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ABSTRACT 

Cognitive Radio (CR) technology is the candidate panacea to the problem of spectrum 

scarcity in the wireless world. However, this emerging technology is faced with security 

challenges. The most severe among these security challenges is Primary User Emulation 

Attack (PUEA).  One of the methods to detect Primary User Emulator (PUE) is via 

localisation, of which there are two major categories: range-free and range-based. 

Range-free localisation is cost effective, less computationally complex and easy to 

deploy. However, it is less accurate when compared with range-based category. Since 

accuracy is fundamental in localisation, range-based localisation scheme was adopted in 

this work. The range-based category is reported to be more accurate although with 

higher complexity. Among this category are Angle of Arrival (AOA), which utilises 

angular measurements to localise the PUE, and the Received Signal Strength (RSS), 

which employs only distance to localise the PUE. To improve performance of range-

based methods, this research hybridised AOA and RSS techniques to localise PUEs in 

television (TV) white spaces. This scheme determines the angle at which the Primary 

User’s (PU’s) signal arrives at the Secondary Users (SUs) and the distance between the 

PU and SUs in the Cognitive Radio Network (CRN). Because in a TV white space, the 

location of PU is known, the computed AOA and the distance obtained from the RSS 

are therefore used to determine the position of a PU’s signal transmitter. This position is 

compared with the location of the PU to ascertain the true source of the signal, thus 

detecting the PUE. Computer simulations demonstrated that the hybrid scheme 

estimated the position of the PUE much faster and with a much lower Root Mean 

Square Error (RMSE) of 5.00x10
-3

 after 20 iterations. This greatly outperformed RSS 

and AOA methods that estimated the position of PUE after 50 iterations with RMSE of 

2.00x10
-1

 and 1.00x10
-2

 respectively when considered individually. Furthermore, 

investigation was made on the selection of the best pair of SUs to be used in the 

detection processes. It was discovered that a pair of SUs from the same communication 

environment whose RSS values are very close, detected PUE better (with RMSE of 

4.7x10
-3 

after 20 iterations) than a pair of SUs whose RSS values are higher but in 

different communication environments as they localised PUE with RMSE of  6.0x10
-3

 

after 70 iterations. The significance of this result is appreciated especially when 

attention is given to the fact that speed, accuracy and energy efficiency are essential in 

the efficient operation of cognitive radios. Energy-efficient operations are essential in 

the current global energy crises that wireless systems face. Moreover, by isolating the 

detected PUE from Cognitive Radio Network (CRN), there is availability of more 

spectrum holes that will accommodate newer wireless technologies for effective 

communication. Furthermore, Secondary Users (SUs) have more transmission time, 

improved quality of service (QoS), connection reliability, higher throughput and 

improvement in the overall general performance of the entire cognitive radio network.  
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CHAPTER ONE 

1.0            INTRODUCTION 

1.1   Background to the Study 

There is an increase in the deployment of newer wireless technologies leading to more 

demand for radio spectrum (Anandakumara & Umamaheswarib, 2017; Gupta & 

Onumanyi, 2019). The radio spectrum is referred to as the portion or band of the 

electromagnetic continuum that conveys radio waves.  The most desired band for 

various wireless communications is 30MHz-3GHz (Lin et al., 2018; Khaliq et al., 

2018). Initially, radio spectrum was assigned in the order of request. But with increased 

deployment rate of newer wireless technologies, there is an increased pressure on the 

available radio spectrum. This has indicated possibility of spectrum scarcity (Zeng       

et al., 2008; Zina & Noureddine, 2015; Vasanthareddy & Sanjeev, 2021).  

 

The causes of spectrum scarcity are several as postulated in literature. One of the 

reasons for spectrum scarcity is emergence of newer wireless technologies (Balieiro     

et al., 2014; Anandakumara & Umamaheswarib, 2017). Another cause of spectrum 

scarcity is the inept permanent frequency allocation policy (Subhedar & Birajdar, 2011; 

Maninder et al., 2016). Similarly, Jin et al. (2015) identified inefficient spectrum usage 

as potential basis for spectrum scarcity. These reasons indicate that spectrum is not 

scarce, but inadequately utilized as there are still licensed bands which are not fully 

utilized (Malik  et al., 2010; Subhedar & Birajdar, 2011; Yuan et al., 2012).  

 

Akyildiz et al. (2006) and Rehman, (2019) further corroborated this assertion of  actual 

spectrum utilization as Figure 1.1shows that some portions of the licensed frequency 
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band in the electromagnetic radio spectrum are heavily used while others either 

experience sparse use or medium use with less than 6% occupancy. 

