U]z®

+ (I-wl)™ 1 —rw)D b, k=012, (2.29)

Convergence of the method was only focused on linear systems with consistently

ordered matrices, some theorems were proposed and proved with respect to such

matrices. They compared the method with some existing methods such as SOR, AOR,

Gauss-Seidel and Jacobi methods through some numerical tests and the results obtained

indicates that the convergence rate of the ROR method is faster than the methods of

Jacobi, AOR, Gauss-Seidel and SOR examined in the study.

Zhang et al. (2020) extended the AOR splitting scheme and proposed two iterative
methods called Newton-Successive Over- Relaxation (NSOR) and Newton-Accelerated
Over- Relaxation (NAOR) methods for solving multilinear systems such as the tensor
equations. Convergence conditions with regards the two methods were established. The
methods were validated and it was shown that the NAOR method outperform the other

methods compared in the study.

2.6  Convergence of Stationary Iterative Methods

First of all, convergence in terms of stationary iterative methods is a different concept
from convergence of numerical schemes. In numerical schemes, convergence is focused
on the analytical solution minus the numerical solution while convergence in terms of
iterative methods is mainly concerned with the difference between the approximate
solution z at step k minus the exact solution e* = zk — z(exact) and the exact in

z(€xact) js not the exact of the differential equation, it is the exact solution of the linear
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system Az = b. Two questions which are also very important to the choice of whether
or not to use the iterative methods (Jacobi, Gauss-Seidel, SOR and AOR) are;

I.  What are the conditions under which these methods converge?

Il.  What is the rate of convergence?
Sufficient conditions for convergence of a particular iteration method can also be

derived.

Theorem 2.1 (Saad, 2003)

The standard iterative scheme z®*D =7z 4 £ converges for any f or z(®
provided the spectral radius of ] is less than one (p(J) < 1). The spectral radius of an
iteration matrix J, represented as p(J), is given as

p(J) = max| Al (2.12)
The iteration matrix J/ determines the rate of not only the rate of convergence but also
whether or not it would converge. So the iteration matrix (J) is the key to the behavior
of this iterative scheme. So, once the matrix J is constructed even before going through
iteration procedure, one can find out or can predict whether or not the method will
converge by finding out the eigenvalue of the method to check if the spectral radius is
less than one. It is a known fact that convergence rate of stationary iterative procedure
lies greatly on the spectral radius of the iteration matrix.
Theorem 2.2 (Varga, 2000)
If matrix A  of the linear system Az = b, is irreducibly diagonally dominant
(diagonally dominant), then the spectral radii of Gauss-Seidel and Jacobi iteration
matrices are less than 1, and both Gauss-Seidel and Jacobi methods converges.

Theorem 2.3 (Young, 2014)
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If A is symmetric with positive diagonal elements, then spectral radius of the SOR
iteration matrix is less than 1, that is p(Jsog) < 1 provided A is positive definite and
therange 0 < w < 2.

Theorem 2.3 (Hadjidimos, 1978)

If A is an L — matrix, then spectral radius of the AOR iteration matrix is less than 1
[0Ua0r) < 1] provided A is an L matrix and 0 <r < w < 1, the AOR method

converges if and only if the Jacobi method converges.

2.7  Refinement of Iterative Methods

Sometimes an estimation to real solution of linear systems deviates from the real
solution of the system and is usually described as the residual vector which simply
means the left-over of the solution after approximations. In procedures of iterative
methods such as Gauss-Seidel, Jacobi, Successive Over-relaxation (SOR) and so on,
each computation component to the solution vector has an associated residual vector to
it (Vatti et al., 2015).

Suppose A is an invertible matrix, the refinement of iterative method is mainly
concerned with generating better estimations successively for obtaining solutions to
linear systems Az = b. For the solution z = A~b, suppose there is an invertible

matrix Y such that

z=Yb ~ A~1b, where the application of Y is cheaper compared to application of
solving the system matrix A. This estimate inverse Y can come from either any of the
direct methods or from carrying out few steps of a particular stationary iterative
methods used in solving Az = b. Now the question is, is there a possibility of

improving the accuracy of the estimate solutions that is obtained from any of the
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stationary iterative methods for a system of linear equations, Az = b? The basic idea
associated with this method is to examine the iteration
z©® =yb (2.44)
z*+D = 7200 4 y(h — Az1) (2.45)
And if z®+D converges, then it means that the limit must satisfy the expression:
z=z+Y(b—Az) (2.46)
Where r =b — A is the residual vector, likewise if convergence of the method is
attained, it converges to the true solution of the linear system. Also, the refinement of

iterative method z®+9 = 2z +y(b — Az®) produces iterates in the form
n
2™ = YZ(I _AV)K, n>0 (2.47)
k=0

And the method converges to the real solution of Az = b aslongas ||I — AY|| < 1 that
is to say if Y is sufficiently close to inverse of A. A method that utilizes this postulation
is referred to as iterative refinement or iterative enhancement, consisting of carrying out
iterations on the linear system having the residual vector at the right hand side, for
successive estimations until accuracy of the results are satisfied. Iterative refinement is
seen as an iterative technique which is used in improving the estimate solution z to the
linear system Az = b, (Burden and Faires, 2011)

Refinement of iterative methods was introduced by in fifteenth century to enhance the
accuracy of numerical estimations to systems of linear equations of the form Az = b.
Once an estimation to the solution Zz, has been made with any of the iterative methods
like methods of AOR, Jacobi, SOR and Gauss-Seidel, then the following steps needs to
be carried out to achieve the refinement of the specific method;

1. Commence with an initial estimate z(®) = (zio),zéo),zéo), ---,z,(lo))
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2. Substitute the estimate z(®) into the desired iterative method z*+V = jz(®¥) 4 £,

3. Insert the result of 2 into the refinement formula and

4. Formulate the update using z*+D = z¢-+D 4 y(p — Az(K+D)

5. Return to step 2 if convergence is not achieved.
Then one checks if the solution that has been obtained is correct to the desire degree of
accuracy, if so, then the iteration is stopped and if not, then the computations continues
until the desired degree of accuracy is achieved. An important objective of the
refinement of iterative methods is to produce sequence of estimations which will make
the residual vector converge very quickly to zero, thereby enhancing the convergence
rate of iterative methods. The iterations are usually terminated whenever norm of the

residue ||7*|| = ||b — Az¥|| becomes sufficiently small, (Guan and Chandio, 2017).

It is in the light of the above that some researchers decided to research into the
refinement of the various iterative methods in order to accelerate the convergence rate
of the specified iterative method for solving linear systems. Jacobi method remains one

of the iterative methods with fewer calculations and low convergence.

In an attempt to enhance the convergence rate of the Jacobi method, Dafchahi (2008)
modified the Jacobi method and developed a refinement of Jacobi (RJ) method.
Convergence of the method was investigated and it was proved that the refinement of
Jacobi method is convergent for a strictly diagonal dominant matrix and a consistently
ordered matrix. The RJ method is more efficient when compared with methods of
Jacobi and Gauss-Seidel and it is as fast as the SOR method. Also, the RJ method seems
easier when comparing with method of SOR since finding optimal parameter is not

required during iteration process.
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Vatti and Gonfa (2011) improved on the generalized Jacobi method by Salkuyeh (2007)
and developed Refinement of generalized Jacobi (RGJ) method. The convergence of the
method for strictly diagonal dominant and M -matrices was discussed. Also, it was
confirmed that the RGJ method exhibits faster convergence in comparison with
generalized Jacobi method and this gives rise to the conclusion of their study that the
refinement of generalized Jacobi is superior to the generalized Jacobi method and

should be used in place of generalized Jacobi when solving linear system.

Vatti and Tesfaye (2011) developed refinement of Gauss-Seidel (RGS) iterative method
in order to enhance the convergence rate of Gauss-Seidel iterative method. They
discussed the convergence of the method for strictly diagonally dominant matrix and
positive definite matrix. It was proven that RGS method converges twice as fast as the
GS iterative method when compared with Gauss-Seidel method, thereby confirms that

the refinement of Gauss-Seidel method is superior to Gauss-Seidel method.

Kyurkhiev and Iliev (2013) made some improvements on the SOR and SSOR schemes
and proposed the methods called Refinement of Successive Over- Relaxation (RSOR)
and Refinement of Symmetric Successive Over-Relaxation (RSSOR) methods based on
the reverse of Gauss-Seidel method. The methods are convergent for strictly diagonally
dominant and M — matrices and the two methods yield reasonable improvements in

convergence rate compared to SOR and SSOR iterative methods.

While surveying the refinement of Jacobi (RJ) method, refinement of generalized
Jacobi (RGJ) method and refinement of Gauss-Seidel (RGS) method, Laskar and
Behera (2014), discovered that the RJ method takes longer time to converge to the true
solution than RGS and RGJ methods. Based on the outcome of their findings in terms of

number of iterations, level of accuracy and performances of the three refinement
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methods, it was observed that the RGJ method is highly efficient than the RGS and RJ

iterative methods.

Genanew (2016) improved on the convergence rate of the generalized Gauss-Seidel
(GGS) method and developed the Refinement of generalized Gauss-Seidel (RGGS)
method. He observed that the method is quite efficient than SOR and Refinement of

generalized Jacobi methods.

Vatti et al. (2018) refined the AOR method in order to speed up its convergence rate
and proposed a two-parameterized method called Refinement of Accelerated Over-
Relaxation (RAOR) method. The residual vector of the AOR method was obtained and
refined to achieve the RAOR method. The matrix splitting A =1—L — U with the
formula of the AOR method z**D =[] —rL]7[(1 — w)] + (w — 1)L + wU]z® +
[I —rL] 'wb , were utilized to formulate the RAOR iterative method, which results
into the form;
Z0+D = ([I = rL] 7 [(1 — )] + (0w — 1)L + 0U])2wz®

+(I+ o[l =L (1 = ) + (w—7)L + wUD[I = 7rL]"*h  (2.55)
They discussed and investigated the convergence of the method for irreducible weak
diagonally dominant and consistently ordered matrices. The RAOR method was
compared with AOR method and it shows that the convergence rate of the RAOR

method is faster than the AOR method.

Muleta and Gofe (2018) in the quest to accelerate the convergence rate of the
generalized Accelerated Over-relaxation method, developed the refinement of
generalized Accelerated Over-relaxation (RGAOR) method. Convergence analysis of
the RGAOR method for M —matrix and strictly diagonally dominant matrix were

studied. In comparison with the generalized AOR method, the refinement of the
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generalized Accelerated Over-relaxation method converges to the true solution quicker
than the generalized AOR method. Also, they arrived at a conclusion that the error of
the refinement of generalization of AOR method at any predefined error of tolerance is

lesser when compared to other methods examined in their study.

Tesfaye et al. (2019), developed the second refinement of Jacobi (SRJ) method aimed at
speeding up the convergence rate of the Refinement of Jacobi method. Convergence of
the SRJ method for M —matrix, strictly diagonally dominant matrix and symmetric
positive definite matrix was investigated and discussed extensively. The second
refinement of Jacobi method minimized the number of iterations by 1/3 (one third) of
Jacobi and 2/3 (two-third) of refined Jacobi methods and thus proves that the SRJ
method converges faster than refined Jacobi and Jacobi methods.

Recently, Tesfaye et al. (2020) proposed a method called second Refinement of Gauss-
Seidel (SRGS) method and proves that the method is more efficient than Refinement of

Gauss-Seidel (RGS) method.

Assefa and Teklehaymanot (2021) carried out a study to increase the convergence speed
of the Refinement of Accelerated Over Relaxation (RAOR) Method. They introduced
the second Refinement of Accelerated Over Relaxation (SRAOR) method and
minimized the spectral radius of the RAOR iteration matrix. The two-parameter
SRAOR method was equally refined to the third, fourth up to the mt"* refinement
versions of the Accelerated iterative methods. Numerical findings indicates that the
second Refinement of Accelerated Over Relaxation method and other higher refinement

versions of Accelerated iterative methods surpasses the Refined AOR method.

2.8  Application of Stationary lterative Methods
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Linear systems play a vital role in several applications. Although, most of the
applications make use of fuzzy numbers instead of crisp numbers for precision reason.
This necessitate the need for numerical techniques that would treat and solve fuzzy

linear systems appropriately (Kargar et al., 2014).

Gebregiorgis and Gofe (2018) employed the splitting technique of an M — matrix and
embedding procedure with refinement process to solve some fuzzy linear systems
through the use of Refinement of Generalized Jacobi (RGJ) and Refinement of
Generalized Gauss-Seidel (RGGS) iterative methods. In this study, we apply the newly

developed numerical iterative methods to solve a pair of fuzzy linear equations.

Many scientists and engineers are usually interested in solving practical life problems or
realistic problems, where such problems are often discretized into linear systems and
then solved using iterative methods. Mayooran and Elliot (2016) applied the SOR
iterative method in solving heat transfer problem on a flat plate with a steady boundary
temperature. This study examined the performance of the newly developed EAOR and
REAOR iterative methods for a real life problem by solving the heat transfer problem.
CHAPTER THREE
3.0 MATERIALS AND METHOD
3.1  Derivation of the Proposed Method
Considering a numerical solution of the linear system in the form
Az =b (3.1)

Expressed in the matrix form;

/ aii ai» a1(m-1) A1m

az1 az2 az2(m-1) Aam

: : . . : : \| : _{ :
ka(n—m Q-2 " Au-1)(m-1) a(n—l)m/ Zm-1 kb -1

an1 Qan2 oot Anim-1) Anm

(3.2)
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Such that

aiq aip A1(m-1) A1m Zq
azi azz az(m-1) Aom / Zo \
: : : : R
A= SRR s 2| z=1 : |
\a(n—l)l Amm-12 " Am-1)(m-1) Yn-1)m Zm—l/
an1 An2 An(m-1) Anm Zm

( :

bz\

b= | (3.3)
b,
\b;/

where A is a non-singular m x m matrix having a unique solution expressed in the
form;
z=A"1h (3.4)

If A has a non-vanishing diagonal elements, then a usual splitting of A is obtained thus:

Figure 3.1: Usual Splitting of Matrix A

A=D-1L,-U, (3.5)

Where the components of A are

a; 0 0 0 0 0
0 ay, 0 0 0 0
0 0 =~ 0 0 0

D=19 o0 o 0 0 (3.6)
0 0 0 O A(n-1)(m-1) 0
0 0 0 0 0 .
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0 0 0 0 0 0
/am 0 o0 0 0 ﬂ
| : 0 0 0 0|
“La=| P 0 0 0] 3.7)
An-1)1 Am-12 °° Am-1)(m-2) 0 0/
ani an2 an(m—l) 0
0 a1(m-1) A1m
0 . Ao
: | (3.8)

o
Q
OOOOOE
o O

OOOOUN?

0 a(n—l)m/
0 0 0

With the splitting in equation (3.5), equation (3.1) can be written as (D — L, — Uy)z =
b. A regular splitting of the square matrix A into

A=M-N (3.9)
is required for the iterative solution of equation (3.1), such that substituting A = M — N

into Az = b, leads to the following expressions:

(M—N)z=0b
Mz=Nz+b
Mz®+) = Nz(O 4 p (3.10)

7D = M-1INz( 4 M-1p
Z(k+1) :]Z(k) + p

where | = M™IN is the iteration matrix and p = M~b is the corresponding column
vector of the iterative method. This study seeks to derive a stationary linear iterative
method in the same form as z**Y = M~1Nz® + M~1p, where the choices for
M and N are given as

M =D+ f,L
BiD + 2Ly 3.11)
N = 3D + 4Ly + BsUy
Next, we apply a general linear stationary iterative method whose matrix coefficients
are linear functions of the components of matrix A and the new iterate is at most a lower

triangular matrix. This proposed method is in the form;

(,BlD + ,BZLA )Z(k+1) = (B3D + B4LA + ,BSUA)Z(k) + :B6b' k=01,2,--, (312)
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where B;,i = 1,2,---,6 are constants to be determined (8; # 0) and z(® an arbitrary

initial estimation to the solution z in (3.4). Equation (3.12) is divided by f3; to obtain

B2 (k+1) _ (B3 Ba Bs (k) 4 Be
(D+BL)Z (ﬁD+ﬁ1LA+ﬁUA)Z +5eb (3.13)
Let ﬁ =B, i= -+ 6 and % = 1, then the above equation becomes
1
(D + B5L)z*+D = (BLD + Baly + BiUDz™ + b k=0,1,2, -, (3.14)

Also, since z**D and z® are the iteration counts, then equation (3.14) can be written
as
[D + BoLa — B3D — BaLly — BsUalz = Beb (3.15)
And sufficient conditions for the method (3.14) to be consistent with Az = b are:
[(1 = B3)D + (Bz — Bi)La — PsUal z = Beb (3.16)
Substituting the value of z = A~1b into (3.16), results into
[(1 = B)D + (B — Ba)La — BsUalA™b = Bgb (3.17)
Multiply through by A to obtain
(1= P3)D + (B3 — Pa)La — PsUa = BsA, B #0 (3.18)

Or equivalently

1— I I
(B e
In view of equation (3.5), the first relationship of equation (3.18) gives
ﬁ?; =1
:86 yields 1—pB3 =P
Bi=Bi__, —  Bi-Bi=-PB (3.20)
:86 _ﬁé = _ﬁé
__35 =1

Bs
At this point, we have three linear equations with five variables (unknowns). This is a

consistent linear system that has infinitely many solutions since the number of variables
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exceeds the number of equations. The degree of freedom of equation (3.20) is 2 and in

this case, we observe that there are two free variables (53 and fS¢) shown below

B =1-5;
Bi = Bi + B (3:21)
Bs = Bs

Therefore, the solution to the linear system in (3.20) takes the form;
The choice we make for the two free variables are;

Br=—W+r)=—v-—r

Be = w

(3.22b) is substituted into our solution (3.22a) to obtain

(3.22b)

By B, Ba B Be) =(—v—-1,1—w,w—v—71,0,0) (3.22¢)
Thus, it gives the following three-parameter solution of the method:
By =—-v—r, Bi=1-w, Pi=w—v-—r, Bs = w, Be=w (3.23)
where r, v and w # 0 are any 3 fixed parameters, consequently, substituting (3.23)
into (3.11) results into

M=D-@w+r)l,
N=Q-w)D+[w—-v—r]Ly +wU,

(3.24)
And (3.23) into (3.14) gives the proposed iterative method
[D— (W +1r)Ly)z*Y =[1-w)D+[w— W +71)]Ly + wUs]z% + wb  (3.25)
After multiplying the above equation by D~! and setting L=D"1L,, U=
D~'U,, I=D7'D and b = D7'b, itresults into
[[ — (w+7r)L]z*D = [1 - )]+ [w— @+ 1)L + wU]z® + wb (3.26)
Or

26D = [[ — W+ )L (1 - o) + [w — v + )L + wU]z®

+[I — (v +7r)L] *wh (3.27)
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Method (3.25) or its equivalent (3.27) is now the proposed Extended Parameterized
Accelerated Over Relaxation (EAOR) iterative method. The new parameter v will be
called extended acceleration parameter, r the acceleration parameter and w the
relaxation parameter. The proposed EAOR method can also be written in a general
linear stationary method as
28D =, 2® + [ - (v+1)L] *wb (3.28)
The notation E,,, is utilized to represent the new Extended Parameterized
Accelerated Over Relaxation (EAOR) iteration matrix which is represented as
Evor=[1—@W+r)L] ' [QA-w)l+[w—-@+n)]L+ wU] (3.29)
The spectral radius of the proposed Extended Accelerated Over-Relaxation iterative
scheme (EAOR) is the largest eigenvalue of its iteration matrix denoted as p(Ev,W). It
is observed that for certain values of the parameters v, r and w, the proposed EAOR
method reduces to well-known iteration methods, which is shown in the following
analysis.
Ey,0.1- method is the Jacobi method:
Considering the linear system Az = b, where the coefficient A matrix is decomposed
into A =D — L — U, then the Jacobi method in matrix form is given by
(D—-L-Uz=b
Dz®+D) = (L + U)z® + b (3.30)
z&+D) = D-1(L + U)zlkl + D-1p
The proposed EAOR method E,, ., is given by
zED =D — (w+r)L] (1 - w)D + [0 — (v + 1)L + 0U]z®
+[D — (w+1r)L] *wb (3.31)
Substituting the values of v =0, r =0 and w =1 for Ey,, into (3.31), the EAOR

reduces to the Jacobi method as:

z&*D =[D—(0+0)L] (1 - 1D+ (1 —-0—-0)L + 1.U]z®
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+[D — (0 + 0)L]"*1.b (3.32)

zk* = D=Y(L+ U)]z+ D 'b (3.33)

The E,,, in (3.31) with the reduced method of E;,; in equation (3.33)
yields z#*D = D=L + U]z® + D='b which is equivalent to the Jacobi method in

equation (3.37).

Eo,11- method is the Gauss-Seidel method:
The matrix form of the Gauss-Seidel method is as follows:
(D—L-U)z=b
Dzk+D) =Lz + Uz + b (3.34)
(D — L)zk+) = yzKk) + p
x®k+D) = [D — L]-'U + [D — L]~1b
Substituting the values of v =0, r =1 and w =1 for E,,; in equation (3.31), the
proposed EAOR reduces to the Gauss-Seidel method as follows:
zED =[D—(0+ DL [A-DI+(1-0-1L +1.U]z®
+[D—(0+ L] '1.b (3.35)
zk*D = [D-L]"'U+[D — L] 'b (3.36)
E,,. in equation (3.31) with the reduced method E,,, in (3.35) yields z(**+b =

[D—L]7'Uz™® + [D — L]"*b which is equivalent to the Gauss-Seidel method in

(3.34).

Eo,,» method is the SOR method:
The correction or displacement vector for the Gauss-Seidel iteration is represented by

the second equation in equation (3.34)
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Dz*+D) = [7(k+D) L 7z 4+ b
z&D =D YL+ Uz® +b) (3.37)
z2(k+1) = D=1(Lz(k+D) 4 yz() 4+ p)

But the actual components of z**+1 of SOR method is expressed as:
z®+D = 7200 — (zR+D — ZIK) = (1 — @)z — w(2()) (3.38)
Combining the last equation in (3.37) with (3.38) to a single equation gives
z"ED = (1 - w)z® + wD Y (Lz**D + Uz® +b) (3.39)
The above equation is multiplied by D to obtain
Dz* D = D(1 — w)z® + w(Lz**D + Uz® + p) (3.40)
Hence the SOR iterative method is given as:

z**D = (D — wL)™'[(1 — w)D + wU]z® + (D — wL)*wb (3.41)
Substituting the values of v=0, r=w and w =w for E,,, into (3.31), the
proposed EAOR reduces to the SOR iterative method as:

z® D) = [D - (04 w)L] ' [(1 — w)D + (w — 0 — W)L + wU]z®
+[D — (0 + w)L] *wb (3.42)
z®*tD = [D — wL] ™ [(1 — w)D + U)z® + w[D — wL]™'b (3.43)
Method (3.31) with the reduced method (3.50), yields z®**D =[D — wL]™[(1 -

w)D + Ulz¥ + w[D — wL]~*b which is equivalent to the SOR method in (3.43).

Eor.o — method is the AOR method: The Accelerated Over-relaxation iteration method
IS given as:

z* D = [D —rL]7'[(1 — @)D + (w — )L + wU]z® + [D — rL] *wb (3.44)
Substituting the values of v=0, r=r and w =w for E,,, into (3.31) of the
proposed EAOR iterative method, reduces to the AOR method as:

z&*D = [D - (0+ 1)L (1 = w)D + (w—0—1)L + wU]z®
+[D — (0 +7r)L] twb (3.45)
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z* D = [D —rL] (1 - w)D + (w — 1)L + wU]z® + [D —rL]*wb (3.46)
The substitution of the specified values for E,,., results into z*+D =[D —
rL]71[(1 — w)D + (w — 1)L + wU]z® + [D — rL]~*wb, which is equivalent to the
AOR method in equation (3.44).
Obviously, the iteration matrix of the proposed EAOR method is similar to that of the
AOR method; based on this fact, the EAOR method may conserve all advantages of the
AOR method. Also, the criteria for obtaining the approximate solutions of the desired
linear system is z**+1 = z(®) which will be called a convergent solution. More so,
computation of the error will be obtained through application of the formula E = z —

z® where z is the true solution.