 

 
Figure 1.1: Spectrum Usage (Maninder et al., 2016; Rehman, 2019) 

 

 

Because of underutilization of the allocated spectrum bands and the attendant 

difficulties in retrieving them from those allocated to, it becomes needful to develop 

new and dynamic methods for spectrum management and efficient utilization using 

cognitive radio (CR) technology (Goyal et al., 2016; Rharras et al., 2020). 

 

CR technology is identified in literature as candidate panacea to spectrum 

underutilization and scarcity occasioned by static spectrum allocation      (Amer et al., 

2016; Verma et al., 2018; Ali et al., 2019). CR refers to Secondary User (SU) which is 

able to identify its communication environment by fine-tuning its radio parameters and 

opportunistically uses spectrum licensed to Primary Users (PUs) when the band is 
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inactive without causing interference to the PU. This inactive spectrum through which 

CR transmits is called spectrum hole or white space (Nilesh & Patil, 2014; Sultana & 

Hussain, 2018). According to Arthy and Periyasamy (2015), a given radio spectrum 

with spectrum holes can be envisioned as depicted in Figure 1.2 where spectrum in use 

and spectrum holes are clearly indicated and CR dynamically accesses the spectrum 

holes. 

 

 

Figure 1.2: Radio spectrum with spectrum holes  

   (Arthy & Periyasamy, 2015) 

  

From the foregoing, it is obvious that CR could actually enhance spectrum usage 

efficiency and alleviate the challenge of spectrum scarcity (Gupta et al., 2016; 

Anandakumara  & Umamaheswarib, 2017; Akbari & Jamshid, 2018). Several processes 

are involved in the development of a cognitive radio (CR). These processes are 

described in the Figure 1.3 
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Figure 1.3: Cognitive Cycle of a Cognitive Radio (Maninder et al., 2016) 

 

1.1.1   Spectrum sensing 

Spectrum Sensing which is the most significant component of CR operations is the 

process by which a CR detects the incumbent signals (Deng et al., 2012; Maninder et 

al., 2016). Since CR can only utilize idle portion of the spectrum, it must observe the 

spectrum bands to detect unused spectrum. To ensure a trustworthy spectrum sensing 

process, the problem of attacks on the CRNs (which is the focus of this research) needs 

to be addressed by distinguishing PU signals from SU signals because uncertain, 

falsified or corruptly sensed data can alter the entire sensing result. Hence, the spectrum 

decision becomes inaccurate. This leads to false alarm and interference to PU signals           

(Kanti et al., 2015; Alhumud et al., 2019). 

 

1.1.2   Spectrum decision 

As soon as spectrum holes are detected, it is necessary that the CR selects the best band 

based on their Quality of Service (QoS) requirements. Prior information about activity 

of the PU is required in order to devise a spectrum decision algorithm that incorporates 
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dynamic spectrum characteristics. As a requirement, the spectrum bands should be 

characterized in radio and statistical behaviours (Kanti et al., 2015; Giral & Hern, 

2020). 

 

1.1.3   Spectrum sharing 

Since multiple CRs in the CRN compete for available spectrum holes, there will be 

collision in overlapping portions of the spectrum holes. To prevent this, their 

transmission should be coordinated. Through spectrum sharing, spectrum resources can 

be opportunistically allocated to multiple CRs (Gelabert et al., 2010). It also involves 

prevention of interference with the primary network through resource allocation. 

Moreover, this function enables a CR Medium Access Control (MAC) that enables the 

sensing control to allot sensing task among the cooperating nodes as well as spectrum 

access to determine transmission time (Alhumud et al., 2019). 

 

1.1.4   Spectrum mobility 

CR should vacate the particular portion of spectrum in use as soon as PU is detected and 

continues its transmission in any vacant portion of the spectrum. Therefore, spectrum 

mobility enables a spectrum hand off scheme to identify the link failure and shift to a 

new route from the current transmission or switch to a fresh spectrum band with less 

quality degradation. This involves collaboration of spectrum sensing, neighbour 

discovery in the link layer and routing protocols. Moreover, this functionality requires 

connection management scheme to sustain the performance of the upper layer protocols 

by alleviating effects of spectrum switching (Kanti et al., 2015; Alhumud et al., 2019). 
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Although the various operations of CR cycle in cognitive radio system are distinct, they 

depend on each other for the successful operations of CRN. Therefore, failure on any of 

the operation will lead to failure of CR operation. For example, the dynamic spectrum 

access (DSA) of CR will not be achieved if spectrum sensing operation fails.  

  

CR operation is possible due to its reconfigurability and cognitive capability (Kumar & 

Singh, 2016; Sultana & Hussain, 2018).  Reconfigurability allows a CR to adjust to its 

environment by regulating certain parameters like carrier frequency, bandwidth and 

transmission power (Liang et al., 2008). This becomes important because CRs must 

utilize the fallow bands opportunistically and vacates the bands whenever PU signal is 

detected.  Cognitive capability of CRs (also referred to as SUs) prepares them to sense 

their radio environment and choose the most suitable transmission mode available in the 

fallow bands. This is achievable by the spectrum management process where different 

parameters like power, modulation type and frequency are estimated (Kaur et al., 2010).  

 

1.1.5   Spectrum security 

Traditional wireless communication technology faces several security threats among 

which are forgery, masquerading attacks and eavesdropping. These threats can easily 

interrupt communication during transmission (Alhakami et al., 2014). Although 

Cognitive Radio (CR) system is threatened by various security issues that traditional 

wireless communication system faces, it faces several other security threats among 

which Primary User Emulation Attack (PUEA) is the most challenging. When an 

impish secondary user masquerades itself as the primary user for unscrupulous reasons, 

PUEA is said to have occurred. Except it is addressed, PUEA can cripple the whole 

cognitive radio network (CRN). In order to avoid this, Primary User Emulator (PUE) 
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should be segregated from the Cognitive Radio Network (CRN) upon detection. This 

will not only ensure availability of spectrum for newer wireless technologies, it will also 

guarantee cheaper and secured communication (Alahmadi et al., 2014).  

 

1.2   Statement of the Research Problem 

The task of detecting the PUEs remains a difficult process because of the lack of 

features to distinguish between PUEs and actual PUs (Chen et al., 2008a; Saeed et al., 

2019). Consequently, inability to localise PUEs often leads to denial of service (DoS) 

and inefficient use of spectrum for CR purpose. Moreover, PUEA is continuous as long 

as it is in CRN. If detected but left in CRN, PUE will continue to launch Primary User 

Emulation Attack (PUEA). Existing techniques for detecting PUEs such as Angle of 

Arrival, Received Signal Strength, Time of Arrival and Time Difference of Arrival, 

have their short comings when applied individually (Bouabdellah et al., 2019). Thus, 

there is need to investigate the effects of a hybridised scheme for detecting PUEs in 

CRNs and isolate the detected PUEs from CRN. The outcome of this research work will 

be used for the development of economically viable and efficient method of detecting 

PUEs in CRN. This will lead to availability of more spectrum holes that will 

accommodate newer wireless technologies for effective communication. 

 

1.3   Aim and Objectives of the Study 

This research work aimed at developing an improved localisation scheme for detecting 

Primary User Emulator (PUE) in CRNs and isolating the detected PUE from the 

cognitive radio network (CRN). To achieve this aim, the objectives are to: 



8 
 

i. develop a hybrid of Angle of Arrival (AOA) and Received Signal Strength (RSS) 

schemes for localizing Primary User Emulator (PUE) in Cognitive Radio Networks 

(CRNs). 

ii. evaluate the effects of cooperative sensing on the detection of Primary User 

Emulator (PUE) using the developed hybrid scheme in i. 

iii. develop a technique for isolating detected Primary User Emulators (PUEs). 

iv. evaluate the performance of the overall developed scheme.  

  

1.4   Significance of the Study 

Cognitive Radio Technology (CRT) is the panacea to the current spectrum scarcity 

posed by spectrum underutilization.  However, there are many challenges to realizing its 

concept in practice. The most critical among the many challenges is the one posed by 

PUE. PUE mimics the spectral characteristics of the PU for selfish or malicious 

purpose. If PUEA is not dealt with, realizing CR concept remains a mirage. Hence, this 

study developed a technique to detecting PUE as well as eliminating it from the network 

for availability of more radio spectrum and efficient operation of CR devices. The 

outcome of this research work will benefit researchers as it will be used for the 

development of economically viable and efficient method of detecting PUEs in CRN. 

Availability of more spectrum holes will accommodate newer wireless technologies for 

effective communication. This without doubt leads to cheaper call and data rates, 

reliable connection, improved quality of service and elimination of denial of service 

which are beneficial to individuals and the society. 
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1.5   Scope of the Study 

The focus of this study is on the development of a hybrid localisation method using 

AOA and RSS to detect the PUE and isolate it from CRN. It also investigates the effect 

of cooperative sensing in the localisation of PUE. 