3.2 Convergence Theorems of the Proposed EAOR Method
Given that an iterative method converges whenever the spectral radius is less than one,
hence convergence of the new EAOR method is established by showing that the spectral
radius of the proposed EAOR method is less than one, that is p(E, ;) < 1. The study
shall employ the use of the following lemmas to establish the convergence of the EAOR
method for certain class of matrices:
Lemma 3.1 (Yun, 2011):
Let A > 0 be an irreducible matrix. Then
i. A hasa positive real eigenvalue equal to its spectral radius.
ii.  To the spectral radius of A, p(A), there corresponds an eigenvector z > 0.
iii.  p(A) increases when any entry of A increases.

iv.  p(A) isconsidered a simple eigenvalue of A.

Lemma 3.2 (Aijuan, 2011):
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Let A= [a;]and C = [c;], be two matrices such that A < C, where ¢;; < 0 for all
i # j,thenif A isan M —matrix so also is matrix C.
Lemma 3.3 (Wang and Song, 2009):
Suppose matrix A is an M —matrix and the splitting A = M — N is a weak regular or

regular splitting of 4, then p(M~IN) < 1.

3.2.1 Convergence of L —matrix
Suppose matrix A is an L —matrix, which implies a matrix whose element (aij)

satisfies the relationships below

aii>0, i=1,2,"',N
a;; <0, i#] forall i,j=1,2,---,N

(3.46)
Then the below theorem with regards to the proposed EAOR iterative method is
proposed.
Theorem 3.1: If matrix A is an L —matrix, then for all v, and w such that 0 < v +
r<w<1and w# 0, the new EAOR method (E,, ) converges if and only if the
Jacobi method (Ejo1) converges.
Let;
The given matrix A be an L —matrix, D™'A=1—-U — L, suchthat U >0 and L >
0.
The spectral radius of the Jacobi method (L + U) be p(Egp,1).
The EAOR iteration matrix E,,, =[—@W+7r)L] "1 -w) +[w—- W+ 1)L+

wU] and the spectral radius of the EAOR iteration matrix be p(E, ,4,).

A be an eigenvalue of p(E,..,)

Proof:

Assume that 1 = p(E,r ) = 1. Due to our assumption, we can easily obtain
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(1-w)+(w—-v—-1r)L+wU]=>0 (3.47)
The proposed EAOR matrices are examined to check if they are nonnegative. The
E, . becomes an identity matrix (I) when v+r =0, w =0 and positive with
v+r=1,w=1Butwhenv+r<0, w<Oandv+r >1, w> 1, negative values
appears in the matrix. Hence, the range of values which ensures that the EAOR matrix
is non-negative is within 0 <v+r <w <1. Inthe E,,, matrix, for 0 <v+r <
w<l 1-wl+[w—(wW+r)]L+wU=0 since U=>0 and L =>0. However,
w # 0 is considered so that U does not vanish in the matrix, therefore, range of values
to ensure non-negativity of E, ., matrix are 0 <v+r<w <1land w # 0.
Likewise, binomial expansion of [I — (v +r)L]™! gives:

-+l '=1+@W+r)L+ (w+7r)2L2+ -+ @W+r)VIIN"1 >0 (3.47)
Given that L is nonnegative and (v + r) > 0 hence, matrix [l — (v + r)L] 1 is
nonnegative. Next is to check if matrix [I — (v + r)L] 71 — w)I + [w —

(v+1r)]L + wU | is nonnegative, we obtain
Epro=U—-@w+nLI ' [QA-)+(w-v—1)L+wU]
=I+W+nr)L+@W+r)L*+ -+ @Ww+r)V N1
X[1-—w)+ (w—-v—71)L+wU ]
=1-w)I+@W+rA-w)Ll+ @+7r)?(1-w)l?+(w—-v—T1)L
+ W+ (w—-v-r)L+@W+r)(w—-v—1)L3+ U
+wW+71)LU + w(v +1)%L%U + -
=1-w)l+wW+r)(1—-—w)L+wU+P (3.48)
where P represents non-negative terms. And finally,

Epro=U—-vi—-rLl]'[QA-)+[w—- W+ L+wU] =0 (3.49)
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Since E, ., isanon-negative matrix as shown above, it implies that A is an eigenvalue

of E,, .. If z= 0 isthe corresponding eigenvector to A, then we have Eyrwz= Az
which yields the following equations below;

Eyrwz = Az
[[—@W+rL A=) +[w—- W+l +wU]z= Az
[(1-)+[w—W+NL+wU]z=A - @Ww+71)L]z
[w—vL =1L+ ArL + vl + wU |z = [l + Al — 1]z (3.50)
[()ir+iv+w—v—r)L+wU]Z= ()1+a)—1)lz

w+r(/1—1)+v(/1—1)L+UIZ:</1+cu—1>lz
w w

At+w-1

The last equation in (3.50) indicates that is an eigenvalue of

orr@-D@-1) ) 4 7 by definition of an eigenvalue (Az = Az). If A>1 is an

eigenvalue, then by definition
EyrwZ— lz=20 = Eyrwz = Az = 1z < Eyr oz (3.51)

Which gives 4 < p(E,, ., ) and consequently

/'l+Z—1 < p<w+r(l—1a))+v(/1—1)L+U> (352)

> 1 sothat

It is easily seen that w”(l_la))”u_l)

Osw+r(/1—1)+v(l—1)L

+U

W
< a)+r(/1—1)+v(/1—1)L+w+r(l—1)+v(l—1)U

w W

) ) (3.53)
Sa)+r()L—1a))+v(/1—1)(L_I_U)
a)+r()1—1)+v(/1—1)

= w Eo,0,1

where Ej, is the Jacobi matrix and combining equations (3.52) with (3.53), yields
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i +w-1<w+ T'(A — 1) + 17(). - 1)p(E0,0,1)

ltw-1 3.54
orra- o) = (o) 559
A4+w—-1
p(Foon) = Sy o= D)
bbut
Atow—1 L+ -A+(A-1)
w+r(i—1)+v(i—1) _w+r()1—1)+v()1—1)
such that
I+w-1 B (r+v)(1—)1)+()1—1)
w+r(/i—1)+v(/i—1)_ w+tr(A-1)+v(A-1)

and this implies

(r+v)(1—)1)+()1—1)>1
w+tr(A-1)+v(A-1)

Then we can deduce that

l+w-1 (r+v)(1—)1)+(/i—1)
p(Ego1) = : . = . . >1
w+r(A-1)+v(A-1) w+r(A-1)+v(1-1)
(Eoo1) 2 o1 >1 (3.55)
PR = G- +v(A-1) — |
and thus
p(Eop1) =1 (3.56)

The above analysis shows that if 4 > 1, then the spectral radius of the Jacobi scheme is
equally greater than or equal to 1. Similarly, suppose p(EO,O,I) < 1, then

At+w-—1
wt+tr(A-1)+v(A-1)

p(Eoo,1) < (3.57)

but

A+tw-1 r(A-1)+v(A-1)+(1-41)
T D) =) e+ +o(-1)
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such that

itw—1 (=) +v(i-1)+(1-4)
w+r()i—1)+v()i—1)_ B w+r()1—1)+v()1—1)

and this implies

1_r(/'1—1)+v(,i—1)+(1—/'1)
w+r()i—1)+v()1—1)

Then we can deduce that

(Eans) < A+w-1 o A=) +v(A-1)+(-4)
P00 S G- +v(i-1) w+r(A-1)+v(i-1)
(E )< I+w-1 <1 3.55
p 0,0,1 w+r(/i—1)+v(/i—1) ( . )
Hence

p(Egp1) <1 (3.58)
which implies 1 < 1, so that if p(Eqq,) < 1 then the proposed EAOR scheme equally
converges {p(E, ) < 1} since the spectral radius of the Jacobi matrix { p(Eg 1)} is

incorporated inside the proposed EAOR iterative method and this completes the proof.

3.2.2 Convergence of irreducible matrix with weak diagonal dominance

If a matrix A = (aij) is irreducible and weakly diagonally dominant, then the matrix
will be non-singular with non-vanishing diagonal elements and thus the following
theorem is proposed,;

Theorem 3.2: If A is an irreducible matrix with weak diagonal dominance and 0 < v +
r<1land 0 < w <1, then the proposed EAOR iterative method converges to the true
solution for any initial estimation z(%,

Proof:

The theorem can be proved by contradiction. Let A be an irreducible matrix with
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lag| = X1 jxilay;|. From lemma 3.1, it is assumed that there exists an eigenvalue A of
the EAOR iteration matrix E,, , ,, such that

det(Eyr —A) =0
det((U— (w+ LA -w)+[w—W+7)]L+ U] —A)=0
det[ —-(v+r)L] tdetfl —w - DI+ r+v+w—-v—1r)L+wU]=0
detll - (v+ L A +wo-DI— (w+v@A -1 +7r(A-1))L—wU]| =0
detfl+w—-DI-[w+v(A—-1)+r(A—1]L — wU]
det[l — (v +r)L]

(3.59)

But det[(I — (v+r)L] is a determinant of a unit lower triangular matrix which is
equals to one, hence the eigenvalue of the proposed EAOR iterative method are the A
roots of

detfl+w—-DI-[w+v(A-1)+r(A—-1D]L—-wU] =0 (3.60)
and it is transformed into the expression;

w+r(,i—1)+v()1—1)L w
Atw-—-1 I+w-1

(14w —1)det <1 — U) =0  (3.61)

From the assumption that |4| > 1, implying that 1+ w — 1 # 0, hence

det(R) = 0 (3.62)
where R is given as
w+r(A-1)+v(1-1
pog 0tr@-D+v@-1), e (3.63)
A+w-—-1 A+w-—1

The modulus of the coefficients of L and U in (3.63) are less than one. To prove this,

it is sufficient and necessary to prove that

i+w-1=z|w+r(A-1)+v(A1-1)| and i+w-1= ol (3.64)

Let A1 =qe'?, 1= qelle =q-le ¥ with e~ = cosf — 1sinh, then 1 =

q [cosO — i sinf] where g and @ are real with 0 < g < 1, then the first inequality

in (3.64) is analyzed as follows;
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|i+a)—1|2|w+r(i—1)+v(i—1)|
lgre® —1+w|=|o+ (e )r—r+ (@t e v -1
lge® —1+w|=|o+ (@Tte)r—r+ (@ e v —v

cosf _[sin@ T [r . v v
+w—1-1i [—” > |a) + —cosf —i [—sm@] —1r+—cosf —i [—sm@] — v|
q q q q q
1 14+(3.65
cosf Z sind\?)? T v zZ r o v o \?]? (3:65)
( +w—1) +<—> > (—cos@+—cos@+w—r—v) +(—sm9 +—sm9>
q q q q q q
i+w-1"=]o+r(i-1)+v(i-1)
cos@ Z rsing\? (v+r1) 2 w+r) | 2
=<—+w—1) +(—> —( 0059+w—r—v> +< smG) =0
q q q q J
which is simplified to give
1 —2qcos8 + 2qwcosd — 2q*w + q*> — r? — v? — 2vqwcosh
—2rqwcosf — 2vr + 2v%qcosf + 4vrqcosd + 2vq*w
+2r q*w + 2qricosd — 2vrq® —v?iq? — q*r? > 0 (3.66)
Rearrange to get
1—v2=7r2=2ur)+ (A —v?—71%2-2vr)q*> — (1 —v? —r? — 2vr)2qcosh
+(1—v—71)2qwcosd — (1 —v —1)2q*°w =0 (3.67)
=[1-@W+r)?]+[1—-w+7r)?q? —[1- (v +71)?]2qcosb
+[1 — (v + r)]2qwcos® —[1— (v +71)]2¢*’w =0 (3.68)

which holds for v+ r = 1; factorizing [1 — (v + )] in the above equation {note:
[1-@w+r)?]=[1-w+n]1+ @+1r)]}gives
[I-@+NI1+@+n]+[1-@w+n]1+ +1)]q?
—[1-=(w+nr][1+ (v+71)]2gcosb + [1 — (v +1)]2qwcosO
—[1-w+n]2¢*w] =0 (3.69)
[1-w+N][A+v+r)+ (@A +v+71)g%— (1 +v+71)2qc0s0 + 2qwcosb
- 2q*°w] =0 (3.70)

If (1—v—r)=0,thenitisequivalentto

A+v+r)+Q+v+1g?—-[1+v+71)— w]2qcosd —2q*w =0 (3.71)
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Since the expression in the brackets above is nonnegative, (3.71) holds for all 6 if and
only if it holds for cos6 = 1, where for 6 = 2nm; n = 0,1,2, ... also due to the fact that
[1+v+71)—w]2qgcosd < [(1+ v+ 1r)— w], hence (3.71) is equivalent to
A+v+r)+ (1A +v+1)q%* — w2q—2¢*°w =0
1+v+r)[1+q?—2q]+2qw(1—q) =0 (3.72)
1+v+r(1—-—q)?+2qw(l—q) =0
Q-1 +v+r)(1-q)]+2qw =0
which is true. Similarly, the second inequality |)1 +w-— 1| > |w| is analyzed as

follows;

lgre -1+ w|> |o]

|c059+w—1—i[%]| = |o] (3.73)
1
|/i+w—1|2|a)|: [(%4'0)—1)24_(#)2 2 Z[wz]%

If |A+ o —1| = |w|, then it implies that |1 + w — 1| = |w|?, then

|/i+au—1|2 > |w|? = [(60;9+w—1)2+(%)zl—w2 >0

1+ 2wqcosf — 2qcosd — 2q*w + g% = 0
1+ q?—-2q(1 — w)cosd —2wq? =0

(3.74)

which for same reason, must be satisfied for cos 8 = 1, for 8 = 2nm;n = 0,1,2, ... and
due to the fact that 2q(1 — w)cosf < 2q(1 — w), then one arrives at
1+q%2—2q—2wq—2wq? =0
(1-9)*+2wq(1—q) =20 (3.75)
1-q@1-g+2wq] =0

which holds for g = 1, thus the above analysis shows that

w+rd-D+v(A-1)
Il+w-1

)
<1 and |—| <1 (3.76)
A+w-—1

Given that A is irreducible and it has a weak diagonal dominance, it therefore means
that DA =1 — U — L equally contains the same properties too. Similarly, it is also

true for the matrix R considering that 1 is greater than the modulus of the coefficients
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of L and U and that they are different from zero. Hence it implies that det (R) # 0
and thereby R is nonsingular, which contradicts the equation [det (R) = 0] and
consequently, det(E,,.,, —Al) = 0. This implies that |A| > 1 does not hold which
indicates that|A| < 1 and thereby p(E,,,.,,) < 1 which indicates that the EAOR method

is convergent.

3.2.3 Convergence of M —matrix
Theorem 3.3: If matrix A isan M —matrixwith 0 <v+r <w < 1and w # 0, then
the Extended Parameterized Accelerated Over-Relaxation method converges to the true
solution z = A~1b of the system Az = b or simply p(E,, ) < 1.
Proof:
Given that a square matrix A is an M matrix, let A be decomposed into A =D —
L, — Uy with the regular splitting of A = M — N. In the EAOR iterative method, we
have the splitting A = M — N with the following choices of
M= %(D —vl,—71L,)), N= 5((1 — @)D + (w—v =)Ly + wlU,) (3.77)

Such that

WA=M-N=[D—-—wW+r)ly] - [(1—-—w)D+(w—-v—r)L, + wUy] (3.78)
Obviously, it is observed that A < M and as such, by implication of lemma 3.2, it
suffices to say that matrix M is an M matrix too. Consequently, one obtains M~! >
0.
Similarly, letting D — (v + r)L, to be a splitting of the matrix M, it is easily seen that
D is a matrix that is nonsingular (det D # 0), implying that D is an M matrix and thus
satisfy the condition D1 > 0. Also, since L, = 0, then it means that (v +7)L, = 0
for v + r = 0 which signifies that the matrix M = D — (v + r)L, is considered an M —

splitting. Now, it is observed that (v + r)L, is a strict lower triangular matrix, with the
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fact that eigenvalues of a strict lower triangular matrices are the diagonal entries, then
by implication, the eigenvalues of (v + r)L, are on the main diagonals in which they
are all zeros.
Therefore, its spectral radius (largest moduli of its eigenvalues), p((v + r)LA) =0 and
since zero is less than one, then it becomes p((v + r)LA) < 1. Considering the fact that
p(v+7r)Ly) <1, M=D—(v+r)L, is an M — splitting and as such p((v +
r)D‘lLA) < 1. Lemma 3.3 is then employed to establish the fact that M is an M —
matrix and by definition of an M — matrix, it follows that
MT=MD-+v)L) >0 (3.79)
On the contrary, the matrix N=[1—-w)D+[w— W+ 1)L, + wU,] , with
L,=>0 and U, >0 and considering the following inequalities; (1 —w) =
0, [w—(w+r)] =0, w=0, givestherangeof values0 < v+r<w<1 w#0
for the matrix N to be nonnegative, so we have
N=[1-w)D+[w—-Ww+nr)]ly+wl,]=0 3.80)
Then the matrix M~1N is analyzed as follows;
MTIN=[D-— W+ L] ' x[(1-—w)D+[w—W+1)]Ls+wU,]
=D+ @)L+ @+ L2+ @ +7r)3LS  + -+ w+ )V LN
X[(1-—w)D+[w—W+7r)]|L, + wUy] (3.81)

Which gives
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Q=)D +A—-w)W+r)Ly+ (1 —w)(v+1)2L,> + -
+ Q-+ L Y (w—v =1L+ W+ r)(w—v—1)L,"
+W+r2(w—-v—rL> 2+ W+r)(w—v—r)L* +
+ W+ Y w—-v-rL" + wUs + 0@ + 1)L, U,
+ w4+ 1r)2L 20, + w0 +1r)3L3U, + -+ o+ )V 1L,V

>0 (3.82)

Multiply through equation (3.82) by D~?! and after letting DL, =L, =D~'D and
DU, = U, it becomes
A-)I+(1-w)W+rL+ (1 —-—w)W+r)2L2+-+ (1 —-w)(v+r)V1N
+t(w—v—-7r)L+@W+r)(w—-v—-1)L+@wW+r)(w-—v-—r)L3
+@w+r)Pw-—v-rl+--+@+r)" Y wo-v-r)" + U

>0 (3.83a)
Therefore the iteration matrix becomes

MAN= ) (U-(@+v)D)1-)I+(w—(FT+v))L+U]=0 (3.83b)

k=0
The matrix M~1N is nonnegative, therefore wA = M — N is obviously a weak regular
splitting of matrix wA. And in view of lemma 3.3, then it means p(M~IN) <1 or
equivalently

p(U=(T+v)L) A -w)l+ (w—7—v)L+wU]) <1, which completes the

proof.

3.3:  Conditions on the Coefficient Matrix for the Proposed Method
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From the convergence analysis in the previous chapter, the conditions placed on the
coefficient matrices with regards to the proposed EAOR method before convergence
can be achieved are as follows;

I.  For L — matrix, the conditionis 0 < v+r<w<1, w+# 0andv # 0.

Il.  For M — matrix, the conditions placed on it are givenas 0 < v +r < 1, and

O<w<1 v+#0and w#0.
I1l.  For Irreducible weak diagonally dominant matrix, the condition placed on it is

givenas 0 <v+r<land 0<w<1 v=+0.

3.4 Derivation of Refinement of EAOR Method
Having in mind that significant improvements of any iteration matrix will decrease the
spectral radius and enhances the rate of convergence of a stationary iterative method,
therefore, this section seeks to derive the Refinement of the proposed EAOR method so
as to accelerate the convergence rate of the EAOR iterative method. Derivation of the
Refinement method in matrix form will be described below:
Considering the linear system Az = b in m linear equations and n unknowns, where
matrix A is nonsingular. Its solution is z = A~1b and for a vector z, the residual
represented by r = r(z) of Az = b is given as;

r=b—Az (3.84)
By the usual splitting A = D — L, — Uy, in (3.5) with the EAOR regular splitting;

1 yields
Aza[M—N] — wA=M-N or N=M-wA (3.85)

Where the choices for M and N of the proposed EAOR method are represented as

M=[D—-—(w+nr)ly], N=0Q-w)D+[w—@W+r)]ly+ wlU, (3.86)
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And multiplying the linear system Az = b Dby the parameter « to obtain
w(Az) = w(b) (3.87)

Then the proposed Refinement method is derived as follows;

Az=0b
wAz = wb
[M — N]z = wb
[[D — W+l -[1—-—w)D+[w—(W+T1r)]Ls + a)UA]]Z = wb
[D—-—(w+r)lylz=[(1—-w)D+[w—(v+71)]Ly + wU,]z + wb (3.88)
[D—(Ww+71r)Ly]lz=[D— (v+71)Lylz+ w(b— Az)
z=[D—@W+r)L D - W+1)Lyz+[D— (w+71)Ly] (b — Az)
z=z+w[D— W+1r)Ly] 1 (b—Az)
The proposed EAOR Refinement formula takes the form
7D = 704D 4 D — (v + 1)Ly 7 (b — Az*HD) (3.89)

where z**+1 appearing in the right hand side, is (k + 1)** estimation of the proposed
EAOR iterative method. The EAOR method in (3.27) is inserted into (3.89) to obtain
ZKD = D — (w+ 1)L (1 — 0)D + [w — (W + 1)]L, + wU,Jz®
+[D—@W+1r)Ly *wb +[D — (v+71)Ls] twh
—[D=W+r)Ls twA
X [[D=@W+rL ] (1 —0)D + [w— v+ 7))Ly + 0U,]z®
+[[D - (v+7)Ls) b ] (3.90)
The value of wA is substituted into (3.90) to get
Z(+D = [D — (w4 1)L (1 — w)D + [w — (W + 1)Ly + wU,Jz®
+[[D— @+ 7))Ly *wb + [D — (v +1)L4] twh
—[D—@+7)Ls™
X ([D — W+l -[1—-—w)D+[w—(W+7r)]L, + wUy,]
X[[D—@+mL] A - @)D + [w— W+ 1)Ly + wU,z®
+[D— (w+7)Ly] *wb +[D— (v+71)L4] *wb]) (3.91)

204D = [D — (v + 1)L (1 — 0)D + [0 — (v + 1)]Lg + U]z ®
59



+2[D — (v + 1)Lyl 'wb — [D — (v + 1)L, x H (3.92)
where
H=(D-@+rL]—-[1-wD+[w-@+n)]Ls +wUs])
X([D=@+r)L] (A —w)D + [w— @ +71)]Ls + wU,z®
+[[D — (v+1)L,y] twb) (3.93)
Simplifying H gives
H=[D—(+r)L,]
X([D=@+1)L] (A —w)D + [w— @+ 1)Ly + wU,z®
+[D— W+l twb) = [(1—w)D + [0 — (v + 1)Ly + 0U,]
X[D—@W+r)L (A —w)D+ [w— (v +1)]Ls + 0Uy]z®
+[D—@W+1r)Ly *wb (3.94)
=[D—-@W+r)LX[D—@W+1r)L] (1= w)D+[w—W+71)]Ls + wUs]z®
+[D=@W+1r)Ly X[D—@W+1)Ls twb
—[1 - w)D + [w— (W +1)]Ls + wUy]
X[D—W+r)L] (A —w)D+[w— W+ 1)Ly + wU,]z®
—[D = @+ 7L (A = @)D + [w = (v + 1)]Ls + @Uy]
X [D— (v +1)Ly]  wb (3.95)
H=[1-w)D+[w—W+1)]Ls + 0wUs]z® + wb
—([D = @+ ML (1 = @)D + [0 = (v +1)]La + 0T, 2]
— D=+ )L A —-w)D+[w—(w+71)]Ly + wU,]wb (3.96)

Substituting (3.96) into (3.92) gives
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Z(+D = [D — (4 1)L (1 — 0)D + [w — W+ 1)Ly + 0U,Jz®
+2[D— (W+7r)Lyl *wb—[D— (W+1r)Ls]?!
X [(1=w)D +[w—W+1)]Ly + wU,;]z® + wb
—([D = (v + 1)L (A = @)D + [0 = (v + 1)Ly + 0Us])*2®
—[D— W+ L] {1 —w)D +[w— (w+71)]Ly + wUy]wb (3.97)
=[D—@W+r)L] ' [(1-w)D+[w—W+1)]Ls + wUs]z® +2[D —
W+ L] *wb—[D— W+ [1—w)D + [w— W+ 1)Ly + wU,]z® —
[D—(W+7)Ly] rwb+[D—@+1)L ] Y([D— (v + 1)L (1 — w)D +
[w— W+ 1)Ly + 0Ug2z®) + [D — W+ 1)L X ([D — (v + 1)L [(1 -
w)D + [w— (v +71r)]Ly + wU,|wb) (3.98)