 

1.6   Thesis outline 

The remaining chapters of this thesis are structured in this order: The review of related 

literatures in the domain of Cognitive Radio (CR), Primary User Emulation Attacks 

(PUEAs) and classifications of primary user emulators are given in chapter two. It 

further reviews different methods for detecting Primary User Emulator (PUE) and 

various spectrum sensing techniques. Chapter three presents the research methodology. 

It describes detection of PUE with the aid of Hybrid Localisation Method (HLM) and 

the effects Cooperative Spectrum Sensing (CSS) has on HLM. It further presents a 

method for isolating the detected PUE from the CRN. The results obtained from the 

developed techniques in chapter three as well as comparative analysis of the results with 

existing techniques are presented in chapter four while the conclusion based on the 

achievements of this study and the challenges encountered as well as recommendation 

for further work are presented in the fifth chapter. 
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CHAPTER TWO 

2.0     LITERATURE REVIEW 

2.1   Background to Radio Spectrum 

The part of electromagnetic wave that carries radio waves is called radio spectrum.  The 

most desired band for wireless communication is within 30MHz and 3GHz out of which 

only 5.2% is used on the average (Li et al., 2017; Lin et al., 2018). Initially, radio 

spectrum was apportioned to the newer wireless technologies in the order in which they 

were requested. But, with increased deployment rates of newer wireless technologies, 

there is an increased pressure on the available radio spectrum. This has notified policy 

makers on the possibility of spectrum scarcity if spectrum is not efficiently utilized. 

From research findings, it is clear that the problem of spectrum underutilization can be 

solved through opportunistic spectrum sharing using Cognitive Radio (CR) technology 

(Khaliq et al., 2018). 

 

2.2   Cognitive Radio: A Solution to Spectrum Underutilization 

Spectrum management became the focal point of Federal Communication Commission 

(FCC) due to an increasing request for radio spectrum caused by the upsurge in the 

emergence of new wireless communication technologies. Towards addressing the 

problem of spectrum underutilization, FCC came up with Opportunistic Spectrum 

Sharing (OSS). Television (TV) bands are opened up for OSS sharing because they 

often experience less spectrum utilization when compared to other networks. 

 

CR also referred to as secondary user (SU) is the enabling technology for OSS (Chen et 

al., 2008b; Muñoz et al., 2020a). To ensure a trustworthy spectrum sensing process, the 

security problems on the CRNs needs to be addressed.  
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2.3   Spectrum Sensing in Cognitive Radio 

Spectrum sensing is the ability to measure and be conscious of the parameters related to 

the radio channel characteristics, spectrum availability, transmit power, interference and 

noise, radio’s operating environment, user requirements and applications, available 

networks (infrastructures) and nodes, local policies and other operating restrictions. It is 

done across frequency, time, geographical space, code and phase. Various Spectrum 

sensing techniques abound and are broadly divided into three categories: non-

cooperative spectrum sensing, cooperative spectrum sensing and interference-based 

spectrum sensing with each having its advantages and disadvantages (Dibal et al., 

2018). 

 

2.4   Review of Spectrum Sensing Techniques  

Spectrum sensing in cognitive radio network is achieved by using any of the spectrum 

sensing methods broadly classified in Figure 2.1. These spectrum sensing methods have 

their advantages and disadvantages (Arthy & Periyasamy, 2015)  

 

Figure 2.1: Classifications of Spectrum Sensing Methods   

     (Arthy & Periyasamy, 2015) 

2.4.1   Non-cooperative sensing 

In this technique, a cognitive radio (CR) determines the availability or non-availability 

of primary user (PU) in a particular spectrum space. Figure 2.2 depicts the various non-

cooperative spectrum sensing techniques (Arthy& Periyasamy, 2015).  
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Figure 2.2: Classification of Non-cooperative Spectrum Sensing Techniques 

   (Arthy & Periyasamy, 2015; Dibal et al., 2018) 

 

 2.4.1.1   Energy detection 

Energy detection method does not require advance knowledge of primary user’s 

characteristics. This makes energy detection accomplish spectrum sensing with low 

computational and implementation complexities. It also has less sensing time duration, 

low implementation cost and low power consumption. However, it performs poorly 

under low Signal-to-Noise-Ratio (SNR) but performs appreciably at high SNR. 