Rearrange (3.98) to get
2
Z*k+D = ((D —W+nL) (A -w)D+[w— @+l + wUA)) 7z 4+

(1 + (D - @+rL) (11— w)D+[w— @+l + wUA)) (D

—(W+1r)Ly) twb (3.99)
Hence the method (3.99) shall be called Refinement of Extended Accelerated Over-
Relaxation (REAOR) method. Alternatively, the Refinement of proposed EAOR
iterative method can be derived as follows;

70D = 7D 4 D — (v + 1)L, 7 (b — Az*HD)
= z(k+1) 4 wM_l(b — Az(k”))
=7+ L WM~ 1h — M~ lwAz*+D)
= z(k+D 4 M~1wh — M~1(M — N)z(*+D
— Z(k+1) + M—lwb _ M—IMZ(k+1) + M—INZ(k+1)
— Z(k+1) + M—lwb _ Z(k+1) + M—lNZ(k+1)
= M~ 'wb + M~INzK*+D

7K+ — M~1wb + M-INZzK+D (3.100)

But z*+D = M~1NzK+D 4 M~1wb, so substituting it in (3.100) gives

61



Z*t) = M~twb + MTIN(M~INz® + M~1wb)
=M lwb+ (M IN)2z® + (M~ V)2Nwb (3.101)
= (M N)2z®) + (I + M"IN)M~*wb

Substituting the values of M and N into (3.101) to obtain
2
2040 = (D = W + ML) (A= @)D + [0 — (v + 1]Ly + 0U,)) 2® +

(1 + (D - @+rL) (1 —w)D+[w— @+l + a)UA)) (D

—Ww+nL) 'wb k=012, (3.102)

Or equivalently,
2
Z*+D = ((I —w+rLD (A - +[w- W+l + cuU)) z® +
(1 + (- @+ (A=) +[o—-@+n]L+o0U))U
— (W +7r)L) " ‘wh, k=012,-- (3.103)
By setting L =D~ 'L,, U=D"U,, I =D~'D and b = D~'b, or in a more compact
form;

z®kD = 7 4 F (k=012,) (3.104)
2
where Jrgaor = (I = (0 + L) (A = )l + [0 = W+ DL + wU)) = B2, is

called the REAOR iteration matrix and F = w(I + Ey - )[[ — (v +7)L]7h is the
corresponding vector of the refined EAOR method. Comparing methods of REAOR
and EAOR, there is a relationship between REAOR iteration matrix and EAOR iteration
matrix (3.29). If E, ., represents the iteration matrix of EAOR method and RE, , ,
denotes the iteration matrix of REAOR method, then the iteration matrix of REAOR

method is the square of the iteration matrix of EAOR method, that is to say RE,, ., =

(Ev,w,r)z. The spectral radius of the refinement of proposed Extended Accelerated
Over-relaxation (REAOR) iterative method is the largest eigenvalue of its iteration

matrix denoted as p(RE,,, ) with the relationship
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P(REy ) = [p(Ever)]’ (3.105)
It is observed that for some specific values of the parameters v, r and w, the proposed
REAOR method produces some refined iterative methods and they are shown in the
following analysis;
RE, 1 — method is the Refinement of Jacobi (RJ) method: Suppose the matrix A of the
linear system Az = b is splitted into A =D — L — U, then the Refinement of Jacobi
(RJ) method is denoted as
204D = (DL + U))*z® + (I + D-1(L + U))D~b (3.106)

With the proposed Refinement of EAOR method RE,, ., expressed as
2
Z(k+D) = ((D — W+ (A -w)D+[w— @+l + a)U)) z® +

(1+ @ - @+nL) (A - 0D + [0 - @ +1)]L+wU)) (D
—(w+r)L)twb (3.107)
Inserting values of v =10, r =0 and w = 1for RE,,, into the above equation gives

2040 = (D= (0 +0)L) (1= DD +[1 = (0 + 0)]L + 1. U))2 2® 4

(1 +(D - (0+0)L)"((1—1)D +[1—(0+0)]L + 1. U)) (D
—(0+0)L)'1.b (3.108)
204D = (D)L + 1)) 2™ + (I + (D)"L(L + U))(D)*wb is obtained from the
above substitution. This indicates that REAOR method reduces to RJ iterative method.
RE, 1, — method is the Refinement of Gauss-Seidel (RGS) method: The Refinement of
the Gauss-Seidel is represented as
Z(+HD = (D - L))z + 1+ (D — L)*U)(D — L) *b (3.109)

Valuesof v =0, r=1 and w =1 for RE,,, are inserted in (3.107) to obtain

20640 = (0= 0+ DL (A= DD +[1 - (0+ DIL + 1. U))2 2 4
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(1+@=0+DL)™ (A= 1DD +[1- 0+ DIL +1.U)) (D
-0+ 1DL)1.b (3.110)

which results into z&+D = ((D — L)‘l(U))Zz["] +(I+ D -L)"Y (W) — L) b,
indicating that the new REAOR iterative method reduces to the RSOR method.
RE, . . — method is the Refinement of Successive Over-Relaxation (RSOR) method:

Method of the RSOR is expressed as
2
2040 = (D - wL) (1 - w)D + wU)) 2z
+(1+ (D - wl) (1= w)D +wl)) (D - wl) wb  (3.111)
With valuesof v=0, r =w and w = w for RE,, , substituted into (3.107), it
gives
2
ZO+D) = ((D —(0+w)L) (1 -w)D+[w—(0+w)]L + a)U)) z® +
(1+ @ =0+ w))™((1 = w)D + [0 = (0 + W)L+ wU)) (D - (0 +
w)L) twb (3.112)
2
Resulting into the RSOR z(*+D = ((D — (L)1 -w)D + wU)) zIM +
(1 + (D - (w)L)H((1 - w)D + a)U)) (D — (w)L) *wb, which signifies that the
proposed REAOR iterative method can be reduce to RSOR method.

RE, , ., —method is the Refinement of Accelerated Over-Relaxation (RAOR) method:

And the RAOR iterative method is given as
Z*k+D = ((D L)Y ((1-w)D+ (w—7)L + wU))2 7"
+(14+ (@ =) (1= @)D + (@ - )L+ wU)) (D = rL) " wb (3.113)
Substituting v =0, r =r and w = w for RE;,, in(3.107) to obtain

2040 = (D = (0 + ML) (1 = @)D + [0 — (0 + 1)L + a)U))Z 2% 4
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(1+ @ =+ (A =)D +[w = O +r)]L+w)) D
—(0+7)L) wb (3.114)

After the substitution, one arrives at z®*+D = ((D -~ (ML ((1-w)D+

2
[w— (M]L + wU)) 200 4+ (1 +(D — (ML) (A - w)D + [w — (M]L + a)U)) (D —
(r)L) *wb which shows that the proposed REAOR method can reduce to RAOR

iterative method.

3.5  Convergence of Refinement of EAOR method
Lemma 3.4 (Varga, 2000): Let z be a vector in a set of m — dimensional column

vectors R™, with real number components, then the sequence [z(")]:)=0 converges to z

with respect to the infinity norm ||. || if and only if lim k — oo z = z; for each

i=1,2, ---korforany norm |||, then limj_o|lz% — z|lc = 0
Lemma 3.5 (Edalatpanam and Najafa, 2013): Let z and y be vectors of R™ in a set
of real numbers R, then

I. Jlz]| >0 forall z e R™

Il.  |lz]| =0 ifandonlyif z=10
I1l. If gisascalar, then ||Bz|| = |81zl
V. lz+yll < izl + Iyl
Lemma 3.6 (Martins et al., 2012): Let ] be an iteration matrix of any iterative
method, if the norm of matrix J is less than one, that is ||J|| < 1, then the sequence z*
converges to z for any initial estimation z(® and ||z — z¥|| < |IJ1I*]lz — z°|.
Theorem 3.4: If matrix A is an L —matrix, then the Refinement of the proposed
Extended Accelerated Over-relaxation (REAOR) method converges to the exact

solution for any initial guess z(®.
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Proof: Assuming Z is the true solution of Az = b, since the coefficient matrix A is
an L —matrix, it follows from theorem 3.1 that the EAOR method is convergent,
thereby one can close z**D to Z. Let z**D - Z and suppose z**D is the (k +
1)t" estimation to solution of Az=b by REAOR method z*+D = z(k+1) 4
w[D — (w+71)Ly]" (b — Az**D), then applying lemma 35 to the REAOR
approximations gives;

|25+ = z||_ = [|z2%*D + w[D — (v + r)La] (b — Az*HV) — Z]| \
= ||z - Z + w[D — (v + )L, ] (b — Az*D)||
< ||z%+V — Z||Oo +lw[D = W+ )L e ||(b — AZ(k+1))||oo
< ||lz®*V = z||_ + llw[D — (v + )La] Moo || (b — 2%V )

(3.115)

Next is to analyze each terms of the right hand side. From theorem 3.1, it is observed
that z(+D — Z describes the convergence condition of the EAOR method to the real
solution and taking the infinity norm of it as k tends to zero guarantees convergence.
Therefore, this implies that the following expression holds
|20 —z|| = 11Z = Z|le = 0 (3.116)
That is to say for every improvement in z*+1 there is probable value of it to become
z. Likewise for the case of ||(b — Az**D)||, there will be an equivalent corresponding
improvement in Az**1 to become Az as k tends to zero and since Az = b, then
[(b—Az&*D)|| = I(b—A)llw = I(b = D)l = 0 (3.117)
Evidently, this implies that ||(b — Az**V)|| - 0. Itis clearly seen that |w|||[D —

(v +1)Ls] Mo vanishes since ||(b — Az**D)|| tends to zero as k tends to infinity.

Also, since ||z** — z|| and (b — Az**V)]||  tends to zero, such that

|2+ = Z|| =0+ |wlll[D = @+7)Ls] Mo Xx0=0+0=0 (3.118)
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Hence by lemma 3.4, it is sufficient to deduce that z**Y — Z tends to zero as k —
oo, which can be written as

|z —z|| - 0 (3.119)
From (3.116) and (3.117), it is obvious that (3.119) holds and this implies that zl¥+1 —

z and thus p(RTy,,) = [p(Tv,w,r)]2 < 1 or equivalently
p ((1 — w4+ A - +[w—- @+l + ouU))2

2
= [p (- @+nD (A - o)l +[w-@+nIL+ cuU))] < 1(3.120)
The REAOR iterative method converges to the solution of the linear system Az = b.

As a result, the new REAOR method is convergent for L matrix, which completes the

proof.

Theorem 3.5: If the coefficient matrix A is an irreducible diagonally dominant, then for

any choice of initial guess z(®, the proposed REAOR converges to the true solution .

Proof:

Let Z be the real exact solution of Az =b. Given that A = (a;;) is irreducible

diagonally dominant. Then the proposed EAOR method is convergent by theorem 3.2

and so let z®**1 convergesto Z when

2K = [D— (W41 ' [(1—0)D + [w— (v + 1)Ly + wU,]z® +

[D — (v+7)Ly] *wb. Then, z**D = 7+ 4 o[D — (v +1)L,]"H(b — Az*+D) or
0D — 7 = 704D 4 [D — (w+ 1)Ly "N (b — Az%D) —Z  (3.121)

Hence taking norm of both sides gives

700 = 2], = [|2#+0 = 2+ 0[D = @ + LB - Az D)
< ||z%+ - Z||  +llw[D = (@ +7r)La] e || (b — Az(k“))”m
< ||z("+1) - Z||oo + ||lw[D — W+ 1)L4] oo ||(b — Az("“))”Oo
=0+ |[w[D—@W+ 1)L Ml I(b=D)llo=0+0=10

(3.122)
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|z+Y — Z|| = 0 Hence, z¢*Y converges to Z and this implies that
p([D—(W+r)L 1 —-w)D+[w—W+71)]Ly+ 0wUs)?* <1 (3.123)
Therefore, the proposed REAOR iterative method is convergent for matrices that are

irreducible diagonally dominant and this completes the proof.

Theorem 3.6: Let a square matrix A = (a;;) bean M — matrix, a matrix A whose off
diagonal entries are non-positive having positive diagonal entries such that A is a non-
singular matrix with A=' > 0. Then for any arbitrary initial approximation z(®, the

proposed REAOR method is convergent.

Proof:

If Z is the real solution of Az = b and since A isan M — matrix, the EAOR iterative
method is convergent as obtained in theorem 3.3. Similar procedure of theorem 3.4 is
employed to prove that the proposed REAOR iterative method is convergent for M
matrices. Next is to use the spectral radius of REAOR iterative method to show
convergence of the method. Suppose A is an M —matrix, then the spectral radius of the

proposed EAOR method is less than 1. It is observed from theorem 3.3, that the spectral

radius of the EAOR method is p ((I —(v+ r)L)‘l((l —w)l+[w—(w+r)]L+

wU)) < 1. Now, since the spectral radius of the proposed REAOR method is the

square of the EAOR spectral radius, this implies that the spectral radius of the REAOR

will also be less than one by the relation
2
p (U= @+ (M- ) +[w=@+D]L+wl))

= [p ((I —(v+ r)L)‘l((l —w)l+[w—-—(w+r)]L+ wU))]Z <1 (3.124)
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The spectral radius of the proposed Refinement of EAOR is less than 1 and this shows

that the proposed REAOR method is convergent.

Theorem 3.7: For any initial guess z(®, the refinement of Extended Accelerated Over-
relaxation (REAOR) method converges faster than the EAOR method to the real
solution, whenever both methods converges.

Proof:

Let the EAOR method be represented as z** = jz(®) 4+ ¢ and the REAOR method be
denoted as z*+D = j2z() 1 D where

J=[—-vL—7rL]"'[(1-w)+ (w—v—7)L+ U]
C=[I-—w+r)L] ‘wb (3.125)
D=U+]D[—-@w+7r)L] ‘wb

Given that the norm of J is less than one (||/|| < 1) for convergence, suppose Z is the
real solution of Az =b which satisfies z**D =Jz(® 4 ¢, then it implies that
Z = JZ + C with respect to EAOR method and similarly Z = J2Z + D also satisfies the
equation z®**D = j2z(®) 4 D with respect to REAOR method. And let k = 0,1,2,3, ...
be nonnegative integer.

If we consider the Proposed EAOR method, then

20+ = 17200 L ¢ = z*+D _ 7 = 1200 4 ¢ — 7 which is analyzed as follows

zZ*8D 7 =70 —j7+C-Z+)Z
=J(z®-2)+7z-2Z

(3.126)
zktD) — 7 = (20 — 7)

Taking the norm of the expression z<*1) — 7 = ](z(k) — Z) and applying lemma 3.5 to

the expression results into
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|28+ = z|| = |7(=z® - 2)||
< WE® = 2]
< 721l (z%D = 2)) (3.127)
<

7311z %2 = 2]

< WHIIE® =2
26+ = Z|| < J1IFII® = D)l

From the inequality ||z%+Y —z|| < [I71I%]|(z = Z)||, if IIJII* < 1, then it results

into z®*Y -7 as k— oo by lemma 3.6. Next, let us consider the proposed
Refinement of EAOR method:
2D = j2,00 4 p = Zk+D) _ 7 = 12,00 _ 7 4 D analyze as

zZ*k+D 7 =12,00 4+ D27 -7 +]%Z
=12(z0 -2)-z+2Z

(3.128)
Z(k+1) —7 =]2(Z(k) — Z)

Again, taking the norm of z®+Y — 7 = j2(z(® — 7) and applying lemma 3.5 to the

expression gives;

Iz =z = 2 (= - 2)|

< 2lIlE® -2 2120
< W4NIE% =2 (3.129)
<

761N Gz%=2 = )]

< 2*INE® - 2|
20+ = Z|| < 1IN ™ - 2)|

If |IJ]I%* < 1, then z&+D — Z as k — oo. According to the coefficients of the above

inequalities, we have

112 < IJ*ll since Il <1 (3.130)
This indicates that ||J||?* <1 which also implies convergence of the proposed
REAOR. Therefore, the above analysis indicates that the REAOR method converges

faster than EAOR method and the proof is completed.

3.6  Algorithms for Numerical Computations
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3.6.1 Algorithm for EAOR method

To solve
Az=b or (I-L-U)z=0b
Step 0: Input the entries a;;and b; 1 <i,j<n of the matrix A and b
respectively
Inputv, r, w, L, U,and [
Step 1: Choose an initial guess zi(o) =0 for k=0,1,2,...,kna and for
i = 1,2,3,..,N
Where i = 1,2,3, ..., N refers to number of unknowns,
k =0,1,2, ..., kpya refers to the number of iterations
Step 2: Set S=(—vL—-rL) Y ((1-w)+(w—v—7)L+wl)
Set P = (I —vL—rL) Y (wb)
Step 3: for i =0,1,2,...,n, then,
compute z"*V = 529 4 p
If ||Z - Zi(o) ” < TOL, output (z4, 2o, ..., Zy)
Step 4: Update k =k +1
Step 5: fork =0,1,2,...,n, then,

output (“maximum number of iterations exceeded”)
STOP
3.6.2 Algorithm for REAOR method
To solve
Az =0b or (I-L-U)z=b
Step O: Input the entries a;;and b; 1 <1i,j<n of the matrix A and b

respectively
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Inputv, r, w, L, U,and [
Step 1: Choose an initial guess Zl.(o) =0 for k=0,1,2,...,kpna and for i =
1,2,3,...,N
Where i=1,2,3,...,N refersto number of unknowns,

k=0,1,2, ..., kyg, referstothe number of iterations
Step 2: et S1=0-@+nL) (A=) +(w-@+))L+wl),s=

(51)?
Set P = (I+S1)(I - (w+7r)L) (wh)

Step 3: for i =0,1,2,...,n, then,

(k+1)
i

compute z'*V =529 + p

If ”z — Zi(o) ” < TOL, output (2,2, ..., Zy,)

Step 4: Update k =k +1
Step 5: fork =0,1,2,...,n,then,
output (“maximum number of iterations exceeded”)

STOP

3.7  Numerical Experiments
3.7.1 Problem1
Consider the second-order partial differential equation (Laplace equation) in the form

90U  9%U _

%2 + a—yz =0 (3.131)

From Vatti (2016) for the square mesh with the boundary values shown in figure (3.1)

2500 3000 3000
1000 ks ok Nk 1000
2000 02 S @22 Sk 1500
1000 ?ul‘l ?uz‘l ru“ 1000



Figure 3.2: Discretization of square mesh with boundary values
From figure 3.2, it is observed that there are nine internal points, u;q,u;1,Us3;,
Up o, Uz 0, Uz p, Usg,Usp, Uzz and all the boundary points are known. Application of

method of finite differences is used to solve the second order partial differential

equation in (3.131), At each interior point of the region, the partial derivatives ZZ—U and

x2

2

ZTZ appearing in equation (3.131) are substituted by the standard second order three-

point central difference quotients represented as

02U _ Un+1,m - 2Un,m + Un—l,m

dx? h2
02U _ Upmyr — 2Upm + Upnq (3.132)
dy? k2

Thus the central finite difference approximation to equation (3.131) at each interior grid

point is denoted as

Un+1,m B 2Un,m + Un—l,m + Un,m+1 B 2Un,m + Un,m—l _

w2 2 =0 (3.133)
For k = h and simplification of (3.133) results into
4Un,m - Un+1,m - Un—l,m - Un,m+1 - Un,m—l =0 (3.134)

Application of (3.134) to every interior point produces the following linear algebraic

equations
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4uy 1 —upq — 1000 — uy , — 2500 = 0y
4uyq —uUzq — Uy — Uy —3000=0
4u3,1 — 1000 — Uy — U3z — 3000=0
du)p — Uz, — 2000 —uy3—uy; =0

dUpy —Uzp — Uy —Upz — Uy =0 3

4uz, — 1500 —uy, —uzz —uz; =0
4uy3 —uy3 — 1000 — 2500 —u;, =0
duy 3 —uzz —uy3 — 3000 —uy,, =0
4us 3 — 1000 —uy 3 — 3000 —uz, = 0J

And the above algebraic linear equations is rearranged to obtain the following

4uy —uUyq —Ug, = 3500 N
4uyg —Uzq —Uyq — Uz, = 3000
duz 1 — Uy g — Uz, = 4000
4u;; — Uz — Uy — Uz = 2000
4Uyy — Uy —Upz —Uzp — U1 =0
4uz, — Uy, —Uzq — Uz, = 1500
4uy3 — Uy — Uz 3 = 3500
4Uuy 3 — U3 — Upp — Uz 3 = 3000

4’“.3,3 - u2,3 - u3,2 = 4000 J

(3.135)

(3.136)

Representing the linear algebraic equations of (3.131) in a matrix form results into the

linear system below.

4 -1 0 -1 O 0 0 0 0 Ui
-1 4 -1 0 -1 O 0 0 0 Uz1
0 -1 4 0 0 -1 0 0 0 Uz,
-1 0 0 4 -1 0 -1 O 0 Uy

-1 0 -1 4 -1 O -1 O Uz,2

-1 0 -1 4 0 0 —1]| Us2
0 -1 0 0 4 -1 0 U3
0 0 -1 0 -1 4 -—1)\U
0 0 O -1 0 -1 4 Us,3

3500

3000
4000

2000
0

1500
3500

3000
4000

(3.137)

The coefficient matrix is an M matrix and system (3.137) is represented in the form

Bz = f where,
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3500
3000
4000
2000
0
1500
3500

3000
4000

SO O OO

Ui
Uz
Uz
Ug,2
Uz,2
Uz 2
U3

Uy 3
U3 3

and from (3.138), the diagonal component of matrix B is obtained as

(o)
I
Soocococoococo s

SO OO OO O O

SO O OO O~MOO

SO OO OO OO

SO OO~ OO OO

S OO OO O OO

SO ODOCDOOC OO

O O OO O OO

B O OO OO O OoOo

=

oS Rk O

o

oS Rk O

o

oS Rk O

(@)

Now, the linear system in (3.138) is multiplied by D~! to obtain
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o Bk O

N =)

(3.138)
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1 1
4
! 1
4
0 1
4
! 0
4
0 1
4
0 0
0 0
0 0
0 0

U1
Uz1
Uz,1
Uy2
Uz,2
U3z,2
U3
Uz3
Uz 3

0 0
! 0
4

0 1

4
! 0
4
1 1
4
! 1

4

0 0
! 0
4

0 1

4

0 1
4
1 0
4
1 0
0 1
0 1
4
1 0
4
0 1
4
0 0
0 0
and b=

875

750
1000

500

375
875

750
1000
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0 Uq1
Uz1
0 Uz 1
Ui,2
0 Uz2
Uz
1 U
Z 1,3
4 Uz3
0 Us3
1
4

0 0

0 0

0 0

! 0

4

O —_—
0 0

1 —_—
! 1

4

O —_—

875

750
1000

500

375
875

750
1000

(3.140)
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The coefficient matrix A of the above equation is decomposed into A=1—-L—-U

where

10 0 000 0 0O
0 1. 000 O0O0OTO0OT O
0 01 00O O0OO0OTPO
0 001 O0O0O0TO0OTFO
0 000 1 0 O0O0TO
0 000 0O 1T O0O0TO0
0 000 0O O0OT1TO0TFPO
0 000 0O O0OO0OT1TFPO
0 000 0O O0OO0OTU 01

(3.143)

I =

(3.144)
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1
-2 0 0 0 0 0 0 0 0
1
0 - 0 0 0 0 0 0 0
1
-2 0 0 0 0 0 0 0 0
0 Loy L% 0 0 o0 o
—L= 4 4 (3.145)
1 1
o 0 -~ 0 —-= 0 0 0 0
4
1
0 0 0 -z 0 0 0 0 0
O 0 0 0 L Lo o
4 4
1 1
o 0 0 0 0 —-= 0 —-=10

The proposed EAOR method — z®*+D =[I — (v +r)L] (1 - w)] + [w — (v +
ML+ wU]z® +[I — (v+7r)L] *wb is applied to the linear system (3. 137) as
follows.

By letting r = 0.04, w = 0.1 and v = 0.05, then

[[-—(@w+nr)L]™?t=
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0 0
1
T 0
(100000000 | o%
010000000 |
001000000 7 0
000100000 |
000010000|—(v+r) Ly
000001000 0 o
000000100
000000010 0 0
000000001
0 0
0 0
[ 1.0000 o. 0. 0. 0
-0.0225 1.0000 0. 0. 0.
0.0005 -0.0225 1.0000 0. 0.
_ -0.0225 0. 0. 1.0000 0.
N 0.0010 -0.0225 0. -0.0225 1.0000
0. 0.0010 -0.0225 0.0005 -0.0225
0.0005 0. 0. -0.0225 0.
0. 0.0005 0. 0.0010 -0.0225
0. 0. 0.0005 0. 0.0010
1-w)l+[w—W+r)L+wU =
10
0 1
0 0
0 0
1-01)x|0 o
0 0
0 0
0 0
0 0
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eNeNoNeNeol o =R=lo)

1.0000 .
-0.0225 1.0000

0.0005 -0.0225 1.0000

S OO ORrRrR OO OoOO0o

0
0
0.
0.
0
0

S OO PR OO OoOOoOOo

SO PRrPrOOoOOOoOoOO0o

0
0
0
0.
0
0
0

OSOCPRPr OO OO OoOOO0o

RO OO OO OoOoOo

0
0
0
0.
0.
0
0
0

(3.146)
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0 0
1
4
0 J—
_1 o,
4
+[0.1—(0.04+005)] x| 9 ~3
0 0
0 0
0 0
0 0
L
4
, 1
4
0 0
0 0
+0.1 x
0 0
0 0
0 0
0
0 0
[ 0.900 -0.025 0. -0.025
-0.002 0.900 -0.025 0.
0. -0.002 0.900 0.
-0.002 0. 0. 0.900
0. -0.002 0. -0.002
0. 0 -0.002 0.
0. 0. 0. -0.002
0. 0. 0.
0. 0

0 0
0 0
0 0
0 0
0 _1
4
_lo
4
0 _1
4
0 0
0 0
! 0
4
0 1
4
0 0
0 1
4
0 0
0 0
0 0
0
0 0
0. .
-0.025 0.
0. -0.025
-0.025 0.
0.900 -0.025
-0.002 0.900
0. 0.
-0.002 0.
0. -0.002
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-0.002 0.900

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

L0 o0 o

4

0 0 0 0
-2 0 > o0
4
o - o =
4
0 0 0 0
0 0 0 0
Lo 0 o
4
0 Ly o
4
LI 0
4
0o 0 0 -
0 0 —= 0
0 0 -
4
0 0 0 0

0 0. 0.

0 0. 0.

0. 0. 0.
-0.025 0. 0.

0. -0.025 0.

0. 0. -0.025
0.900 -0.025 0.
-0.002 0900 -0.025

0.

S O O O o o o o o

(3.148)

(3.149)

(3.150)



-+l A -)+[w— v+l +wU] =

[ 0.9000 -0.0250 0. -0.0250 0. 0. 0. 0. 0.
-0.0228 0.9006 -0.0250 0.0006 -0.0250 0. 0. 0. 0.
0.0005 -0.0228 0.9006 -0. 0.0006 -0.0250 0. 0 0.
-0.0228 0.0006 0. 0.9006 -0.0250 0. -0.0250 0. 0.

(3.151)
0.0010 -0.0228 0.0006 -0.0228 09011 -0.0250 0.0006 -0.0250 0.

-0. 0.0010 -0.0228 0.0005 -0.0228 0.9011 -0. 0.0006 -0.0250

0.0005 -0. 0. -0.0228 0.0006 0. 0.9006 -0.0250 0.
-0. 0.0005 -0. 0.0010 -0.0228 0.0006 -0.0228 0.9011 -0.0250
0. -0. 0.0005 -0. 0.0010 -0.0228 0.0005 -0.0228 0.9011

Using Maple 2017 software the eigenvalues computed from the iteration matrix in

(3.151) are given by

0.9697412031 |
0.9342940343
0.8347587969
0.9000000000
0.8668309657
0.9342940343
0.8668309657
0.9000000000
0.9000000000

(3.152)

And the spectral radius of the EAOR iteration matrix, which is the absolute largest

value of the eigenvalues obtained in (3.152) is 0.9697412031

875 875 87.50000000
750 75.0 76.96875000
1000 100.0 101.7317969
wb = (0.1) x 580 = 5(())'0 = W+ L] wb =| 2200 (3 453y
375 375 1.176501722
875 87.5 37.52647129
750 75.0 88.34434560
1000 100.0 76.98774778
101.7322243
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Applying the initial estimation z© =

method are as follows.

L —

2@ =

SO OO OO OO O

875.0000000
946.8750000
1213.046875
772.9355469
173.9104980
414.1298621
968.1792190
967.8403243
1217.764073

1304.952637
1412.228687
1638.189682
1184.441280
631.3152231
1067.879511
1367.586218
1386.352398
1336.125298

1524.167492
1692.937728
1979.296903
1486.021905
977.5239378
1286.653645
1537.782157
1464.221965
1364.108752

, the first 3 iterations of the proposed EAOR

(3.154)

(3.155)

(3.156)

Next, we apply algorithm 3.2 for the proposed Refinement of Extended Accelerated

Over Relaxation method in similar manner.
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The proposed REAOR represented as z*k+1 = ((I —w+rL)((1 -+

[w—(w+7r)]L+ a)U))Z z00 4 (1 +U -+ r)L)‘l((l —w)l+[w—-—wW+7r)L+

a)U)) (I — (v+7r)L)*wb is applied to the linear system (3. 136). By letting w = 0.1,

r =0.04 and v = 0.05, we have ((1 —W+nL) (A - ) +[w- @+l +

wU))2 =

[ 0.81114
0.04101
0.00144
0.04101
0.00288
0.00013
0.00144
0.00013
0.00001

0.04503
0.81272
0.04105
0.00215
0.04112
0.00289
0.00007
0.00145
0.00013

0.00062 0.04503 0.00125
0.04504 0.00215 0.04507
0.81215 0.00007 0.00215
0.00003 0.81272 0.04507
0.00215 0.04112 0.81431
0.04108 0.00145 0.04116

0. 0.04105 0.00215
0.00007 0.00289 0.04116
0.00144 0.00013 0.00289

0.
0.00125
0.04506
0.00062
0.04508
0.81374
0.00003
0.00215
0.04112

0.00063
0.00003
0.
0.04504
0.00215
0.00007
0.81215
0.04108
0.00144

0. 0.
0.00062 0.
0.00003 0.00062
0.00125 0.

0.04508 0.00125
0.00215 0.04507
0.04506 0.00062
0.81374 0.04507
0.04112 0.81317

(3.157)

Using Maple 2017 software, the eigenvalues computed from the iteration matrix in

(3.157) are given by

0.940398001048955
0.872905342529066
0.696822248951045
0.751395923095934
0.872905342529066
0.751395923095935
0.810000000000000
0.810000000000000
0.810000000000000

(3.158)

And the spectral radius of the new REAOR iteration matrix, which is the largest value

of the eigenvalues obtained in (3.158) is 0.940398001048955. The spectral radius of the

REAOR iteration matrix indicates that the method is convergent. Therefore, we

compute the approximate solutions by carrying out several iterations until convergence

is attained.
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(1 +(U-@w+nD (A - +[w—- @+l + wU)) =

875
750
1000
' 500
wh=(00.1)x| 0

375
875
750
1000

Then,

[ 61.901 0.0250 0.
0.0228 61.901 0.0250 0.0006 0.0250 0.
0.0005 0.0228 61.901
0.0228 0.0006 0.
0.0010 0.0228 0.0006 0.0228

0. 0.0010 0.0228 0.0005
0.0005 0. 0.

0. 0.0005 0.

0. 0. 0.0005

0.

0.0010
0.

0.0250 0. 0.

87.5

75.0
100.0

50.0

0 |,[I-Ww+r)L]'wh

37.5
87.5

75.0
100.0

0.0006 0.0250
61.901 0.0250 0.
61.901 0.0250 0.0006 0.0250
0.0228 61.901
0.0228 0.0006 0.

0.0006 0.0250
61.901 0.0250
0.0228 0.0006 0.0228 61.901 0.0250
0.0010 0.0228 0.0005 0.0228 61.901

oo oo

0.

0.

[ 87.50000000 |

76.96875000
101.7317969
52.28896543
1.176501722
37.52647129
88.34434560
76.98774778

101.7322243

(3.159)

(3.160)

I+ —W+r)L] A - o)+ [w—@+1)]L+ U1 - W +1)L] 'wb =

1412.228687
1638.189682
1184.441280
631.3152231
1067.879511
1367.586218
1386.352398
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[ 1304.952637 |

1336.125298

(3.161)



Applying the initial estimation z(© =

SO OO OO OO O

REAOR method are as follows;

LD —

4@ =

43 =

[ 1304.9526367188

1336.1252975789

[ 1669.7399082996

1370.8249450870

[ 1809.4160515972

1373.1816001811

1412.2286865234
1638.1896817017
1184.4412795105
631.3152231436

1067.8795106394
1367.5862175121
1386.3523976543

1903.0008769630
2163.6675282184
1665.1341402297
1099.5246318384
1372.3038679849
1581.9902027415
1485.4195375818

2052.2864992950
2294.6563504146
1758.0521382573
1161.3052179206
1406.9369310711
1599.3249048078
1492.8954591653
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3.7.2 Problem 2
In this experiment, we consider the system of linear equations from Mohammed and

Rivaie (2017), whose coefficient matrix is an M matrix in the form Bz = f.

7 -1 0 -1 O -1 O -1 O 0 Z1 7
-1 7 -1 0 -1 0O -1 O -1 O Zy 3
o -1 7 -1 0 -1 O -1 O -1 Z3 2
-1 0 -1 7 -1 0 -1 O -1 O Z4 2
o -1 0 -1 7 -1 O -1 0 -1 Zs 2
-1 0 -1 0 -1 7 -1 0 -1 O Ze | |2 (3.165)
o -1 0 -1 0 -1 7 -1 0 -1 Z7 2
-1 0 -1 0 -1 0 -1 7 -1 O Zg 2
o -1 0 -1 0 -1 0 -1 7 -1 Zg 2
0 o -1 0 -1 0 -1 O -1 7 Z10 2
And from (3.165), the diagonal component of matrix B is obtained as

7 0 00OO O O0OOTUDWO

o 7 0 0 0 0 O O O O

0o 07 0 00O 0O O0O0TDO

0O 007 0 0 09 0O

0O 0 0o o7 0 0 O0O0UDO0

D_0000070000 (3.166)

0O 0 0o 0oO0 0 7 000

0O 0 0o 0O0O0O 0 7 00

0O 0 0o o0 0 0 0 70

O 0 0o 0Oo0O0O0O 0 0 7

Then we obtain
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o N -
© NI~ ©
© NIk o

=N =

D1 (3.167)

S Nl— o

S NIl ©

=N =]
Nl= O

Now, the linear system in (3.165) is multiplied by D~ to obtain
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11.90
9.32
8.09
9.32
8.09
8.32
8.09
8.32
8.09
8.32

(3.168)

The coefficient matrix A of the above equation is decomposed into A =1 — L — U and

then solved with the proposed Extended Accelerated Over Relaxation method,

Refinement of Extended Accelerated Over Relaxation method, the classical AOR

method, QAOR method by Wu and Liu (2014), KAOR method by Youssef and Farid

(2015) and RAOR by Vatti et al., (2018). The results are tabulated and discussed in

chapter four.
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3.7.3 Problem 3
We consider a linear system of (3.1) whose coefficient matrix is an irreducible weak

diagonally dominant matrix, expressed in Az = b

1 0.1 02 0.0 0 5 Z1 1
/0.2 1 03 00 - .4 \ Zz\ 1.2
_ 100 0.2 1 -06 I 23 | 0.8
4=102 —03 01 1 01 z | = 14 (3.169)
00 03 02 01 1 Zs
02 03 00 -03 0.1 1 Ze
The coefficient matrix A of (3.169) is inthe form A =1 — L — U, where
10 0 0 0 O 0 0 0 0 0 O
/0 1 0 0 O O\ /0.2 0 0 0 0 0\
;=001 00O0f_,_{00 02 0 0 0 0]
| 0 0 01 0O E | 02 -03 0.1 0 0 O |
\0 0 0 0 1 O/ \0.0 03 02 01 0 0/
0 00 0 01 02 03 00 —-03 01 O
0 01 02 0.0 0.2 -—=05
(0 0 03 00 -04 01 \‘
_10 0 0 —-06 02 0.0
(o o o 0 01 03 | (3.170)
0 O 0 0 0 0.2 /
0 0O 0 0 0 0

The spectral radii and convergence rate of the two proposed methods (EAOR and
REAOR methods) are computed along with some existing methods such as the AOR

method and some variants of AOR method with the aid of maple 2017 software.

3.5.4 Problem4

We consider the second-order partial differential equation from Ndanusa (2012)

( +1)62U+(2+1)02U+U— 1 3.171
x J0x? Y dy? N (3.171)
to be solved in the region
O=y=1l 3.172
0<x<1 (3.172)
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For h = % and boundary conditions;

Ux,0) =0, Uy =y

Ux,1) =1, U(1,y) = y? (3.173)
To evaluate the partial differential equation in (3.171), the method of finite difference is

1
6

used, where a square mesh of horizontal and vertical lines with mesh spacing of h =
in both x and y directions is applied to the region 0 <x <1, 0 <y < 1. This
generates  twenty-five internal  points as  follows; uyq,up 4, U3, Ug 1, Us 1,
Uq,2)Uz,2, U3 2, Us 2, Us 2, Uq3,Up3,U33,Us 3, Us3, Upg, Uz g, U3 g Us g, Usy, U s, Uss,

Uz s, Uy s, Us s and 24 boundary points,

Ug,0, U1,0, Uz,0, Uz 0, Up,1, Uz 1, Up 25 U3 2, Up 3, Ug 3, Uz 3 aNd Us 3.

Upg U6 Uz U3e Use Use Ug 6
Ugs Quis ®u, Ou, - Qs Quss Ug s
Ug 4 @4 612.4 ‘12 4 ’u4 4 P Ug 4

, , Uu Us 3
Ug 3 ﬂy“ &23 Q- @43 o Ue 3

Uq,2 U u Uy o U
o2 . ¢ @52 @ o =
U U U U
Ug 1 @ .1 .u,1 @ ! @ ! @ Ug 1
Up,0 Uq0 Uz, Uz g Us,o Us,o Ye,0

Figure 3.3: Discretization of square mesh with 25 inner grids

2 2
At each interior point of the region, the partial derivatives 2V and ZTU appearing in

axZ 2
(3.171) are substituted by its quotients (3.132) and thus the central finite difference

approximation to (3.171) at each interior grid point is given by
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U - 2U + U, _ U —2U + U,
n+1i,m hr;,m n—-1m + (yz + 1) nm+1 nm nm-1

(x+1) k2

=—Upm+1) ., k=h (3.174)
which is simplified to obtain
(x + DUnyim + 0+ DUnmis + 6+ DUpogm + 2 + DUpmos
+[-2(x + 1) — 2(y% + 1) + h?]Uy ,, = —h? (3.175)
[2Cc +y2 +2) = R ]Upm — (X + DUpyrm — 0% + DUpmer — (6 + DUnoym
—*+ DUy ey = h? (3.176)

At h = % the above equation becomes

143
(Zx + 2}/2 + ?) Un,m —(x+ 1)Un+1,m - (yz + 1)Un,m+1 —(x+ 1)Un—l,m

-(*+ 1)U L
(y + ) nm-1

3.177

Equation (3.177) is applied to each of the interior points to get u,; = (1/6,1/6),
U1 =(2/6,1/6), uz3; = (3/6,1/6), uy; = (4/6,1/6), us; = (5/6,1/6),u;, =
(1/6,2/6), uy,=1(2/6,2/6), uz,=(3/6,2/6), us, =(4/6,2/6), us, =
(5/6,2/6), u;3=(1/6,3/6), u,3=1(2/6,3/6), uz3=1(3/6,3/6), usz=
(4/6,3/6), us3=1(5/6,3/6), ui4=(1/6,4/6), Uzs = (2/6,4/6),
Usq = (3/6,4/6)  uss =(4/6,4/6), us,=(5/6,4/6), w5=(1/6,5/6),
U5 = (2/6,5/6), uzs = (3/6,5/6), uys=(4/6,5/6) and uss=(5/6,5/6).
Application of the transformed partial differential equation by finite differences in

(3.177) to each of the twenty-five interior points generated the following system of

linear equations:
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157 7 37
gum - guz,l - %um
169 4 37
¥u2,1—§u31 36 Uz —
181 3 37
%um - §u4,1 - %um
193 5 37
gum - §u5,1 - %um
205 11 37
gum - ?um - %us
163 7 10
36 12T gl T gtz T
175 4 10
%uz,z - §u32 - juzs
187 3 10
%uaz - §u42 - ?u3,3
199 5 10
36 442 T glUs2 T g lUaz T
211 11 10
%usz - ?us,z - ?uss
173 5
¥u1_3 —ZUy3— Zu14
185 5
%uzs — S U3z — Zuz
197 5
¥u3,3 —SUg3 — Zu3
209 5
¥u4,3 — S Us3 — Zu4
221 1 5
36 1537 g Y63 Ty
187 7 5
gu 4 6”24 4u1,5
199 4 13
o
211 3 13
36 a4 T T g M T
223 5 13
36 4t T glsa T g s
235 11 13
%%,4 - ?um - ?us,s
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7
6"
4
Bl
3
2"
5
El
1

1
6
7
6
4
3
3
¢
5
3
5
3
7
6
4
3
3
2"
5
3"
1

1

6
7

6
4

3¢
3
2
5
3¢
11
6

0,1~

1,1

2,1

3,1

—~Upa

4,1

\

37 1
3610 T 34
37 _1
36720 ~ 36
37 _1
36130 T 36
37 _1
36740 T 36

37 1
3610 T 35
10 1
9 M1 T 3g
10 1
T %217 3¢
10 1
T 1T 35
10 1
T M1 T 3g
101
T 1T 3g
5 1
T3M2 T 3g
5 1
2422 T 3¢
5 1
T3"27 35
5 1
T2 T 35
5 1
43~ g2 T 3¢
13 1

9 13T 34
13 1
9 %23 T 3¢
13 1
9 Y33 T 3¢
13 1
g M3 T 3¢

131
9 453~ 34




205 7 61 7 61 1
guLs - guz,s - %uLs - guo,s - %um = 36
217 4 61 4 61 1
Xuz,s - §u3,5 - %uz,s - §u1,5 - %u“ = 36
229 3 61 3 61 1
¥u3,5 - §u4,5 - %u&e - Euz,s - %ué},é} = 36 > (3.178)
241 5 61 5 61 1
g%,s - §u5,5 - %u% - §u3,5 - %um = 36
253 11 61 11 61 1
gus,s - ?ue,s - %us,e - ?ua,,s - %um ~ 36/
The known boundary values are;
U = 1 Ugo = 0
01= 7%
f 6 1
2 U1 = 37
Ugo =0 Ugy = = U= 1 36
uLO = O ' g u2,6 == 1 u’62 — i
uZOZO u03:— u36—1 36
Ty ’ 6, v ) 9 (3.179)
Uszo =10 4 Uge = 1 Ug3 = 36
Ugpo = 8 Ug4 = 6 Use = 1 16
U g = = =—
5,0 . E U6 Ug 4 36
05" ¢ 25
Upe = 1 Y65 16/

And they are substituted into (3.178) to generate the following linear system;
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157 7 37 2
36 ‘1T g2l T3gM2Tg
169 4 37 4 1
qu 3u3,1—%u22 §u1,1—%
181 3 37 3 1
¥u31 2”4,1 %um 2”2,1 = %
193 5 37 5 1
gu“ 3 Us 1 %u“ 3u3,1 = %
205 37 11 17
36 517361527 6 41T 216
163 7 10 10 5
Xum 6“22 ?um 9 Uy,1 12
175 4 10 4 10 1
?uz,z - §u3,2 juzs 5“1,2 ?um = %
187 3 10 3 10 1
%uaz 2“42 9 U3 3 Euz,z —ju3,1 = 36
199 5 10 5 10 1
gum - 5”5,2 - ?u4,3 - §u3,2 - ?um = %
211 10 5 10 25
gus,z 9u53—§u42—? 51=m
173 7 5 5 11
36 W13 T g2z T yte T U2 T 7y
185 4 5 4 5 1
%uzs §u33 Zu24—§u13—zuz,z=%
197 3 5 3 5 1
¥u3,3—§u43 4u34—§u23—1u32=36
209 5 5 5 5 1

4 13 4

3u34 ?uzs —§u14 9 U3 36
3 13 3 13 1
2”44 ?u35 —Euz,z} - 9 U3 3 36
5 13 5 13 1
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205

guLs - guz,s - %um = %

217

36 125

229

36 35 T M5 T3

241

g%,s - §u5,5 - §u3,s - %um = 1_8

253

36 56

7

4

3

5

11

3 )

4

3
3

5

S Uis

61

u2,5 57

61

_u4’5 — —

3654~ 216

97 3\

61 31

36124~ 18
61 31

3634 18
61 31

647

The above linear equations are represented in the matrix form Az = b, where;

L
% 6
4189 4 5
3 3 3
g .3 181 3
2 3 2
o o .2 18 5
3 36 3
o o o i 205
6 36
B R R
A=l ° 10
0o -= 0 0 0
9
o o -9 o o
9

3
36
0

0
37

36
0

175
36

187
36

0 0
0 0
0 0

_37 0
36
0 0
0 0
0 0

_3 0
2
0 =3

2
0 241
36
0 _u
6

(3.180)

Matrix 4 is 25 x 25 dimension while b and z are 25 X 1 dimensions, the above linear

system is then solved with the new EAOR iterative method, the proposed REAOR

iterative method, the classical AOR method, QAOR method by Wu and Liu (2014),
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KAOR method by Youssef and Farid (2015) and RAOR by Vatti et al., (2018). The

results are tabulated and discussed in chapter four.

3.5.5: Problem 5 (Application Problem 1)

In this section, we shall apply the proposed iterative methods to a fuzzy linear
equations. Specifically solving a square 6 x 6 fuzzy linear problem using the new
EAOR and REAOR methods. Solve the square fuzzy linear equations from Lubna and
Naji (2018) with the proposed EAOR and REAOR iterative methods

O9x, + 2x, — x5 + x4 + x5 — 2x5 = (—53 + 8a, —25 — 20a))
—x; + 10x; + 2x3 + x4 — x5 — X = (=13 + 9,18 — 22)
X1+ 3%, —x3 + x4 + x5 — 2x6 = (18 + 17,73 — 38a)
2xy — x5 + x3 + 10x4 — 2x5 + 3x5 = (31 + 16a,61 — 14a)
X1+ Xy — X3+ 2x4 + 7x5 — x6 = (34 4+ 8a,58 — 16)
3xy +2xy + x5+ x4 — x5 + 10xg = (51 + 26,99 — 22a) J

> (3.181)

Fuzzy linear systems cannot be solved directly, so the standard approach is to reduce it
to crisp linear system so as to make it easier for computation using the proposed
iterative methods. The fuzzy linear equations in (3.181) is then transformed into matrix
notations through the use of embedding method (EM). The EM helps in extending the
fuzzy linear system into crisp linear system.