Moreover, it cannot differentiate between PU signal and noise but it can be used in 

narrow and wide band channels. The working principle of energy detection is presented 

in Figure 2.3 (Salama et al., 2018).  

 

Figure 2.3: Energy Detector (Salama et al., 2018) 
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For a certain amount of samples N, the energy y can be computed as        (Gupta et al.,  

2016; Lin et al., 2018): 

                                        

2

1

1
| [k] |

k

k

y x
k 

                 (2.1) 

where,   

x[k] is the received signal. 

The hypotheses of detection are given by (2.2) and (2.3): 

                                         1( / )dP P y H                                                       (2.2)                       

 

                                              0( / )faP P y H 
                                                     

(2.3) 

 

where, 

Pd is the probability of detection and Pfa is the probability of false alarm. The receiver 

selects the hypothesis H1 when y in (2.2) is equal to or greater than a predetermined 

threshold, γ. However if y in (2.3) is less than γ, the NULL (H0) hypothesis is selected.  

 

2.4.1.2   Cyclostationary detection 

Cyclostationary detection technique of spectrum sensing uses the cyclostationary 

features of signals to detect spectrum status (Mabrook & Hussein, 2015). As shown in 

Figure 2.4, cyclostationary detector exploits spreading code, pulse train, sinusoidal 

carriers, code and other features to detect the periodicity of the signal. 

 

   Figure 2.4: Cyclostationary Feature Detector (Mabrook & Hussein, 2015). 
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Aside having high computational complexity, long computational time and very high 

power consumption, cyclostationary detection also needs advance knowledge of the 

primary user’s (PU’s) signal’s features. Conversely, it performs better at low SNR and 

does not require phase and frequency synchronization. Moreover, it is applicable in both 

narrow and wide bands. It has high sensing accuracy and high communication 

flexibility. 

 

2.4.1.3   Matched filter detection 

With fore knowledge of the PU signals, matched filter accurately detects PU’s signals 

(Vadivelu et al., 2014). With this method, SNR is maximized while Additive White 

Gaussian noise (AWGN) is present. It also has less sensing time, low cost, very high 

sensing accuracy, very high communication flexibility and moderate power 

consumption. However, it needs separate receiver for each type of PU and it is only 

used in narrow bands.  Operation of matched filter detection is presented in Figure 2.5 

(Mabrook & Hussein, 2015).  

 

 

Figure 2.5: Matched Filter  Detector (Mabrook & Hussein, 2015) 

 

2.2.1.4   Waveform-based detection 

Waveform spectrum sensing is usually applied for spectrum sensing only when the 

wave patterns of an incoming signal are known. Waveform-based detection requires 

these patterns for synchronization purposes. As shown in Figure 2.6, waveform 

spectrum sensing is achieved by comparing the received signal with the known signal. 
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Figure 2.6: Waveform-based detection (Dibal et al., 2018) 

 

Although waveform-based detection has low energy consumption, moderate 

deployment cost, less sensing time duration and computationally less complex, it 

requires advance knowledge of the PU signal, has low communication flexibility, has 

low sensing accuracy and finds application only in narrow bands. 

 

2.4.1.5   Eigen value-based detection 

Eigen value-based detection determines the status of the PU by calculating    Eigen 

values related to the covariance matrix of a received signal. This technique uses 

Maximum-Minimum Eigen (MME) value which computes the ratio between the 

minimum Eigen value and the energy of the received signal. Figure 2.7 depicts Eigen 

value-based detection scheme. 

 

 

Figure 2.7: Eigen value detection (Dibal et al., 2018) 

 

Eigen value detection has very low sensing accuracy and communication flexibility as 

well as long computational complexity and sensing time duration. However, it has 
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moderate implementation cost and moderate power consumption. It requires no 

synchronization and it is insensitive to noise uncertainty. 

 

2.4.1.6   Covariance detection 

In covariance detection, spectrum sensing is achieved by observing the disparity 

between autocorrelation of signal and noise. In this case, focus is on the off-diagonal 

elements of the covariance elements of the covariance matrix. Usually, the elements are 

nonzero in the presence of primary user but zero in the absence of primary user 

(Subhedar & Birajdar, 2011; Maninder et al., 2016). The block diagram of covariance 

detection is depicted in Figure 2.8 

 

Figure 2. 8: Covariance detection (Maninder et al., 2016) 
 

2.4.1.7   Radio identification-based detection 

Radio identification-based detection is applicable in the context of European Ubiquitous 

Terminal (TRUST) project. In this technique cognitive radio uses range and modulation 

to sense the spectrum (Subhedar & Birajdar, 2011; Maninder et al., 2016).  