To define a solution (xy,x5,++, x,)7 to the fuzzy system in (3.181), some arithmetic

operations needs to be performed on the fuzzy numbers x = (g(a),?(a)), zZ=

(g(a), E(a)) and K € R. The arithmetic operators on the fuzzy numbers are defined as
. x=zifandonlyif x(a)=z(a) and x(a) =Zz(a)
I x+z=(x@)+ z(@); %(a) +Z(0))

{(1@, Kx), ifk>0
. Kx={> =
(kx,Kx), ifk<0

From the arithmetic operations on the fuzzy numbers in the system (3.181), we obtain

the 6 x 6 system of fuzzy linear equations
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(9x1,9%:) + (2x2,2%;) + (=%3,—x3,) + (x4, %) + (x5, %) + (—2%, —2x6)
= (=53 + 8a,—25 — 20a) (3.182)
(=%, —x1) + (10x5,10%;) + (2x 3, 2%3) + (x4, %) + (=5, —x5) + ( —%e, —X6)
= (—13 + 9,18 — 22a) (3.183)
(x070) + (3x2,3%) + (—%3,—x3,) + (x4 %) + (x5, 75) + (—2%6, —22)
= (18 + 17,73 — 38a) (3.184)
(2x1,2%,) + (=%5 —x5) + (x3,%) + (10x,, 10%,) + (—2%s5, —2x5) + (3x6,3%)
= (31 + 16a,61 — 14a) (3.185)
(x0 %) + (x2.%2) + (=%5, —x3) + (24, 2%,) + (725, 7%5) + (%, —26)
= (34 + 8,58 — 16a) (3.186)
(3x1,3%;) + (2x2,2%,) + (x3,%3) + (x4, %) + (=%s,—x5) + (10x4, 10%,)
= (51 + 26a,99 — 22a) (3.187)
Picking out each of the first pairs for the linear equations in (3.182 to 3.187) and
followed by the second pairs in each equations gives the following equations

Ox1+2x, —X3+X4+%x5—2xs =—53+8a )
—x1+10x, +2x3+ x4 — x5 —x¢ = —13 + 9
X1+3x,—x3+x4+x5—2x =18+ 17
2x1—x;+x3+10x, — 2x5 + 3x4 = 31 + 16«
X1+X,—x3+%x4—x5—xg =34+ 8a
3x1+2x,+x3+x4— x5+ 10x4 = 51 + 26
0%, + 2%, — x5 + %y + X5 — 26 = —25 — 20a |
—x1+10x, + 2x3 + x4 — X5 —x¢ = 18 — 22«
X1+ 3%, —x3+ x4 +x5—2x¢ =73 — 38
2X; — X, +x3 +10x, — 2x5 + 3%, = 61 — 14
X1+ X, — X3+ 2x4+ 7x5 — x¢ = 58 — 16a
3x;1 +2x; + x3+ x4 — x5+ 10xs = 99 — 22a )

(3.188)

Where the size of the generated matrix is twice the size of the original fuzzy linear

system in equation (3.181). The extended 12 x 12 matrix from (3.188) is
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—53 + 8a
13 4+ 9«

(3.189)

18+ 17«

31+ 16a

34 + 8«

51 + 26«
—25—20a

18 — 22«
73 — 38a
61 — 14«
58 — 16a
99 — 22«

Which is expressed in Bz = f, where

10

1

-1 0 10 2

-1

0
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—53 4+ 8«
13 4+ 9«
184+ 17«
31+ 16«
34 + 8a
51 + 26«
—25—-20r
18 — 22«
73 — 38«
61 — 14«
58 — 16«
99 — 22«

and f = (3.190)

The above linear system is multiplied by D~ to obtain A = D~1B. Furthermore, matrix
A is decomposed into A=1—L—U and then solved with the proposed EAOR
method, Proposed REAOR method, the classical AOR method, QAOR method by Wu
and Liu (2014), KAOR method by Youssef and Farid (2015) and RAOR by Vatti et al.,

(2018). The results are tabulated and discussed in chapter four.

3.5.6: Problem 6 (Application Problem 2)

In this section, we shall apply the proposed iterative methods to a real life problem.
Specifically solving a two dimensional heat transfer problem using the new EAOR and
REAOR methods. We consider a plate (metal) of size 0.9m x 0.9m with its edges held
at constant temperature shown in figure 3.4. What is the field’s temperature developed

within the plate while attaining steady state conditions? (Mayooran and Elliot, 2016).

298K

273K
A
A
MELE

273K
Figure 3.4: Metal plate with constant Temperature
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Solution: Using a step-size h = 0.1, we divide the metal plate as shown in the figure 3.5

below to obtain 64 unknowns. Each cell in the figure represents the nodal temperature

of each 0.1m x 0.1m element in the plate. It should be noted that the mesh points are not

at the boundaries of the plate but only at the center of each element.

208 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298
2713 | Uyg | Upg | Uzg | Usg | Usg | Ugg | U7g | Ugg | 373
2713 | Uy | Up7 | Ugy | Usy | Usy | Ugy | Uz7 | Ugy | 373
273 | Uge | Uze | Use | Usae | Use | Use | U7e | Use | 373
273 | Uys | Ups | Uss | Uss | Uss | Ugs | Uzs | Ugs | 373
273 | Uga | Upg | Uzs | Uss | Usg | Ugs | U7s | Ugg | 373
2713 | U3 | Up3 | Ug3 | Us3 | Usz | Ug3 | Uz3 | Ug3 | 373
273 | Uz | Upp | Uzp | Ugp | Usp | Ugp | U7z | Ugz | 373
273 | Uy | Uz | U3y | Ugn | Usy | Ugs | Uz | Ugy | 373
273 | 273 | 273 | 273 | 273 | 273 | 273 | 273 | 273 | 273

Figure 3.5: Discretization of square mesh with boundary conditions for the metal

plate

The partial differential equation governing the two dimensional steady state heat

transfer problem is Laplace’s equation of the form;

for

0x?

2

2

0<x<09
0<y=<09

d
Ux,y) +6_yZU(x’y) =0

From the metal plate, we can deduce the boundary conditions as

U(x,0) = 273,
U(x,0.9) = 298,

100

U(0,y) = 273
U(0.9,y) = 373

(3.191)

(3.192)

(3.193)



In the discretization of the governing equation, we apply the central finite difference

02U 2%u .
— and — into

approximation and substitute the appropriate partial derivatives of ) 372

the governing equation.

aZU _ Un+1‘m - ZUn,m + Un—l,m

dx2 h?

3.194
0*U — Un,m+1 - 2Un,m + Un,m—l ( )
dy? k?

where the integer subscripts (n,m) is the position on x —y axis respectively with a

discrete value range. Then, the governing equation gives

Un+1,m B 2Un,m + Un—l,m + Un,m+1 - 2Un,m + Un,m—l _

2 2 =0 (3.195)
For k = h and simplifying further to obtain;
4Un,m - Un+1,m - Un—l,m - Un,m+1 - Un,m—l =0 (3.196)

We then apply the discretized form of the model equation of the metal plate to each of
the internal mesh points of the plate to obtain the following set of 64 system of linear

equations below;
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4uy; 1 —Upq — U = 546
4Upyy —Uzq —Upq —Upyp = 273
dUz 1 —Ugq —Upq — Uz, = 273
dUpq —Usq —Uzq —Uyp = 273
dUsq —Ugq —Uyq — Usy = 273
dUgq —Uyq —Usq —Ugy = 273
du; 1 —Ugq — Ugq — Uy = 273

dug, — Uy — Ug, = 646
AUyp —Upp — U3 — Uy = 273

4Uuy; —Uzy — Uy —Upz —Upp =0
U3y — Uy —Upy —Uz3 —Uzp =0
4upy —Usy —Ugpy —Usz —Ug1 =0
dusy —Ugy —Uyp —Us3z —Usy =0
4Ugy —Uyy —Usy —Ugz —Ug1 =0
4u; 5, —Ugy —Ugpy —U73 — Uy =0
dug, —U;, —Ugz —Ugq = 373
AUy3 —Up3 —Upg — Uy = 273
4Uyz —Uz3 — U3 —Upg — U =0
U3z —Ug3 —Up3 —Uzs —U3zp =0
4duUpz —Us3 —Uz3 —Uss —Ugp =0
4Us3 — Uz —Us3 —Uss —Usp =0
4Ugz —Uy3 —Us3 —Ugs —Ugy =0
4u;3 —Ugz — U3z —U7s —Usp =0
dugsz —Uy3 —Ugy —Ugy = 373
AUy —Upy —Ups — U3 = 273
AUy — Uz g —Upg —Ups — U3 =0
4U34 —Uyy —Upy —Uzs —Uz3 =0
Uy —Usy —Ugy —Uss —Usz =0
U5y — Ugy —Ugy —Uss —Us3 =0

duUugy — Uy 4 —Ugs —Ug3z = 373
AUys —Ups —Upg — Uy = 273
4Uys —Uzs —Ups — Uy —Upa =0
4uUz 5 — Uys — Ups — Uz —Uzg =0
Uy — Uss — Uzs — Uy —Ugg =0
4uUs 5 — Ugs — Ugs — Use —Uss =0
4ugs — Uy5 — Uss — Uge — Usg =0
4u; 5 —Ugs — Ugs — Uz —Usq =0
dugs —Uy5 —Uge —Ugy = 373
AUy — Uz — U7 —Uys = 273
4Uye — Uz — U —Upy —Uzs =0
4uz 6 — Uge — Uz — U3y —Uzs =0
4upe — Usg — Uz — Ugy —Ugs =0
4us e — Uge — Usp — Usy —Uss =0
duge — Uy — u5162_ Ug7 — Ugs = 0
4u; 6 —Uge — Ugpe — U7y —Uy5 =0
duge — Uy 6 —Ugy —Ugs = 373



4uy 7—, Uy 7— Uy g—, Uy g = 273
4Uyy —Uz7 — U7 —Upg — Uz =0
U3z 7 — U7 —Up7 —Uzg —U3e =0
4up7 —Us7 —Uz7 —Usg —Uge =0
4Us7 — U7 — Us7 — Usg —Use =0
4ugy7 —Uy7 —Us7 —Ugg — Uge = 0
4u; 7 —uUg7 —Ugy —U7g — Uy =0

dug,; —U;7 —Ugg —Ugg = 373
4us g —uzg — Uy 7 = 571 (3.197)
dUyg —Uzg —Uypg — Upy = 298
duzg —Uyg — Uyg — Uz 7 = 298
dUyg —Usg — Uzg — Uy 7 = 298
duUusg — Ugg — Ugg — Us 7 = 298
QUgg —U;g — Usg — Ug 7 = 298
du; g —Ugg — Ugg — Uy 7 = 298
dugg —Uy;g —Ugy; = 671

Representing the above system of linear equations in matrix form of 64 x 64

dimension, a large sparse 64 X 64 linear system is obtained.

4 -1 0 0 0 0 0 0 -1 0 O 0 0 0 O
-14 -10 0 0 0 0 0 -10 0 0 0 O
o -14-1050000 0-1- 020 00
o 0 -1 4 -10 00 0 0O 0 0 0 O
o 0 0 -1 4 -10 00 0O 0 0 0 O
o 0 0 0-14-100 00 0 0 0 O
o 0 0 00 -1 4 -10 00 0 0 0 O
Ao o 0 0 00 O -14 0 0O 0 0 0 O
-1 0 0 0 0 0 0 O 4 -10 0 0 0 O
o -1 0 0 00 O0O0-14 -1 0 0 0 O
o 010 0 O0O0OO0CO0O -1 4 0 0 0 O
o 0 0 00 0O OO0 OO TO0C O 4 -1 0 O
o 0 0 00 0 0O O0OO0OTO0OTO -1 4 -1 0
o 0 0 00 0 0O O0 O OO O 0 -1 4 -1
o 0 0 00 0 0O O0 OO0 O 0 0 -1 4
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The spectral radii and convergence results using the newly developed iterative methods,
QAOR method by Wu and Liu (2014), KAOR method by Youssef and Farid (2015) and
RAOR method by Vatti et al. (2018) are computed. The numerical results are presented

and discussed in chapter four.

3.8 Convergence Rate of the New Methods
It is essentially important to know that an iteration method converges as well as the
quest to know how fast it converges. Young (2014), introduced the expression

R()) = —logp(J) (3.198)
This is used to compute the rate of convergence of linear iteration methods of the form
2+ = 17200 1 ¢, where p(J) represents the spectral radius of a particular iteration
method and J converges as long as p(J) < 1. The newly developed parameterized

iterative methods, AOR methods and its variants tend to converge rapidly based on the
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choice of the over relaxation parameter, acceleration parameter and extended
acceleration parameter involved in them.

With the aid of Maple 2017 software, the convergence rates of the proposed EAOR and
REAOR iterative methods derived in this study are calculated using equation (3.198)
with AOR methods for comparison purpose. The computational results of the

comparisons are presented in the next chapter.
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION
4.1  Results of Problem 1 (see page 71)
The spectral radii for the iteration matrices of the proposed EAOR and REAOR
methods were calculated using Maple 2017 software with methods of the classical
AOR, Wu and Liu (2014), Youssef and Farid (2015) and Vatti et al., (2018). The
following notations are used for the comparison and clarity of the results obtained for
the numerical experiments in chapter three;
Jaor = Iteration matrix of the AOR method
Jraor = Iteration matrix of the proposed EAOR method
Jreaor = lteration matrix of the proposed Refinement of EAOR method
Jwu & Liuz014 = Iteration matrix of the QAOR method of Wu and Liu (2014)
Jyoussef & Farid 2015 = Iteration matrix of the KAOR method of Youssef and Farid (2015)
Jvatti et a1, 2018 = lteration matrix of the Refinement of AOR method of Vatti et al.

(2018)

p(Jaor) = Spectral radius of J k.

p(Ueaor) = Spectral radius of Jz40r-

p(Ureaor) = Spectral radius of Jrgior-

p(Jwu & Liuz014) = Spectral radius of Jyy g Liu2014-
p(Jyoussef & Farid 2015) = Spectral radius of Jyousser & Farid,2015-

p(Jvatti et ar,2018) = Spectral radius of Jyace et ar,2018-

In addition to the above, their methods and iteration matrices are represented as:

AOR

25D = ([ — L) [(1 — )] + (0 — 1)L + 0U]z® + (I = rL) wb
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Jaor = U —7L)7(1 - )] + (w — 1)L + wU]
Proposed EAOR:
20D = [ —vL —rL] ' (1 - ) + [w — (v + 1)L + wU]z®
+[I —vL —rL] 'wh
Jeaor =1 —vL —rL] " (1 — ) + [w — (v + 7)]L + wU]
Proposed REAOR

Z*+D = ((I —w+rLD (A -+ [w- W+l + cuU))2 7z +

(1 + (U =@+ ™A= o) +[o—-@+r)L+oU)) U - @+r)L)  wb

Jrgaon = (U = @+ )DL~ ) + [0~ @ +PIL +0U))
QAOR:
20D = (L + ) = rL) I + (0w — )L + 0U]z® + ([(1 + w)]] — L) *wb
Jwugtinzo1a = ([((1 + )]l = L) I + (w = )L + wU]
KAOR:
zED = (A4 =rL) A 471 — o) + (w—1)L + wU]z®
+([A+ ) —7rL) wh

]Youssef&Farid,ZOlS = ([(1 + T)]I - TL)_l[(l +r—w)+(w-7r)L+ (UU]

RAOR:
70D = ((1 — PL™((1 = ) +[w—7]L + wU))Z 200
+(I+[I =rL] (1 — )+ [w—7]L + wUD[I — rL] *wb

Jvatti et al,2018 = ((1 - (T)L)_l((l —w)l+ [w-—-71]L+ a)U))Z

R(Joaor) = Rate of convergence of the QAOR linear iteration matrix Jyy, g Liu2014
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R(Jvatti et ar,2018) = Rate of convergence of the RAOR linear iteration matrix

Jvatti et at.2018

R(Jkaor) = Rate of convergence of the KAOR linear iteration matrix
JYoussef and Farid,2015

R(Jreaor) = Rate of convergence of the REAOR linear iteration matrix Jrgaor

R(Jra0r) = Rate of convergence of the EAOR linear iteration matrix Jgaor

Also, the conditions placed on the coefficient matrix for the various iterative methods
considered for comparison are stated as follows;

AOR

L—matrix: 0 <r<w<1,

Irreducible weak diagonally dominant: 0 <r<land0<w <1

QAOR

L —matrix: 0 <r < w, [w # 0]

Irreducible weak diagonally dominant: —1 <r<landw >0

KAOR

L—matrix: 0<r<w<r+1,[w#0]

Irreducible weak diagonally dominant: 0 < k,and 0 < w

EAOR

L—matrix: 0<v+r<w<1l,v#0andw #0

Irreducible weak diagonally dominant: 0 <v+r <1, 0<w<1and v#0
RAOR

L—matrix: 0<r<wc<1,

Irreducible weak diagonally dominant: 0 <r<land0<w <1

REAOR
108



L—matrix: 0<v+r<w<1l,w#0andv #0

Irreducible weak diagonally dominant: 0 <v+r<1, 0<w <1, v#0andw #0

A point to note is that the rate of convergence of the various iterative methods is best

when the spectral radius is near zero and poorest when is near one.
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4.1.1 Comparison of the Proposed Methods

Table 4.1: Results of spectral radii of EAOR and REAOR iteration matrices

for problem 1

w r v PUEaor) PURrEaor)
0.1 0.04 0.05 0.9549337380 0.9118984439
0.2 0.08 0.10 0.9068702250 0.8224136050
0.3 0.12 0.15 0.8554124670 0.7317304887
0.4 0.16 0.20 0.8000680959 0.6401089581
0.5 0.20 0.25 0.7402111025 0.5479124763
0.6 0.24 0.30 0.6750196533 0.4556515324
0.7 0.28 0.35 0.6033676553 0.3640525275
0.8 0.32 0.40 0.5236168516 0.2741746073
0.9 0.36 0.45 0.4331605794 0.1876280875

Table 4.1 shows the performance of the new Extended Accelerated Over Relaxation and
Refinement of Extended Accelerated Over Relaxation methods for problem 1. For
values of the relaxation parameter w, acceleration parameter r and extended
acceleration parameter v, the outcome clearly reveals that the spectral radius of the

proposed Refined EAOR is lesser than that of EAOR method [p(Jrgaor) <

pUgaor) < 1].
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4.1.2

Comparison of the EAOR Method with variants of AOR Methods

Table 4.2: Results of spectral radii of AOR, its variants and EAOR iteration

matrices for problem 1

w T p(AOR) Pwusriuz014) P(xoussef & Fariaz01s) ¥ p(EAOR)
0.1 0.04 0.9557161302 0.9597924888 0.9574419974 0.05 0.9549337380
0.2 0.08 0.9101858613 0.9255050783 0.9170122503 0.10 0.9068702250
0.3 0.12 0.8633429922 0.8959156995 0.8785470488 0.15 0.8554124670
0.4 0.16 0.8151154107 0.8701178584 0.8418995087 0.20 0.8000680959
0.5 0.20 0.7654242883 0.8474247347 0.8069374273 0.25 0.7402111025
0.6 0.24 0.7141831211 0.8273063106 0.7735414626 0.30 0.6750196533
0.7 0.28 0.6612965781 0.8093469574 0.7416035804 0.35 0.6033676553
0.8 0.32 0.6066591050 0.7932161041 0.7110257234 0.40 0.5236168516
0.9 0.36 0.5501532158 0.7786475031 0.6817186663 0.45 0.4331605794

Table 4.2 shows the various spectral radii of AOR, some of its variants and proposed

EAOR methods for problem 1 with values of the parameters w,v,and r. Obviously,

spectral radius of the proposed EAOR method is smaller than those of the KAOR,

QAOR and AOR methods which inform us that the method of the EAOR has the

tendency to converge faster than the other methods compared.
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4.1.3 Comparison of Refinement of AOR and Refinement of EAOR Methods

Table 4.3: Results of spectral radii of RAOR and REAOR iteration matrices for

problem 1

w r P(Jvatti et at, 2018) v PURrEaor)

0.1 0.04 0.9133933215 0.05 0.9118984439
0.2 0.08 0.8284383021 0.10 0.8224136050
0.3 0.12 0.7453611222 0.15 0.7317304887
04 0.16 0.6644131328 0.20 0.6401089581
0.5 0.20 0.5858743411 0.25 0.5479124763
0.6 0.24 0.5100575304 0.30 0.4556515324
0.7 0.28 0.4373131642 0.35 0.3640525275
0.8 0.32 0.3680352697 0.40 0.2741746073
0.9 0.36 0.3026685609 0.45 0.1876280875

Table 4.3 displays the comparison of the spectral radii of refinement of AOR and

proposed refinement of EAOR schemes for problem 1. The spectral radius of the

proposed REAOR iterative method is smaller in comparison with Vatti et al. (2018)

[pUrgaor) < P(Jvatti et at,2018) < 1] by checking how close their spectrums are to 1

with different values of the parameters.
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Figure 4.1:

The above figure depicts the performance of the spectral radii of problem 1 and
comparison between the newly developed schemes and the methods from existing

literature. It is observed that Jrzaor has the least spectral radius, which shows that
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Spectral Radii of Jrpaor, Ivattiet ar,2018 JEaor: J a0k Jwu & Liu 2014 @Nd

Jyoussef & Farid 2015 1teration Matrices for Problem 1

JrEaor Will outperform all the compared methods.
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4.1.4 Comparison of Rates of convergence of EAOR and Existing Methods

Table 4.4: Results of convergence rate of EAOR and existing methods for problem

1

R(Jgaor) R(Jkaor) R(JEgaor) R(JEgaor) R(JEgaor)

R(Jgaor) R(Jkaor)
0.01782265312 0.01888752647  0.020026763 1.123669011 1.060316873
0.03362119391 0.03762486258  0.042454857 1.262740910 1.128372413
0.04773285302 0.05623497579  0.067824425 1.420917056 1.206089699
0.06042191774 0.07473974392  0.096873047 1.603276603 1.296138331
0.07189886393 0.09316014066  0.130644405  1.817057987 1.402363759
0.08233366291  0.1115164027 0.170683582  2.073071645 1.530569296
0.09186526160  0.1298281821 0.219417975  2.388476026 1.690064295
0.1006084772 0.1481146871 0.280986385  2.792869874 1.897086579
0.1086591047 0.1663948143 0.363351074  3.343954241 2.183668256

The above table presents rates of convergence of the new EAOR method in relation to
some variants of AOR iterative method concerning Problem 1. Apparently, with all
values of the parameters r, @ and v in table 4.4, the proposed EAOR iterative method
will converge quicker by a factor of approximately 1.488296611 than the KAOR

method and 1.980670372 faster than the QAOR method.
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4.1.5 Comparison of Rates of convergence of RAOR and the REAOR Method
Table 4.5: Results of convergence rate of RAOR and REAOR methods

for problem 1

R(vatti et at,2018) R(Jreaor) R(Jreaor)
/RUvatti et a1,2018)
0.039342168 0.040053525 1.018081292
0.08173983 0.084909714 1.038780161
0.127633264 0.135648849 1.062801696
0.177561792 0.193746095 1.091147442
0.232195522 0.26128881 1.12529651
0.292380836 0.341367165 1.167542885
0.359207449 0.438835949 1.22167831
0.43411056 0.56197277 1.294538355
0.519032688 0.726702148 1.400108634

The table above shows rates of convergence of refinement of the proposed Extended
Accelerated Over relaxation method in relation to refinement of AOR method
concerning Problem 1. Evidently, for all values of the parameters r, @ and v the
proposed REAOR method is likely to converge quicker than the RAOR by a factor of

approximately 1.2 times.
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The True Solution of problem 1 by method of finite difference is:

Uq,1

Uz 1
Usq
Uy,2

U3
Uy,3

Uy 3
U3 3

33639875

18302

19040500

9151

42383125

18302

16210750

9151

10697500

9151

12911000

9151

29303875

18302

13668250

9151

25136125

18302

at 10 decimal places

1838.0436564310

2080.7015626707
2315.7646705278

1771.4730630532
1168.9979237242

1410.8840563873
1601.1296579609

1493.6345754562
1373.4086438641

An accuracy of 10 decimal places was utilize to verify the convergence result of

problem 1

4.1.6 Convergence Results Comparison for Problem 1 (see Appendix A)

Table 4.6: Summary of convergence result for problem 1

ITERATIVE

NUMBER OF

CPU TIME
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METHODS ITERATIONS (seconds)

AOR 46 0.672
QAOR 117 0.734
KAOR 75 0.703
EAOR 32 0.515
RAOR 24 0.500

REAOR 17 0.453

The above table displays the summary of the convergence results of the various
methods examined. Analysis of the results reveals that the EAOR method takes a
shorter time (0.515 secs) to compute the 9 x 9 linear system to the desired accuracy
compared to the other AOR-type methods. The REAOR method takes 0.453 secs as
compared to 0.500 secs of RAOR method. This indicates that the new methods

demonstrate efficiency as compared to their counterparts.
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4.2: Results of Problem 2 (see page 84)

421

Comparison of the Two Proposed Methods

Table 4.7: Results of spectral radii of EAOR and REAOR iteration matrices

for Problem 2

w r v PUEaor) PURrEaoR)

0.1 0.04 0.05 0.9690220033 0.9390036428
0.2 0.08 0.10 0.9359663473 0.8760330033
0.3 0.12 0.15 0.9005738634 0.8110332834
0.4 0.16 0.20 0.8625309526 0.7439596442
0.5 0.20 0.25 0.8214516534 0.6747828189
0.6 0.24 0.30 0.7768509636 0.6034974196
0.7 0.28 0.35 0.7281033573 0.5301344989
0.8 0.32 0.40 0.6743746009 0.4547811023
0.9 0.36 0.45 0.6145013535 0.3776119135

Table 4.7 shows the performance of the proposed Extended AOR and refinement of the
Extended AOR methods for problem 2. The results shows that the spectral radius of the
proposed refined EAOR scheme is smaller than the spectral radius of the new EAOR

method.
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4.2.2

Comparison of the new Method with variants of AOR Methods

Table 4.8: Results of spectral radii of AOR, its variants and EAOR iteration

matrices for problem 2

w T p(AOR) p(]Wu &Liu,2014) p(]Youssef&Farid,ZOlS) v p(EAOR)
0.1 0.04 0.9695659299 0.9723678417 0.9707522261 0.05 0.9690220033
0.2 0.08 0.9382651880 0.9487977104 0.9429586969 0.10 0.9359663473
0.3 0.12 0.9060538059  0.9284531175 0.9165095988 0.15 0.9005738634
04 0.16 0.8728842724 0.9107129453 0.8913061678 0.20 0.8625309526
0.5 0.20 0.8387051160 0.8951062120 0.8672593113 0.25 0.8214516534
0.6 0.24 0.8034604202 0.8823532346 0.8407111735 0.30 0.7768509636
0.7 0.28 0.7670892570 0.8700519883 0.8183365049 0.35 0.7281033573
0.8 0.32 0.7295250213  0.8578213961 0.8012888150 0.40 0.6743746009
0.9 0.36 0.6906946434 0.8478005714 0.7811329984 0.45 0.6145013535

Table 4.8 shows the various spectral radii of AOR, its variants and proposed EAOR

methods for problem 2 with different values of all the parameters w,v,and r.

Obviously, spectral radius of the proposed EAOR method is smaller than those of the

existing methods compared which indicates that the proposed EAOR performs better.
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4.2.3 Comparison of Refined AOR with the Proposed Refined EAOR Methods

Table 4.9: Results of spectral radii of RAOR and REAOR iteration matrices for

problem 2

0 r P(Jvatti et at, 2018) v PUREaoR)

0.1 0.04 0.9400580924 0.05 0.9390036428
0.2 0.08 0.8803415630 0.10 0.8760330033
0.3 0.12 0.8209334992 0.15 0.8110332834
0.4 0.16 0.7619269530 0.20 0.7439596442
0.5 0.20 0.7034262716 0.25 0.6747828189
0.6 0.24 0.6455486468 0.30 0.6034974196
0.7 0.28 0.5884259282 0.35 0.5301344989
0.8 0.32 0.5322067567 0.40 0.4547811023
0.9 0.36 0.4770590904 0.45 0.3776119135

Table 4.9 reveals the comparison of the spectral radii of refinement of AOR and
Refinement of EAOR methods for problem 2. The spectral radius of the proposed

REAOR method is lesser in comparison with Vatti et al. (2018) that is to say

pUrgaor) < P(Jvattiet ar, 2018) <1 and this indicates that the proposed REAOR

method performs better than the RAOR method.
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Figure 4.2:  Spectral Radii of Jreaor, Jvattiet a,z018 JEaor Jaor, Jwu & Liu2014
and Jyoussef & Farid 2015 lteration Matrices for Problem 2
Figure 4.2 illustrates the performance of the proposed methods and some variants of
AOR methods with respect to their spectral radii for problem 2. Clearly, the spectral
radius of the Jz4or IS lesser than its counterpart. Likewise, the Jrz40r OUtperformed the

Jvatti et a1, 2018 1N terms of their spectral radii.
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4.2.4 Comparison of Rates of convergence of EAOR and Existing Methods

Table 4.10: Results of convergence rate of EAOR and existing methods for

problem 2
R(Jgaor) R(Jkaor) R(JEgaor) R(JEgaor) R(JEgaor)
R(Jgaor) R(Jkaor)
0.01216941265 0.01289160487  0.020026763 1.123009124 1.060097760
0.02282637200 0.02550732964  0.042454857  1.259059742 1.126725787
0.03224002119 0.03786298222  0.067824425 1.410689561 1.201190680
0.04061849012 0.04997308817  0.096873047 1.581184106 1.285197960
0.04812542888 0.06185102867  0.130644405  1.774903495 1.381027830
0.05435751790 0.07535318054  0.170683582  2.017426391 1.455310717
0.06045479617 0.08706807509  0.219417975  2.279504276 1.582749662
0.06660312563 0.09621091943  0.280986385  2.568930412 1.778371895
0.07170629506  0.1072750154 0.363351074  2.949213259 1.971355170

The above table presents rates of convergence of the new EAOR method in relation to
variants of AOR iterative method concerning Problem 2. Apparently, with different
values of the parameters r, w and v, the proposed EAOR iterative method converges
quicker by a factor of approximately 1.426891940 than the KAOR method and

1.884880041 than the QAOR method.
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4.2.,5 Comparison of Rates of convergence of the RAOR and REAOR Methods

Table 4.11: Results of convergence rate of RAOR and REAOR methods
for problem 2

R(vatti et at,2018) R(Jreaor) R UfaZf:Aaolz)Olg)
0.02684530765 0.02733272292 1.018156442
0.05534879359 0.05747953210 1.038496566
0.08569202205 0.09096132273 1.061491147
0.1180866631 0.1284506220 1.087765702
0.1527814157 0.1708359838 1118172541
0.1900710249 0.2193245825 1.153908559
0.2303081989 0.2756139328 1.196717851
0.2739196161 0.3421975900 1.249262812
0.3214278242 0.4229543123 1.315860920

The table above shows rates of convergence of the proposed REAOR method,

R(Jrgaor) With RAOR method, R(Jraor) concerning Problem 2. Evidently, for all

values of the parameters r, w and v used in table 4.11, the proposed REAOR

method converges quicker than the RAOR method, by a factor of approximately 1.2

times.
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The True Solution of problem 2 by z = A71b is:

Al 1.6995918367
) 1.3314285714
Z3 1.1551020408
Z4 1.1885714286
Zs at 10 decimal places 1.1551020408
Ze | 1.1885714286
Z7 1.1551020408
Zg 1.1885714286
Zg 1.1551020408
Z10 1.1885714286

4.2.6 Convergence Results Comparison for Problem 2 (see Appendix B)

124



Table 4.12: Summary of convergence result for problem 2

ITERATIVE NO OF CPU TIME
METHODS ITERATIONS (seconds)
AOR 60 0.109
QAOR 144 0.375
KAOR 94 0.141
EAOR 43 0.031
RAOR 31 0.062
REAOR 22 0.016

The table above reveals the number of iterations reached for convergence by the various
methods for the linear system consisdered in problem 2. It was observed that the
proposed REAOR has 22 iterations, RAOR method has 31 iterations and the proposed
EAOR has 43 iterations. AOR methods obtained 60 iterations, KAOR obtained 94

iterations while QAOR has 144 iterations.
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4.3: Results of Problem 3 (see page 87)

4.3.1 Comparison of the Proposed Methods
Table 4.13: Results of spectral radii of EAOR and REAOR iteration matrices

for problem 3

w r v PUEaor) PURrEaor)
0.1 0.04 0.05 0.9351778995 0.8745577038
0.2 0.08 0.10 0.8687339784 0.7546987253
0.3 0.12 0.15 0.8007555404 0.6412094354
0.4 0.16 0.20 0.7314112725 0.5349624495
0.5 0.20 0.25 0.6610142142 0.4369397913
0.6 0.24 0.30 0.5901486651 0.3482754469
0.7 0.28 0.35 0.5199440922 0.2703418590
0.8 0.32 0.40 0.4527087726 0.2049452328
0.9 0.36 0.45 0.3934697438 0.1548184393

The above table showing the comparison results of the spectral radii of the new methods
for different values of the parameters (v, and w), reveals that the refinement method
has a lower spectral radius compared to the Extended Accelerated Over Relaxation

method.

126



4.3.2

matrices for problem 3

Comparison of the EAOR Method with variants of AOR Methods
Table 4.14: Results of spectral radii of AOR, its variants and EAOR iteration

0w T p(AOR) P(Uwugrinzora) P(Jvoussef & Faridzo1s) ¥ p(EAOR)

0.1 0.04 0.9362345989  0.9420086521 0.9386768056 0.05 0.9351778995
0.2 0.08 0.8731492477 0.8940791034 0.8824375732 0.10 0.8687339784
0.3 0.12 0.8111584708 0.8539358667 0.8309339876 0.15 0.8007555404
0.4 0.16 0.7508224216  0.8199279315 0.7838666115 0.20 0.7314112725
0.5 0.20 0.6929017621  0.7908297727 0.7409771518 0.25 0.6610142142
0.6 0.24 0.6384289029 0.7657137443 0.7020414568 0.30 0.5901486651
0.7 0.28 0.5887905079  0.7438656759 0.6668630202 0.35 0.5199440922
0.8 0.32 0.5457981563  0.7247275290 0.6352668421 0.40 0.4527087726
0.9 0.36 0.5116886038 0.7078575123 0.6070935758 0.45 0.3934697438

The Comparison results of p(]AOR)' p(]Wu&Liu, 2014), p(]Youssef&Farid, 2015) and

p(Uga0r) displayed in table 4.14 for different values of the parameters (v,r and w),

shows that the EAOR method has a lower spectral radius compared to AOR, QAOR and

KAOR methods.

4.3.3 Comparison of Refinement of AOR and Refinement of EAOR Methods

Table 4.15: Results of spectral radii of RAOR and REAOR iteration matrices for
problem 3
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w r P(] Vatti et al., 2018) v PUREa0R)

0.1 0.04 0.8765352241 0.05 0.8745577038
0.2 0.08 0.7623896088 0.10 0.7546987253
0.3 0.12 0.6579780647 0.15 0.6412094354
0.4 0.16 0.5637343087 0.20 0.5349624495
0.5 0.20 0.4801128520 0.25 0.4369397913
0.6 0.24 0.4075914641 0.30 0.3482754469
0.7 0.28 0.3466742622 0.35 0.2703418590
0.8 0.32 0.2978956275 0.40 0.2049452328
0.9 0.36 0.2618252273 0.45 0.1548184393

Table 4.15 displays the spectral radii of the two refinement methods of AOR method
and the proposed REAOR method. The spectral radius of the REAOR method is smaller
compared to that of the RAOR method, that is to say p(Jreaor) < PUvatti et ar, 2018) <
1, for values of v, r and w. This means that convergence rate of the REAOR iterative

method is faster than the RAOR iterative method.
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Figure 4.3:  Spectral Radii of Jgrpaor, Jvattiet at,2018 JEaor Jaor» Jwu & Liu2014
and Jyoussef & Farid 2015 1teration Matrices for Problem 3

The  above  figure 43 shows the rate of convergence  of

JrEA0R) JVatti et at,2018: JEaoR Jaor: Jwu & Liu2014 @0 Jyoussef & Farid,2015 IN terms of
their spectral radii for problem 3. Due to its minimized spectral radius, the Jrgaor Will

converge faster than the compared methods.
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4.3.4. Comparison of Rates of convergence of EAOR Method and Existing

Methods

Table 4.16: Results of convergence rate of EAOR Method and existing methods for

problem 3

R(Jgaor) R(Jkaor) R(JEgaor) R(JEgaor) R(JEao0r)

R(Jgaor) R(Jkaor)
0.02594510831 0.02748391328 0.0291057651  1.121820913 1.059010950
0.4862405542 0.0543160084 0.0611131918 1.256850982 1.125141438
0.06857474498  0.0804334768 0.0965000478  1.407224304 1.199749801
0.08622431875  0.1057578338 0.1358383506  1.575406481 1.199749801
0.1019169890 0.1301951834 0.1797892015 1.764074893 1.380920529
0.1159335574 0.1536372412 0.2290385709  1.975602026 1.490775082
0.1285054804 0.1759633650 0.2840433520 2.210359831 1.614218687
0.1398252416 0.1970438122 0.3441810897  2.461508994 1.746723664
0.1500541545 0.2167443628 0.4050886575  2.699616408 1.868969750

The rate of convergence results with respect to variants of Accelerated Over Relaxation
method and the Extended Accelerated Over Relaxation method for problem 3 is shown
in the table above. Clearly, it is seen that the rate of convergence of the EAOR iterative
method is quicker than QAOR method by 1.830273870 times and 1.418882018 times

than KAOR method.
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4.3.5. Comparison of Rates of convergence of RAOR and the REAOR Method

Table 4.17: Results of convergence rate of RAOR and REAOR methods
for problem 3

R(Jvattiet al, 2018) R(Jreaor) R(JrEaor)
/R(Jvatti et a1, 2018)
0.0572306268 0.0582115303 1.0171394841
0.1178230317 0.1222263835 1.0373725902
0.1817885844 0.1930000956 1.0616733512
0.2489255333 0.2716767012 1.0913974858
0.3186566684 0.3595784031 1.1284195147
0.3897749197 0.4580771418 1.1752350361
0.4600784000 0.5680867041 1.2347606496
0.5259358713 0.6883621793 1.3088329145
0.5819885108 0.8101773149 1.3920847232

Results concerning the rate of convergence of the Refinement of Accelerated Over
Relaxation (RAOR) method and the Refinement of Extended Accelerated Over
Relaxation (REAOR) method for problem 3 is displayed in the table above. Clearly, the
rate of convergence of the REAOR iterative method is quicker by approximately 1.2

times quicker than the RAOR method.

The True Solution of problem 3 by z=A4"1b is
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Z1 0.7107095747\

z, 1.0878085301
Zz | _ at10 decimal places 1.1093417628
Zy | 1.2217138647

\25 \1.0306242498
Zg 0.4949672605

4.3.6 Convergence Results Comparison for Problem 3 (see Appendix C)
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Table 4.18: Summary of convergence result for problem 3

ITERATIVE NO OF CPU TIME
METHODS ITERATIONS (seconds)
AOR 34 0.391
QAOR 62 0.562
KAOR 43 0.407
EAOR 24 0.375
RAOR 18 0.344
REAOR 13 0.312

The above table displays the summary of the convergence results of the new methods
and some existing methods. The new EAOR method takes a shorter time (0.531 secs) to
compute the 6 x 6 linear system of problem 3 to the desired accuracy compared to the
other AOR-type methods. The REAOR method takes 0.312 secs as compared to 0.344

secs of RAOR method.
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4.4: Results of Problem 4 (see page 87)
441 Comparison of the Two Proposed Methods

Table 4.19: Results of spectral radii of EAOR & REAOR iteration matrices for
problem 4

w r v PUEaor) PURreaor)
0.10 0.04 0.05 0.9863632718 0.9729125040
0.20 0.08 0.10 0.9715574788 0.9439239346
0.30 0.12 0.15 0.9554099845 0.9128082385
0.40 0.16 0.20 0.9377087689 0.8792977353
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0.50 0.20 0.25 0.9181893627 0.8430717057

0.60 0.24 0.30 0.8965157199 0.8037404360
0.70 0.28 0.35 0.8722511973 0.7608221512
0.80 0.32 0.40 0.8448125547 0.7137082526
0.90 0.36 0.45 0.8133929469 0.6616080861

Table 4.19 shows the performance of the proposed EAOR and Refinement of the
Extended AOR methods for problem 4. The results reveals that the spectral radius of the

proposed refined EAOR scheme is lesser than that of the new EAOR method.
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4.4.2

Comparison of the EAOR Method with Some Variants of AOR Method

Table 4.20: Results of spectral radii of AOR, its variant and EAOR iteration
matrices for problem 4

0 T p(AOR) PUwusriuz014) P(youssef s Faridz01s) ¥ p(EAOR)
0.10 0.04 0.9866661234 0.9878978038 0.9871877039 0.05 0.9863632718
0.20 0.08 0.9728500538 0.9775107211 0.9749284036 0.10 0.9715574788
0.30 0.12 0.9585228978 0.9684975404 0.9631856562 0.15 0.9554099845
0.40 0.16 0.9436532142 0.9606020877 0.9519262454 0.20 0.9377087689
0.50 0.20 0.9282067049  0.9536282492 0.9411198245 0.25 0.9181893627
0.60 0.24 0.9121458583 0.9474233207 0.9307386063 0.30 0.8965157199
0.70 0.28 0.8954295331 0.9418666115 0.9207570932 0.35 0.8722511973
0.80 0.32 0.8780124723 0.9368614631 0.9111518412 0.40 0.8448125547
0.90 0.36 0.8598447300 0.9323295455 0.9019012527 0.45 0.8133929469

Table 4.20 shows the various spectral radii of AOR, proposed EAOR and some variants

of AOR methods for problem 4 with values of the parameters w,v,and r. The table

clearly shows that the spectral radius of the proposed EAOR method is smaller than

those of other methods compared.
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4.4.3 Comparison of Refinement of AOR and Refinement of EAOR Methods

Table 4.21: Results of spectral radii of RAOR and REAOR iteration matrices for
problem 4

® r P(vatti et at, 2018) v PURreaor)
0.10 0.04 0.9735100390 0.05 0.9729125040
0.20 0.08 0.9464372271 0.10 0.9439239346
0.30 0.12 0.9187661457 0.15 0.9128082385
0.40 0.16 0.8904813886 0.20 0.8792977353
0.50 0.20 0.8615676870 0.25 0.8430717057
0.60 0.24 0.8320100668 0.30 0.8037404360
0.70 0.28 0.8017940488 0.35 0.7608221512
0.80 0.32 0.7709059014 0.40 0.7137082526
0.90 0.36 0.7393329597 0.45 0.6616080861

Table 4.21 reveals the comparison of the spectral radii of Refinement of AOR and
Refinement of Extended AOR methods for problem 4. The spectral radius of the
proposed REAOR method is smaller in comparison with Vatti et al. (2018), that is to
say p(Jreaor) < p(]Vatti et al,_zmg) < 1 and this indicates that the proposed refinement
of EAOR method will converge faster than the refinement of AOR method developed

by Vatti et al. (2018).
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Figure 4.4:  Spectral Radii of Jrgaor, Jvattiet at,2018:JEaor Jaor, Jwu & Liu2014

and Jyoussef & Farid 2015 1teration Matrices for Problem 4
Figure 4.4 shows the performance of the proposed methods Jrz40r and Jg40r With other
methods in the literature in terms of the spectral radii. Jrz40r performs better than the

refinement of AOR, Jvattietar201s- Jeaor  @also performs better than  J4or,

]Wu & Liu,2014 and ]Youssef& Farid,2015-
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4.4.4 Comparison of Rates of Convergence of EAOR Method and Existing

Methods

Table 4.22: Results of convergence rate of EAOR method and existing methods for

problem 4
R(]QAOR) R(]KAOR) R(]EAOR) M M
R(Jgaor) R(Jkaor)
0.00528798005  0.00560026271 (0059631075  1.127672087  1.064790672
0.00987847067 ~ 0.01102727667 0125315008  1.268566889  1.136409394
0.01390147788  0.01628999357 (0198102244 1425044486 1216097742
0.01745647383  0.02139669915 (1279320227  1.600095356  1.305436063
0.02062089237  0.02635507816 5370677429  1.797581900  1.406474406
0.02345592938  0.03117227152 4 0474420009  2.022605463  1.521932429
0.02601059826  0.03585492680  § 593584757  2.282086137  1.655516577
002832462497 004040924290 ) 1732306407  2.585723228  1.812447734
0.03043055278  0.04484100986  ; 5gog995978  2.947682168  2.000392009

It is shown that the EAOR iterative method converges quicker by a factor of

approximately 1.457721892 quicker than the KAOR method and 1.895228636 faster

than the QAOR method.
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445 Comparison of Rates of convergence of RAOR and the REAOR Method
Table 4.23: Results of convergence rate of RAOR & REAOR methods for problem
R(]REAOR)

R(Jvatti et at,2018) R(JRreaor) RU vacti ot at.2018)
0.0116595656 0.0119262150 1.0228695827
0.0239081855 0.0250630016 1.0483021199
0.0367950159 0.0396204489 1.0767884701
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0.0503751530

0.0647105976

0.0798714190

0.0959371715

0.1129986297

0.1311599324

0.0558640454

0.0741354858

0.0948841818

0.1187168515

0.1464792815

0.1793991956

1.1089603124

1.1456467498

1.1879616392

1.2374437310

1.2962925468

1.3677896315

Table 4.23 shows the different rates of convergence of the new refinement of Extended
AOR method in relation to the existing RAOR method for Problem 4. Obviously, with
different values of the parameters r, w and v, it is easily seen that the new refinement
of EAOR method appears to converge quicker by a ratio of 1.2328897476 times

quicker than the RAOR method.
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The True Solution by method of finite difference for Problem 4 is:

U g 0.1851621840 |
Uy 1 0.1867937083
Uz 0.1743247547
a1 0.1463767056
u
25 0.0992822439
U
" 0.3574358687
2,2
Us 2 03598044227
Uy o 0.3395021150
Us 0.2928184937
U3 0.2123963269
u
u2‘3 at 10 decimal places | 0.5185943370
33| = 0.5260250607
Uy 3
y 0.5068066957
53
Up g 0.4575476376
Up 4 0.3735473067
Uz g 0.6564256370
Usq 0.6867597253
Us4 0.6766755149
Uy
0.6362085311
Uy s
u 05621772441
3,5
Uy s 0.8431284475
Us s 0.8523659017
0.8458519157
0.8221319182
07762326159

An accuracy of 10 decimal places was utilize to verify the convergence result,
refinement of EAOR reaches convergence at the 54" iteration, EAOR at 107" iteration
and AOR at the 155" iteration.

4.4.6 Convergence Results Comparison for Problem 4 (see Appendix D)
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4.4.6 Convergence Results Comparison for Problem 4 (see Appendix D)

Table 4.24: Summary of convergence result for problem 4

ITERATIVE NO OF CPU TIME
METHODS ITERATIONS (seconds)
AOR 155 0.640
QAOR 350 1.281
KAOR 237 0.906
EAOR 107 0.437
RAOR 78 0.375
REAOR 29 0.360

Table 4.24 shows summary of the convergence results for all the methods compared for
problem 4. Method of the proposed EAOR achieved the desired result after 0.437 secs
with 107 iterations for the 25 x 25 linear system against 0.640 secs for AOR with 155
iterations,

0.906 secs for KAOR with 237 iterations and 1.281 secs for QAOR with 350 iterations.
The proposed REAOR method takes a shorter time, 0.360 secs to attain the desired
accuracy with 29 iterations in comparison of 0.375 secs with 78 iterations for the RAOR

method.
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4.5: Results of Problem 5 (Application Problem 1, see page 94)

45.1 Comparison of the Proposed Methods

Table 4.25: Results of spectral radii of EAOR and REAOR iteration matrices

for problem 5

w r v PUEaor) PUREaor)

01 0.04 0.05 0.9275147621 0.8602836340
0.2 0.08 0.10 0.8540611607 0.7294204663
0.3 0.12 0.15 0.7791350729 0.6070514619
0.4 0.16 0.20 0.7024538135 0.4934413600
0.5 0.20 0.25 0.6237494155 0.3890633334
0.6 0.24 0.30 0.5427088651 0.2945329123
0.7 0.28 0.35 0.4589180368 0.2106057645
0.8 0.32 0.40 0.3717692252 0.1382123568
0.9 0.36 0.45 0.2802590419 0.0785451306

Table 4.25 shows the performance of the proposed EAOR and REAOR methods for
problem 5 with varied values of the relaxation parameter w, acceleration parameter r
and extended acceleration parameter v. Clearly, the spectral radius of the proposed

REAOR is lesser than that of EAOR method [p(Jreaor) < PUra0r) < 1].
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45.2

Comparison of the EAOR Method with variants of AOR Methods

Table 4.26: Results of spectral radii of AOR, its variants and EAOR iteration

matrices for problem 5

0w T P(AOR) P(Uwugrinzorta) P(Jyoussef &Faridzo15) ¥ P(EAOR)

0.1 0.04 0.9276375964  0.9342167570 0.9304212907 0.05 0.9275147621
0.2 0.08 0.8551033965  0.8793214233 0.8658726450 0.10 0.8540611607
0.3 0.12 0.7821384274  0.8327052057 0.8056467754 0.15 0.7791350729
0.4 0.16 0.7086250476  0.7925934316 0.7492571586 0.20 0.7024538135
0.5 0.20 0.6344854568  0.7576992354 0.6963137307 0.25 0.6237494155
0.6 0.24 0.5596582442  0.7270594422 0.6464884762 0.30 0.5427088651
0.7 0.28 0.4840893261  0.6999365335 0.5994992209 0.35 0.4589180368
0.8 0.32 0.4077273884  0.6757553224 0.5550999467 0.40 0.3717692252
0.9 0.36 0.3492485491  0.6540602141 0.5130741955 0.45 0.2802590419

The Comparison results of p(]AOR): p(]Wu&Liu,ZOM): p(]Youssef&Farid,ZOlS)

and

pEeaor) displayed in table 4.26 for different values of the parameters (v,r and w),

shows that the p(Jgaor) has a lower spectral radius compared to

p(Jwu & Liu,2014)

and

p (]Youssef& Farid,2015)

such

Uwu & Liuzo14) < P(youssef& Farid2015) < PUaor) < PUraor) < 1.
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45.3 Comparison of Refinement of AOR and Refinement of EAOR Methods

Table 4.27: Results of spectral radii of RAOR and REAOR iteration matrices for
problem 5

o r P(Jvatti et at, 2018) v PURrEaor)

0.1 0.04 0.8605115102 0.05 0.8602836340
0.2 0.08 0.7312018186 0.10 0.7294204663
0.3 0.12 0.6117405196 0.15 0.6070514619
0.4 0.16 0.5021494581 0.20 0.4934413600
0.5 0.20 0.4025717949 0.25 0.3890633334
0.6 0.24 0.3132173503 0.30 0.2945329123
0.7 0.28 0.2343424757 0.35 0.2106057645
0.8 0.32 0.1662416233 0.40 0.1382123568
0.9 0.36 0.1219745491 0.45 0.0785451306

Table 4.27 displays the comparison of the spectral radii of refinement of AOR and
proposed refinement of EAOR schemes for problem 5. The spectral radius of the
proposed REAOR iterative method is smaller in comparison with Vatti et al. (2018)
[pUreaor) < P(vatti et at,z018) < 1] by checking how close their spectrums are to 1

with the different values of the parameters.
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Figure 4.5: Spectral Radii of Jrgaor, Jvattiet at,2018 JEaor Jaor, Jwu g vLiu2014 @Nd
Jyoussef & Farid 2015 Iteration Matrices for Problem 5

Figure 4.5 illustrates the performance of the proposed methods and some variants of

AOR methods with respect to their spectral radii for problem 5. Clearly, the spectral

radii of the Jz40r is smaller than those of its counterpart. Likewise, the Jreaor

outperformed the Jyatti et a1,2018 IN terms of the spectral radii.
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4.5.4 Comparison of Rates of Convergence of EAOR and Existing Methods

Table 4.28: Results of convergence rate of EAOR and existing methods for

problem 5
R(Jgaor) R(Jkaor) R(JEgaor) RUEa0r) RUka0r)
R(Jga0r) R(Jkaor)
0.02955234706  0.03132036027  0.9275147621 1.105806230 1.043384215
0.05585234580 0.06254598055  0.8540611607 1.226645483 1.095370591
0.07950872032 0.09385532683  0.7791350729 1.363212047 1.154833178
0.1009495311 0.1253690990 0.7024538135 1.519395125 1.223445224
0.1205031510 0.1571950408 0.6237494155 1.701116084 1.304047808
0.1384300811 0.1894392121 0.5427088651 1.917452349 1.401151753
0.1549413377 0.2222113770 0.4589180368 2183180279 1.522266220
0.1702105250 0.2556288144 0.3717692252 2 524676801 1.681056827
0.1843822678 0.2898198272 0.2802590419 2 996168631 1.906151047

The above table displays the convergence rates of the new REAOR method in
comparison with the classical AOR method for Problem 5. It is observed that the ratio
of convergence rate of the EAOR iterative method with respect to KAOR method is

1.370189652 and 1.837517003 with respect to QAOR method.
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45.5 Comparison of Rates of convergence of RAOR and REAOR Method
Table 4.29: Results of convergence rate of RAOR and REAOR methods

for problem 5

R(vatti et at,2018) R(Jreaor) R(Jreaor)
/RUvatti et a1,2018)
0.0652433162 0.0653583390 1.0017629828
0.1359627371 0.1370220553 1.0077912389
0.2134327524 0.2167744907 1.0156571017
0.2991670016 0.3067644510 1.0253953454
0.3951566560 0.4099796966 1.0375118079
0.5041541887 0.5308661683 1.0529837502
0.6301489863 0.6765297459 1.0736028473
0.7792602290 0.8594531274 1.1029090096
0.9137307787 1.1048807338 1.2091972380

The above table displays the convergence rates of the new REAOR, R(Jrgaor) mMethod
in comparison with refinement of AOR method, R(Jr40r) for Problem 5. Obviously,
the convergence rate of the proposed refinement of EAOR method is faster than the

refinement of AOR method by a factor of 1.0585345913.

45.6 Convergence Results Comparison for Problem 5

The True Solution of problem 5 (Application Problem 1) by z = A~1b is
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= —4.1235541942 + 0.123554194 2«

X2 —0.2485771435 + 0.2485771435a
X3 0.7825179488 + 1.2174820512a
X4 3.6052817208 + 0.3947182792a
Xs 6.6566736561 + 0.3433263439a
X6 | _atiodecimalplaces | 67823343544 + 2.2176656456a
T —2.8764458058 — 1.1235541942a
X, 1.2485771435 — 1.2485771435a
X3 5.2174820512 — 3.2174820512a
X 43947182792 — 0.3947182792a
Xs 8.3433263439 — 1.3433263439%
% 10.2176656456 — 1.2176656456a

An accuracy of 10 decimal places was utilize to verify the convergence result and after
some operations, the true solution for the fuzzy linear system becomes
x; = (—4.1235541942 + 0.1235541942a, —2.8764458058 — 1.1235541942a)
x, = (—0.2485771435 + 0.2485771435a,1.2485771435 — 1.2485771435a)
x3 = (0.7825179488 + 1.2174820512a,5.2174820512 — 3.2174820512«)
x, = (3.6052817208 + 0.3947182792a,4.3947182792 — 0.3947182792«)
xs = (6.6566736561 + 0.3433263439«, 8.3433263439 — 1.3433263439%)

x¢ = (6.7823343544 + 2.21766564560a,10.2176656456 — 1.2176656456«)
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45.6 Convergence Results Comparison for Problem 5

Table 4.30: Summary of convergence result for problem 5

ITERATIVE NO OF CPU TIME
METHODS ITERATIONS (seconds)

AOR 32 0.516
QAOR 50 0.734
KAOR 34 0.594
EAOR 18 0.484
RAOR 16 0.469
REAOR 10 0.453

The above table displays the number of iterations and computational time of the various

methods to attain convergence. It is observed that the EAOR method takes a shorter

time to compute the 12 x 12 linear system to the desired accuracy compared to the

other methods examined. Similarly, the refinement of the Extended Accelerated Over-

Relaxation (REAOR) method takes 0.453 secs as compared to 0.469 secs of refinement

of AOR (RAOR) method. This indicates that the new methods demonstrate efficiency

as compared to their counterparts.
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4. 6: Results of Problem 6 (Application Problem 2, see page 97)

4.6.1 Comparison of the Proposed Methods

Table 4.31: Results of spectral radii of EAOR and REAOR iteration matrices

for roblem 6

w r v PUEaor) PURrEaoR)

0.1 0.04 0.05 0.9936764826 0.9873929521
0.2 0.08 0.10 0.9867694121 0.9737138726
0.3 0.12 0.15 0.9791905790 0.9588141901
0.4 0.16 0.20 0.9708322197 0.9425151988
0.5 0.20 0.25 0.9615610144 0.9245995844
0.6 0.24 0.30 0.9512096225 0.9047997459
0.7 0.28 0.35 0.9395644282 0.8827813147
0.8 0.32 0.40 0.9263472516 0.8581192305
0.9 0.36 0.45 0.9111870362 0.8302618150
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The above table shows the comparison of the spectral radius of the proposed EAOR
method and the Refinement of EAOR method for problem 6, with different values of
the relaxation parameter w, acceleration parameter r and extended acceleration
parameter v, It is observed that spectral radii of both Jz4or and Jrgaor are lesser
than 1, but the rate of convergence of the new REAOR method is faster than the new

EAOR method since p(Jrpaor) < PUgaor) < 1.
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4.6.2

Comparison of the EAOR Method with variants of AOR Methods

Table 4.32: Results of spectral radii of AOR, its variants and EAOR iteration

matrices for problem 6

0w T P(AOR) P(Uwugrinzorta) P(Ivoussef & Faridz015) ¥ p(EAOR)

0.1 0.04 0.9938273704 0.9943982314 0.9940691300 0.05 0.9936764826
0.2 0.08 0.9874145348 0.9895797250 0.9883803046 0.10 0.9867694121
0.3 0.12 0.9807466872 0.9853907711 0.9829186891 0.15 0.9791905790
0.4 0.16 0.9738077346 0.9817154450 0.9776706591 0.20 0.9708322197
0.5 0.20 0.9665801497 0.9784646603 0.9726236769 0.25 0.9615610144
0.6 0.24 0.9590448011 0.9755688214 0.9677661842 0.30 0.9512096225
0.7 0.28 0.9511807589 0.9729727661 0.9630875067 0.35 0.9395644282
0.8 0.32 0.9429650693 0.9706322063 0.9585777699 0.40 0.9263472516
0.9 0.36 0.9343724943 0.9685111731 0.9542278247 0.45 0.9111870362

Table 4.32 shows the various spectral radii of AOR, some of its variants and proposed

EAOR methods for problem 6 with values of the parameters w, v,and r. Obviously,

spectral radius of the proposed EAOR method is smaller than those of the KAOR,

QAOR and AOR methods which reveals that the rate of convergence of the proposed

EAOR is method faster than the other methods compared.
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4.6.3 Comparison of Refinement of AOR and Refinement of EAOR Methods

Table 4.33: Results of spectral radii of RAOR and REAOR iteration matrices for

problem 6

W r P(vatti et at, 2018) v PURrEaor)

0.1 0.04 0.9876928421 0.05 0.9873929521
0.2 0.08 0.9749874636 0.10 0.9737138726
0.3 0.12 0.9618640645 0.15 0.9588141901
0.4 0.16 0.9483015040 0.20 0.9425151988
0.5 0.20 0.9342771858 0.25 0.9245995844
0.6 0.24 0.9197669305 0.30 0.9047997459
0.7 0.28 0.9047448361 0.35 0.8827813147
0.8 0.32 0.8891831220 0.40 0.8581192305
0.9 0.36 0.8730519581 0.45 0.8302618150

Table 4.33 displays the comparison of the spectral radii of Refinement of AOR and
proposed Refinement of EAOR schemes for problem 6. The spectral radius of the
proposed REAOR iterative method is smaller in comparison with Vatti et al. (2018)
[pUrgaor) < P(Jvatti et at,2018) < 1] by checking how close their spectrums are to 1

with different values of the parameters.
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Figure 4.6:  Spectral Radii of Jrgaor, Jvatti et at,2018: JEaor Jaor, Jwu & Lin2014
and Jyoussef & Farid 2015 1teration Matrices for Problem 6
The above figure depicts the performance of the spectral radii of problem 6 and
comparison between the newly developed schemes and the methods from existing
literature. It is observed that Jrzaor has the least spectral radii, which shows that

JrEaor Will outperform all the compared methods.
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4.6.4 Comparison of Rates of Convergence of EAOR and Existing Methods

Table 4.34: Results of convergence rate of EAOR and existing methods for

problem 6
R(Jqaor) R(Jkaor) R(JEaor) RUEa0r) RUgaor)
R(Jgaor) R(Jkaor)
0.002439656786 0.002583412651 0.0027549885 1.129252490  1.066414419
0.004549211328 0.005075917346 0.0057843213 1.271499801  1.139561759
0.006391509525 0.007482407230 0.0091327736 0.0091327736 1.220566233
0.008014376342 0.009807418243 0.0128558189  1.604094736  1.310826008
0.009454855355 0.01205516246  0.0170231531 1.800466793  1.412104827
0.01074208793  0.01422955713  0.0217237650  2.022303777  1.526664871
0.01189931564  0.01633425083 0.0270734339 2.275209324  1.657464072
0.01294530257 0.01837264683  0.0332261827 2.566659413  1.808459228
0.01389536474  0.02034792383  0.0403924678  2.906902305  1.985090378

The above table presents rates of convergence of the new EAOR method in relation to
AOR iterative method concerning Problem 6. The proposed EAOR iterative method
converges 1.889475571 quicker than the QAOR method and 1.458572422 quicker than

the KAOR method.
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4.6.5 Comparison of Rates of convergence of AOR and the EAOR Method

Table 4.35: Results of convergence rate of RAOR & REAOR methods for problem

6
R(Jvatti et at.2018) R(JrEaor) R Uljil;?aoli)ow)
0.0053780936 0.0055099770 1.0245223441
0.0110009684 0.0115686425 1.0516021923
0.0168863003 0.0182655472 1.0816784510
0.0230535607 0.0257116377 1.1153000663
0.0295242561 0.0340463061 1.1531638926
0.0363222092 0.0434475300 1.1961698094
0.0434738870 0.0541468679 1.2455032574
0.0510087894 0.0664523654 1.3027630357
0.0589599093 0.0807849355 1.3701672292

The table above shows rates of convergence of REAOR method in relation to RAOR
method concerning Problem 6. Evidently, for all values of the parameters r, w and v
the proposed REAOR method is likely to converge quick as the RAOR by a factor of

approximately 1.2 times.
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4.6.6 Convergence Results Comparison for Problem 6

Table 4.36: Summary of convergence result for problem 6

ITERATIVE NUMBER OF CPU TIME
METHODS ITERATIONS (seconds)
AOR 448 0.718
QAOR 985 1.156
KAOR 724 1.094
EAOR 300 0.531
RAOR 226 0.500
REAOR 159 0.468

The above table displays the summary of the convergence results of the various
methods examined. The proposed EAOR method takes a shorter time (0.531 secs) to
compute the 64 x 64 linear system of problem 6 to the desired accuracy compared to
the other AOR-type methods. Similarly, the REAOR method takes 0.468 secs as

compared to 0.500 secs of RAOR method.
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4.7  Discussion of Results

In Table 4.1, using different values of acceleration parameter () starting from 0.04 to
0.36, over-relaxation parameter (w) starting from 0.1 to 0.95 and the extended
acceleration parameter (v) ranging from 0.05 to 0.45, spectral radius of the EAOR
iteration matrix is compared with that of its Refinement version. This is mainly to
ascertain their performance with regards to problem 1. From the results, the REAOR
method has a lower spectral radius which depicts that the Refinement method will
converge to the true solution faster than the new EAOR method. Similarly, the same
deductions can be made for Tables 4.7, 4.13, 4.19, 4.25 and 4.31 for problems 2 to 6
respectively. Since the results in the tables above shows that Jz4or has a greater
spectral radius compared t0 Jrgaor, IMplying that Jrraor Will definitely converge to

the true solution faster than Jg4or-

In Table 4.2 the spectral radius of the new EAOR method Jgz4or 1S compared with
spectral radii of AOR method J,0r and some variants of AOR method Jiwy g Liu, 2014
and Jyoussef& Farid, 2015- 1NiS comparison is necessary so as to verify if the proposed
method has been able to achieve the aim it was developed for, implying that apart from
the method been convergent, it must also converge quicker than the AOR and AOR-
type methods. From observation, it is seen that the spectral radius of Jz4or IS smaller
than 1 for all values chosen for the parameters and this implies that the new EAOR
method is convergent. Furthermore, comparing spectral radius of Jz4or and those of
Jaor: Jwu g Liu, 2014 AN Jyoussef& Farid, 2015 and checking how close their spectrum is
to zero, reveals that the Jz4or cONverges faster than the others. This is due to the fact
that it has a lower spectral radius compared to the other methods examined. The result
affirms the superiority of the proposed EAOR method over the existing methods. Result

in Table 4.2 is based on a discretized linear system in problem 1. Also in Tables 4.8,
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4.14, 4.20, 4.26 and 4.32, spectral radius of Jgsor IS compared with those of J4or,
Jwu & Liuzo1s4 aNd Jyoussef& Farid 2015 fOr problems 2 to 6. This is to further verify the
efficiency of the method for linear systems with different coefficient matrices. The
results shows that the rate of convergence of the Jz40r IS faster when compared with the

other methods.

In Tables 4.3 and 4.21, the spectral radius of the REAOR iteration matriX Jrgaor IS
compared with the spectral radius of the RAOR iteration matriX Jyatti et a1,2018 Dased
on the discretized linear systems of problems 1 and 4. Also, in Tables 4.9 and 4.15 the
spectral radius of Jrgaor is compared with spectral radius of Jyai et a1,2018 Pased on
the linear systems in problems 2 and 3. Again, in Tables 4.27 and 4.32, comparison of
the spectral radii between Jrgaor @Nd Jyatti et ar,2018 Dased on the fuzzy linear system
in Problem 5 and application of a real world problem considered in problem 6 is
presented. This is to ascertain the performance of the new refinement method with
existing refinement method in terms of efficiency and accuracy. From the results, it is
observed that the new refinement method exhibits faster convergence since its spectral
radius is lower compared to that of Refinement of AOR by Vatti et al. (2018).

Figures 4.1 to figure 4.6 illustrate the presented spectral radius results for problems 1 to
6 for clarity of the tabulated results. From the figures, we observed that the refinement
of the proposed method has the least spectral radii in all the figures. It is also noted that
the EAOR method outperformed the other variants of AOR method compared in the

existing literature.

Apart from establishing the fact that the EAOR method converges quicker than existing
methods, it is also important to compare its rate of convergence with those of existing

methods. Tables 4.4, 4.10, 4.16, 4.22, 4.28 and 4.34 display the ratio of convergence
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rate with respect t0 Jraor, Joaor aNd Jxaor for problems 1 to 6 respectively. Despite
the fact that the rate of convergence varies with different values of the parameters
(v,rand w), the rate of the g0 is quite faster in comparison with Joa0r and Jxaor
which confirms the superiority of the new EAOR method over the KAOR and QAOR
method. In all, EAOR method converges at 1.4 times faster than the KAOR method and

1.8 times quicker than QAOR method.

The rate of convergence of Jrraor aNd Jyatti et ar,2018 fOr problems 1 to 6 are shown in
Tables 4.5, 4.11, 4.17, 4.23, 4.29 and 4.35. The results from the tables indicate that the
rate of convergence of proposed Refinement of EAOR method is higher than that of the
Refinement of AOR method. Despite the fact that the rate of convergence varies with
different values of the parameters (v, r and w), the rate of the Jrp4or IS quite faster in
comparison With Jyati et ar,2018 Which further proves the efficiency of the REAOR
method against the RAOR method. The REAOR method converges at approximately

120% faster than the RAOR method.

Tables 4.6, 4.12, 4.18, 4.24, 4.30 and 4.36 presented the convergence results of the six
numerical tests performed. From the tabulated results of problem 1 in Table 4.6, EAOR
converges after 56 iterations, REAOR converges after 29 iterations, AOR converges
after 81 iterations, RAOR converges after 41 iterations, QAOR converges after 196
iterations and KAOR converges after 127 iterations. The respective time elapsed (in
seconds) by each of the methods is 0.266, 0.094, 0.296, 0.125, 0.734, and 0.360.
Similarly, the convergence results were also presented for problems 2, 3, 4, 5, and 6 in
Tables 4.12, 4.18, 4.24, 4.30 and 4.36. The results indicates that the proposed (EAOR
and REAOR) iterative methods requires less number of iterations to reach convergence

than similar methods.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATION

51  Conclusion

In this thesis, iterative solution of large and sparse n X n linear systems were studied to
improve the rate of convergence of a family of Accelerated Over- Relaxation (AOR)
iterative method. We have been able to develop an efficient iterative method, analyze
for convergence of some special matrices and perform six numerical tests including
fuzzy linear system problem and heat transfer problem. The new iterative method called
Extended Accelerated Over Relaxation (EAOR) iterative method was developed by
introducing a new acceleration parameter to the family of two-parameter Accelerated
Over Relaxation iterative method. The developed EAOR iterative method was analyzed
for convergence of L, M, and irreducible diagonally weak dominant matrices.
Furthermore, Refinement of the Extended Accelerated Over-Relaxation (REAOR)
iterative method was developed to reduce the residual in the iteration process. The
convergence of the L, M, and irreducible diagonally weak dominant matrices was also

studied and confirmed for the REAOR iterative method.

Six numerical tests of partial differential equations, fuzzy linear system, and an
application problem of heat transfer were used to validate the efficiency of the
developed method and its refinement. In problem 1, second-order partial differential
equation was discretized with finite difference procedure to a 9 x 9 linear system whose
coefficient matrix is an L matrix, problem 2 considered a 10 x 10 linear system whose
coefficient matrix is an M matrix, problem 3 also considered 6 X 6 linear system with
an irreducible weak diagonally dominant coefficient matrix, and another second-order

partial differential equation discretized to 25 x 25 linear systems whose coefficient
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matrix is an M matrix. We further considered a 6 x 6 fuzzy linear system which was
transformed to an extended 12 x 12 matrix, and a metal plate heat transfer problem
modeled into a two-dimensional Laplace equation which was discretized to a 64 X 64

linear system of equations.

We computed the spectral radii of the coefficient matrices in each of the problems
mentioned above with the proposed EAOR and the refined version called REAOR
iterative methods at varying values of parameters w, r, and v. In contrast, the results of
the spectral radii of EAOR and REAOR were compared with the spectral radii of AOR
and some of its variants to examine how soon the convergence will be for the compared
methods. From all the numerical results, especially indications of small spectral radii of
the developed methods, we proved that REAOR converges faster than EAOR, and in
general, EAOR converges faster than AOR and its variants. As reported by Sebro
(2018), numerical methods that register small numbers of iterations will require less
computational storage. Then, we can infer that the developed EAOR and REAOR
iterative methods with lower spectral radii will have less storage capacity,
computational time and number of iterations, thereby converging faster than the

methods considered in literature.

5.2 Recommendation
Further research on investigation of convergence of the proposed Extended Accelerated
Over-Relaxation iterative method for Hermitian and H matrices is recommended, so as

to accommodate more classes of matrices.
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5.3

Contributions to Knowledge

This research work has contributed the following to the body of existing knowledge;

An efficient iterative method that shows an indication of a small spectral radius,
which enhances convergence rate was developed for finding solution to linear
systems.

Conditions placed on the coefficient matrix that would enable convergence of
the Extended Accelerated Over-Relaxation method is established. In all, the
proposed EAOR method converges faster than some existing methods reviewed
in the work. As indicated in the obtained result, presented in Tables 4.4, 4.10,
4.16, 4.22, 4.28 and 4.34, the method converges approximately 1.8 times or
180% faster than the iterative method of Wu and Liu (2014) and 1.4 times or
140% faster than the iterative method of Youssef and Farid (2015).

A Refinement form of the proposed iterative method called REAOR, that
drastically reduce the number of iterations has been developed for L, M and
irreducible diagonally dominant matrices. Analysis of the result proves this, in

the following number of iterations reached to obtain a desired result;

The method of Wu and Liu (2014) - 985 iterations
The method of Youssef and Farid (2015) - 724 iterations
The proposed Refinement method - 159 iterations

Establishment of convergence theorems for L-matrix, M-matrix and weak
Irreducible diagonally dominant matrix with respect to the Extended Accelerated
Over-Relaxation and its Refinement.

Some numerical experiments for the purpose of evaluating and validating the

new methods has been carried out.
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APPENDIX A
4.1.6 Convergence Results Comparison for Problem 1

4.1.6.1 Convergence result of the refinement of AOR and EAOR iterations for

problem 1

No. .Of Mesh Points RACR REAOR
Iterations
1236.4687500000

ull 1291.0437500000 1304.9526367188
u2l 1502.0940625000 1412.2286865234
u3l 1056.2583750000 1638.1896817017
ul? 5024807343750 1184.4412795105

1 u22 933.6835631250 631.3152231436
u32 1235.8586281875 1067.8795106394
ul3 1281 5848900062 1367.5862175121
u23 1254.3551146256 1386.3523976543
u33 1336.1252975789
ull 1606.9094213027 1669.7399082996
u2l 1804.0051930891 1903.0008769630
u3l 2043.4301701314 2163.6675282184
ul? 1556.2434457759 1665.1341402297

2 u22 995.2725096422 1099.5246318384
u32 1297.2520705184 1372.3038679849
ul3 1526.8872496598 1581.9902027415
u23 1453.2816761476 1485.4195375818
u33 1354.4414342180 1370.8249450870
ull 1838.0436562400 1838.0436564310
u2l 2080.7015624424 2080.7015626707
u3l 2315.7646703298 2315.7646705278
ul? 1771.4730629060 1771.4730630532

17 u22 1168.9979236253 1168.9979237242
u32 1410.8840563270 1410.8840563873
ul3 1601.1296579279 1601.1296579609
u23 1493.6345754394 1493.6345754562
u33 1373.4086438572 1373.4086438641
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No. .Of Mesh Points RAOR REAOR
Iterations
ull 1838.0436564310
u2l 2080.7015626707
u3l 2315.7646705278
ul2 1771.4730630532
24 u2?2 1168.9979237242
u32 1410.8840563873
ul3 1601.1296579609
u23 1493.6345754562
u33 1373.4086438641
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4.1.6.2 Convergence result of AOR, its variant and proposed EAOR iterations for
problem 1

No. of
Iterations

Mesh
Points

QAOR

KAOR

AOR

EAOR

32

ull
u2l
u3l
ul?
u22
u32
ul3
u23
u33

ull
u2l
u3l
ul2
u2?
u32
ul3
u23
u33

ull
u2l
u3l
ul2
u22
u32
ul3
u23
u33

437.5000000000
396.8750000000
519.8437500000
275.9921875000
13.7996093750
188.1899804688
446.9094990234
397.3454749512
519.8672737476

740.3583984375
709.9733398438
883.2089379883
528.7334604492
127.2278236999
409.8384487189
745.2291048517
709.4358143634
825.2063382133

1837.2271883871
2079.6788773528
2314.8313298532
1770.7396626268
1168.4750597462
1410.5448794408
1600.9326567250
1493.5270750850
1373.3619676384

625.000000000000
580.357142857143
755.739795918367
411.124271137026
29.3660193669305
269.954715669067
644.282479690648
581.734462835046
755.838175916789

980.621681070387
978.736770765157
1183.92350969568
760.439395411806
258.843773274668
616.643807429994
985.931568341700
976.349184214988
1062.30739872391

1838.03762473572
2080.69415855581
2315.75807419871
1771.46802217007
1168.99444273843
1410.88187256647
1601.12843019262
1493.63392975576
1373.40837334446

875.0000000000
837.5000000000
1083.7500000000
608.3750000000
60.8375000000
381.0837500000
913.1083750000
841.3108375000
1084.1310837500

1236.4687500000
1291.0437500000
1502.0940625000
1056.2583750000
502.4807343750

933.6835631250

1235.8586281875
1281.5848900062
1254.3551146256

1838.0436556409
2080.7015617262
2315.7646697086
1771.4730624440
1168.9979233152
1410.8840561379
1601.1296578245
1493.6345753866
1373.4086438359

875.0000000000
946.8750000000
1213.0468750000
772.9355468750
173.9104980469
414.1298620605
968.1792189636
967.8403242668
1217.7640729600

1304.9526367188
1412.2286865234
1638.1896817017
1184.4412795105
631.3152231436

1067.8795106394
1367.5862175121
1386.3523976543
1336.1252975789

1838.0436564310
2080.7015626707
2315.7646705278
1771.4730630532
1168.9979237242
1410.8840563873
1601.1296579609
1493.6345754562
1373.4086438641
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No. of Mesh QAOR KAOR AOR EAOR
Iterations  Points
ull 1838.0236163232  1838.04364069216  1838.0436564310
u2l 2080.6765370368  2080.70154335941  2080.7015626707
u3l 2315.7419763073  2315.76465333893  2315.7646705278
ul2 1771.4554004222  1771.47304993529  1771.4730630532
46 u22 1168.9854906433  1168.99791468168  1168.9979237242
u32 1410.8761028251  1410.88405072549  1410.8840563873
ul3 1601.1251015067  1601.12965478395  1601.1296579609
u23 1493.6321283725  1493.63457378916  1493.6345754562
u33 1373.4075948658  1373.40864316685  1373.4086438641
zl
1838.0436477242  1838.0436564310
Z 2080.7015518080  2080.7015626707
2315.7646606965  2315.7646705278
= 1771.4730554246  1771.4730630532
& = 1168.9979183758  1168.9979237242
ji 1410.8840529811 1410.8840563873
3 1601.1296560182  1601.1296579609
20 1493.6345744183  1493.6345754562
10 1373.4086434210  1373.4086438641
zl
1838.0436564310
2 2080.7015626707
= 2315.7646705278
= 1771.4730630532
117 2 1168.9979237242
j‘; 1410.8840563873
3 1601.1296579609
0 1493.6345754562
10 1373.4086438641
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APPENDIX B
4.2.6 Convergence Results Comparison for Problem 2

4.2.6.1 Convergence result of refinement methods of AOR and EAOR iterations
for problem 2

No. .Of Mesh Points RAOR REACR
Iterations
zl 1.2323621947 1.3009977786
22 0.7821356178 0.8691362620
z3 0.5952761031 0.7193102010
z4 0.6553817158 0.7728172528
1 z5 0.6121110766 0.7594999494
z6 0.6712689317 0.8169147509
z7 0.6287630019 0.7984740553
28 0.6868673263 0.8575300610
z9 0.6451444972 0.8346928331
z10 0.7020950596 0.8932832741
zl 1.5019054672 1.5769260836
22 1.0979781894 1.1943510602
z3 0.9192173511 1.0237616260
z4 0.9621591852 1.0655593249
2 z5 0.9263548298 1.0368923681
26 0.9690113134 1.0781620034
z7 0.9332493068 1.0486783324
28 0.9756791618 1.0894767813
29 0.9399115826 1.0592377811
z10 0.9821653541 1.0996726248
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No. of
Iterations

Mesh Points

RAOR

REAOR

22

31

zl
z2
z3
z4
z5
z6
z7
z8
z9
zI10

zI
z2
z3
z4
z5
z0
z7
z8
z9
zI10

1.6995918301
1.3314285635
1.1551020328
1.1885714209
1.1551020331
1.1885714211
1.1551020333
1.1885714213
1.1551020335
1.1885714215

1.6995918367
1.3314285714
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286

1.6995918367
1.3314285714
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
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4.2.6.2 Convergence result of AOR, its variants and EAOR iterations for problem

2
No. _Of Mesh Points QAOR KAOR AOR EAOR
Iterations
zI
22 0.5000000000 0.7142857143 1.0000000000 1.0000000000
23 0.2285714286 0.3352769679 0.4857142857 0.5571428571
24 0.1493877551 0.2177664068 0.3134693877 0.3573469388
25 0.1614110787 0.2421245764 0.3607696793 0.4602303207
1 26 0.1539995002 0.2276490426 0.3340847980 0.4165194086
27 0.1658110644 0.2514163740 0.3798602392 0.5137828161
28 0.1587369592 0.2379109354 0.3557910974 0.4825771992
29 0.1703464061 0.2611270245 0.4001911590 0.5758284560
210 0.1636039994 0.2485691813 0.3786591636 0.5566122864
0.1750208061 0.2712727053 0.4218288255 0.6473928928
zl 0.8018671413 1.0295862186 1.2323621947 1.3009977786
z2 0.4176053622 0.5827629584 0.7821356178 0.8691362620
z3 0.2873206174 0.4153018350 0.5952761031 0.7193102010
z4 0.3165375547 0.4621698436 0.6553817158 0.7728172528
2 z5 0.2940586749 0.4271068847 0.6121110766 0.7594999494
z6 0.3227392383 0.4729657794 0.6712689317 0.8169147509
z7 0.3009110665 0.4390816870 0.6287630019 0.7984740553
z8 0.3290690265 0.4839513020 0.6868673263 0.8575300610
z9 0.3078795186 0.4512217686 0.6451444972 0.8346928331
zI10 0.3355283842 0.4951216021 0.7020950596 0.8932832741
z1l 1.6990443291 1.6995829427 1.6995918265 1.6995918367
z2 1.3307659512 1.3314178713 1.3314285592 1.3314285714
z3 1.1544313567 1.1550912552 1.1551020286 1.1551020408
z4 1.1879179337 1.1885609487 1.1885714167 1.1885714286
43 z5 1.1544402481 1.1550914692 1.1551020289 1.1551020408
z6 1.1879269381 1.1885611646 1.1885714171 1.1885714286
z7 1.1544490171 1.1550916788 1.1551020293 1.1551020408
z8 1.1879358231 1.1885613762 1.1885714174 1.1885714286
z9 1.1544576651 1.1550918841 1.1551020296 1.1551020408
z10 1.1879445905 1.1885615836 1.1885714178 1.1885714286
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No. of
Iterations

Mesh Points

QAOR

KAOR

AOR

EAOR

60

94

144

zI
z2
z3
z4
z5
z6
z7
z8
z9
zI10

zI
z2
z3
z4
z5
z6
z7
z8
z9
z10

zI
z2
z3
z4
z5
z6
z7
z8
z9
zI10

1.6995643104
1.3313952577
1.1550683217
1.1885385737
1.1550687687
1.1885390264
1.1550692096
1.1885394731
1.1550696444
1.1885399139

1.6995917672
1.3314284872
1.1551019556
1.1885713455
1.1551019567
1.1885713467
1.1551019578
1.1885713478
1.1551019589
1.1885713489

1.6995918367
1.3314285714
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286

1.6995917496
1.3314284666
1.1551019351
1.1885713259
1.1551019372
1.1885713280
1.1551019393
1.1885713300
1.1551019413
1.1885713321

1.6995918367
1.3314285714
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286

1.6995918367
1.3314285714
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
1.1551020408
1.1885714286
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APPENDIX C
4.3.6 Convergence Results Comparison for Problem 3

4.3.6.1 Convergence result of refinement methods of AOR and EAOR iterations
for problem 3

No. of .
) Mesh Points RAOR REAOR
Iterations
Zl - _
0.7397375985 0.7859665595
% 1.3602783809 1.3072609215
1 Z 1.1123171203 1.1550344754
z, 1.1812484666 1.2418391991
2 1.0056814497 0.9526024186
Z 0.4236011693 0.4287141109
2 i |
2 1 0.7107095752 _ _
1.0878085305 0.7107095747
) 11093417611 1.0878085301
13 ) 1.2217138640 1.1093417628
z 0.4949672600 10306242498
0.4949672604
Z6 L |
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No. of

. Mesh Points RAOR REAOR
Iterations
Zl ]
0.7107095747
% 1.0878085301
z 11093417628
17
Z 12217138647
Z 1.0306242498
5
0.4949672604
%
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4.3.6.2 Convergence result of AOR, its variant and EAOR iterations for problem 3

No. of

_ Mesh Points QAOR KAOR AOR EAOR
Iterations

4
% 0.5000000000 [ 0.6711409396 | | 1.0000000000 [ 1.0000000000 |
z 0.5755000000 0.7612269718 1.1020000000 1.0020000000

1 2, 0.3718005000 0.4868454743 0.6920040000 .6016040000
- 0.7086901378 0.9545457212 1.4300858040 1.4400352040

0.8221196171 1.069540965 1.5001154036 1.2407249228

% 0.3151475445 | 0.4095560650 | | 05767229584 | 5092646882 |
“ 0.7107204796 [ 0.7107102180 | 0.7107095758 [ 0.7107095747 |
2 1.0878423851 1.087806098 1.0878085217 1.0878085301

24 z 1.1092597110 1.109343182 1.1093417688 1.1093417628
z, 1.2216890914 1.221712476 1.2217138609 1.2217138647
z 1.0306668101 1.030623879 10306242485 1.0306242498
5 0.4949351488 | 0.4949682042 | | 0.4949672636 | 0.4949672604 |
“ 0.7107080939 [ 0.7107095596 | [ 0.7107095747
2 1.0878095004 1.087808559 1.0878085301

32 3 1.1093446835 1.109341768 1.1093417628

1.2217169380
1.0306223761
0.4949678853

1.221713895
1.030624242

0.4949672551

1.2217138647
1.0306242498
0.4949672604
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No. of

_ Mesh Points QAOR KAOR AOR EAOR
Iterations

a 0.7107095747 [ 0.7107095747 |
2 1.0878085513 1.0878085301

45 ) 1.1093417314 1.1093417628
z, 1.2217138635 1.2217138647
2 1.0306242648 1.0306242498
5 0.4949672462 | 0.4949672604 |
4

0.7107095747

2 1.0878085301

61 ) 1.1093417628

1.2217138647
1.0306242498
0.4949672604
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APPENDIX D
4.4.6 Convergence Results Comparison for Problem 4

4.4.6.1 Convergence result of refinement methods of AOR and EAOR iterations

for problem 4

No. .Of Mesh Points RACR REAOR
Iterations
ull 0.0769530731 0.0803623390
u2l 0.0291252282 0.0386064744
u3l 0.0145244380 0.0222635471
udl 0.0140576204 0.0188764251
usl 0.0242595481 0.0276869140
ul2 0.1452560864 0.1572094591
u2?2 0.0489477296 0.0713299984
u32 0.0197627301 0.0369512315
u4?2 0.0244315532 0.0351662493
us2 0.0626693690 0.0710353603
ul3 0.2069164657 0.2286066412
u23 0.0634305347 0.0986642626
1 u33 0.0219781645 0.0472437231
u43 0.0368419064 0.0533720767
us3 0.1227856256 0.1384371429
ul4 0.3250620764 0.3558961421
u24 0.1597035508 0.2226991368
u34 0.1042646278 0.1609610938
ud4 0.1253621131 0.1755763622
us4 0.2699764215 0.3226456388
uls 0.6103016926 0.6571884999
u25s 0.4941595633 0.5662379915
u3s 0.4446331584 0.5201267926
u45 0.4772680177 0.5573140466
uss 0.5669762037 0.6396057343
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No. .Of Mesh Points RAOR REACR
Iterations
ull 0.1851621824 0.1851621840
u2l 0.1867937056 0.1867937083
u3l 0.1743247517 0.1743247547
udl 0.1463767031 0.1463767056
us1 0.0992822425 0.0992822439
ul?2 0.3574358660 0.3574358687
u2?2 0.3598044182 0.3598044227
u32 0.3395021099 0.3395021150
u4?2 0.2928184895 0.2928184937
us2 0.2123963247 0.2123963269
ul3 0.5185943340 0.5185943370
u23 0.5260250557 0.5260250607
54 u33 0.5068066901 0.5068066957
u43 0.4575476329 0.4575476376
u53 0.3735473041 0.3735473067
ul4 0.6564256346 0.6564256370
u24 0.6867597211 0.6867597253
u34 0.6766755101 0.6766755149
udd 0.6362085272 0.6362085311
us4 0.5621772419 0.5621772441
uls 0.8431284461 0.8431284475
u2s 0.8523658994 0.8523659017
u35s 0.8458519130 0.8458519157
ud5 0.8221319160 0.8221319182
us5s 0.7762326147 0.7762326159
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No. .Of Mesh Points RAOR REACR
Iterations
ull 0.1851621840
u2l 0.1867937083
u3l 0.1743247547
udl 0.1463767056
us1 0.0992822439
ul?2 0.3574358687
u22 0.3598044227
u32 0.3395021150
u4?2 0.2928184937
us2 0.2123963269
ul3 0.5185943370
u23 0.5260250607
8 u33 0.5068066957
u43 0.4575476376
us3 0.3735473067
ul4 0.6564256370
u24 0.6867597253
u34 0.6766755149
ud4 0.6362085311
us4 0.5621772441
uls 0.8431284475
u25 0.8523659017
u3s 0.8458519157
u45 0.8221319182
uss 0.7762326159
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4.4.6.2 Convergence result of AOR, its variant and EAOR iterations for problem 4

No. of Mesh Points QAOR KAOR AOR EAOR
Iterations

ull

w2l 0.0254777070 0.0363967243 0.0509554140 0.0509554140

w3l 0.0047314665 0.0071801230 0.0117061772 0.0189424490

udl 0.0031082724 0.0045583688 0.0069218421 0.0106110664

usl 0.0028274176 0.0041058507 0.0060420944 0.0081502466

w2 0.0071335903 0.0102499226 0.0145992421 0.0161827218

w22 0.0475440585 0.0682837318 0.0970262983 0.1032784963

u32 0.0063170657 0.0099017535 0.0174297358 0.0351060526

ud2 0.0032836142 0.0049152474 0.0079531110 0.0165141847

u52 0.0028943609 0.0042485985 0.0064700913 0.0109807781

ul3 0.0202802036 0.0291106921 0.0413374569 0.0450657504

u23 0.0666137182 0.0959087827 0.1372628518 0.1513455439

u33 0.0073136377 0.0116589969 0.0213469297 0.0484320142

1 ud3 0.0032130014 0.0048597128 0.0081433994 0.0204193928

us3 0.0027710117 0.0040776072 0.0062770489 0.0121883671

uld 0.0408072240 0.0586025898 0.0833022096 0.0907201443

w24 0.0820783891 0.1183915305 0.1703479536 0.1929570666

u3d 0.0078312442 0.0126188963 0.0236919439 0.0583033344

udd 0.0030546967 0.0046501360 0.0079674346 0.0226974864

w54 0.0026018239 0.0038322149 0.0059272693 0.0125384746

uls 0.0669303072 0.0962110568 0.1371170179 0.1503141340

u2s 0.2425690806 0.3480444367 0.4934462930 0.5248455754

u3s 0.1565421674 0.2270913570 0.3320380288 0.4049501471

uds 0.1446144337 0.2090412871 0.3029101608 0.3621251928

u5s 0.1376129313 0.1989048516 0.2880268433 0.3412577704

0.2258582656 0.3258948933 0.4694976175 0.5389576713
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No. _Of Mesh Points QAOR KAOR AOR EAOR
Iterations
ull 0.1851040093 0.1851610487 0.1851621821 0.1851621840
u2l 0.1866950532 0.1867917898 0.1867937051 0.1867937083
u3l 0.1742135923 0.1743226007 0.1743247511 0.1743247547
udl 0.1462832527 0.1463749012 0.1463767026 0.1463767056
usl 0.0992303909 0.0992812463 0.0992822423 0.0992822439
ul? 0.3573372398 0.3574339507 0.3574358655 0.3574358687
u22 0.3596369185 0.3598011770 0.3598044173 0.3598044227
u32 0.3393133369 0.3394984700 0.3395021090 0.3395021150
u42 0.2926604427 0.2928154528 0.2928184887 0.2928184937
us2 0.2123119087 0.2123947085 0.2123963243 0.2123963269
ul3 0.5184833814 0.5185921870 0.5185943335 0.5185943370
u23 0.5258355379 0.5260214014 0.5260250547 0.5260250607
107 u33 0.5065922341 0.5068025696 0.5068066890 0.5068066957
u43 0.4573664552 0.4575441641 0.4575476320 0.4575476376
us3 0.3734459039 0.3735453696 0.3735473036 0.3735473067
ul4 0.6563336580 0.6564238611 0.6564256341 0.6564256370
u24 0.6865992809 0.6867566385 0.6867597203 0.6867597253
u34 0.6764931192 0.6766720182 0.6766755092 0.6766755149
u44 0.6360537959 0.6362055753 0.6362085264 0.6362085311
us4 0.5620899036 0.5621755816 0.5621772415 0.5621772441
uld 0.8430756820 0.8431274323 0.8431284458 0.8431284475
u25 0.8522749449 0.8523641580 0.8523658989 0.8523659017
u3s 0.8457485080 0.8458499403 0.8458519125 0.8458519157
u45 0.8220440791 0.8221302462 0.8221319156 0.8221319182
uss 0.7761829312 0.7762316735 0.7762326144 0.7762326159
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No. _Of Mesh Points QAOR KAOR AOR EAOR
Iterations
ull 0.1851606853 0.1851621790 0.1851621840
u2l 0.1867911667 0.1867936999 0.1867937083
u3l 0.1743218909 0.1743247453 0.1743247547
udl 0.1463742981 0.1463766977 0.1463767056
usl 0.0992809080 0.0992822395 0.0992822439
ul? 0.3574333278 0.3574358603 0.3574358687
u2?2 0.3598001075 0.3598044085 0.3598044227
u32 0.3394972517 0.3395020991 0.3395021150
u42 0.2928144220 0.2928184804 0.2928184937
us2 0.2123941521 0.2123963198 0.2123963269
ul3 0.5185914786 0.5185943276 0.5185943370
u23 0.5260201783 0.5260250447 0.5260250607
155 u33 0.5068011708 0.5068066777 0.5068066957
u43 0.4575429700 0.4575476224 0.4575476376
us3 0.3735446944 0.3735472982 0.3735473067
ul4 0.6564232675 0.6564256293 0.6564256370
u24 0.6867555920 0.6867597118 0.6867597253
u34 0.6766708160 0.6766754996 0.6766755149
u44 0.6362045449 0.6362085182 0.6362085311
us4 0.5621749941 0.5621772368 0.5621772441
uld 0.8431270881 0.8431284430 0.8431284475
u25 0.8523635585 0.8523658941 0.8523659017
u3s 0.8458492517 0.8458519070 0.8458519157
u45 0.8221296553 0.8221319109 0.8221319182
us5 0.7762313360 0.7762326118 0.7762326159

191



No. _Of Mesh Points QAOR KAOR AOR EAOR
Iterations
ull 0.1851621811 0.1851621840
u2l 0.1867937034 0.1867937083
u3l 0.1743247492 0.1743247547
udl 0.1463767010 0.1463767056
usl 0.0992822413 0.0992822439
ul? 0.3574358638 0.3574358687
u22 0.3598044144 0.3598044227
u32 0.3395021056 0.3395021150
u42 0.2928184858 0.2928184937
us2 0.2123963227 0.2123963269
ul3 0.5185943315 0.5185943370
u23 0.5260250513 0.5260250607
237 u33 0.5068066850 0.5068066957
u43 0.4575476286 0.4575476376
us3 0.3735473016 0.3735473067
ul4 0.6564256325 0.6564256370
u24 0.6867597173 0.6867597253
u34 0.6766755058 0.6766755149
u44 0.6362085234 0.6362085311
us4 0.5621772398 0.5621772441
uld 0.8431284448 0.8431284475
u25 0.8523658972 0.8523659017
u3s 0.8458519105 0.8458519157
u45 0.8221319139 0.8221319182
uss 0.7762326134 0.7762326159
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No. _Of Mesh Points QAOR KAOR AOR EAOR
Iterations
ull 0.1851621840
w2l 0.1867937083
U3l 0.1743247547
udl 0.1463767056
us1 0.0992822439
ul2 0.3574358687
u22 0.3598044227
u32 0.3395021150
142 0.2928184937
us2 0.2123963269
ui3 0.5185943370
u23 0.5260250607
350 u33 0.5068066957
143 0.4575476376
u53 0.3735473067
uld 0.6564256370
w24 0.6867597253
u34 0.6766755149
udd 0.6362085311
us4 0.5621772441
uls 0.8431284475
u2s 0.8523659017
u3s 0.8458519157
uds 0.8221319182
uss 0.7762326159
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Maple Program for the EAOR Method

with(LinearAlgebra) :
with(Student] NumericalAnalysis]) :
with(ArrayTools) :
with(ExcelTools) :

B = Import( );

Diag = Diagonal(B) :

D1 = Diagonal(Diag);

A:=DI1"!.B

U = -UpperTriangle(A, 1);

L = -LowerTriangle(4,-1);

i == ; %identity matrix of the dimension of A

0= ;
ri=

vi=
Si=(i—(v+rL) " ((1=0)i+(0—v—r)L+oU);
C = Import( );

b=DI"-C

Hw=4"p,

Xy = ; %zeromatix

P=(i—(r+v).L) (0b);
N = %number of iterations

forifromOby | to Ndo
X =8x+P

end do
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Maple Program for the REAOR Method

with(LinearAlgebra) :
with(Student] NumericalAnalysis]) :
with(ArrayTools) :
with(ExcelTools) :

B := Import( );

Diag = Diagonal(B) :

D1 = Diagonal(Diag);

A:==DI1"! +B;

U = -UpperTriangle(A4, 1);

L = -LowerTriangle(A,-1);

i == ; %identity matrix of the dimension of 4

>

El

T~

>

Sl = (i—(v+r)~L)_1°((l —0)it+(0—v—r)-L+o0U);

S = SI%

C = Import( );
b:=DI""-C
H=A4"p;

Xy = ; % zero matix

P=(i+81).(i— (r+v).L) " (0b);
N = %number of iterations

for i fromOby | to Ndo
X =8x+P
end do
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