 

2.4.1.8   Hough transform 

This detection technique deals with signal in the similitude of an edge detection 

problem. Because of the presence of noise and breakages, non-uniform illumination is 
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experienced in the edges. Hence, edge detection algorithm with linking algorithm is 

followed.  

 

2.4.1.9   Wavelet-based detection 

In this technique, Wavelet is used to detect edges in the power spectral density of a 

signal in a communication channel. Spectrum sensing using wavelets is achieved by the 

disintegration of a signal into smaller non-overlapping sub-bands, which are then 

applied to the wavelet in order to detect the edges in Power Spectral Density (PSD).  

Table 2.1 presents the summary of commonly-used non-cooperative spectrum sensing 

Methods.  
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Table 2.1: Comparison of Commonly-Used Non-Cooperative Spectrum Sensing   

Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Subhedar & Birajdar, 2011; Maninder et al., 2016). 

Energy detection is chosen in this work because it does not require prior knowledge of 

the PU. It has very low computational complexity, very low sensing duration, very low 

cost, very low power consumption and finds application both in wide and narrow bands.  
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2.4.2   Cooperative spectrum sensing 

Cooperative spectrum sensing (CSS) solves the problem of fading, shadowing, hidden 

node, missed detection and false alarm as CRs collaborate to achieve awareness of 

communication channel (Armi et al.,  2009; Amer et al., 2016).  CSS consists of two 

Schemes which are: Centralized spectrum sensing and distributed spectrum sensing. In 

centralized spectrum sensing, a central node such as base station (BS) gathers the 

sensing information for evaluation and decides the available channels and identifies an 

incumbent user. It relays this information to other CRs. In distributed spectrum sensing, 

each node shares its sensed information with other nodes but the final decisions are 

taken by individual CR node without the control of a central node (Zhang & Lili, 2017). 

 

2.4.2.1   Merits of cooperative spectrum sensing 

The following are the merits of cooperative spectrum sensing: 

i. It solves the challenge of hidden node and also reduces sensing problem 

imposed by shadowing and fading. 

ii. Unlike local sensing, cooperative sensing achieves high gain in terms of sensed 

spectrum. 

iii. With cooperative spectrum sensing technique, detection time is reduced  

 

2.4.2.2   Demerits of Cooperative Spectrum Sensing 

The demerits of cooperative spectrum sensing include: 

i. It is inefficient when different types of CRs are involved. 

ii. Communicating with all CRs through the control channel is the major 

impediment in cooperative spectrum sensing. 
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Since CSS solves the problem of hidden node, shadowing, fading and achieves high 

gain in the capacity of sensed spectrum as well as achieving detection at reduced time 

duration, it was therefore selected in this work. 

 

2.4.3   Interference-based spectrum sensing  

Interference-based spectrum sensing method shown in Figure 2.8 is applicable in CR 

because secondary signal is not allowed to interfere with the PU signal. Since each PU 

has interference temperature limit that guarantees certain quality of service, CR 

measures the interference environment and adjusts its transmission such that the 

interference to PU is not above the regulatory limits. In interference-based spectrum 

sensing, interference takes place at the receivers but can be controlled at the transmitter 

through the out-of-bound emissions, radiated power and location of individual 

transmitters. The major drawback of the interference-based spectrum sensing is its 

inability to measure the interference temperature at the primary receiver (Maninder et 

al., 2016). 

 

Figure 2.9: Interference Based Spectrum Detection (Maninder et al., 2016) 
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2.5   Background to Security Threats in Wireless Networks 

Wireless networks are faced with various security issues. These security issues can be 

classified according to how they manifest on protocol stacks and its five layers.  

       

2.5.1   Threats in physical layer 

The attacks common to physical layer are primary user emulation attack (PUEA), 

objective function attack, common control data attack, and jamming. In PUEA, the PUE 

emulates the signal of the PU thereby making the SU to see the transmitter as the PU. In 

jamming, attacker continuously sends data packets to the channel, thereby making it 

impossible for SU to sense the channel as idle. Common control data attack prohibits 

channel components from sharing spectrum usage information by disturbing 

transmission process. It further feeds the attacker with all the information needed for 

spectrum sensing. In objective function attack, the attacker continuously changes its 

parameters so that it becomes impossible for the secondary user to adapt successfully. 

Physical layer attacks are the most challenging to deal with. And with particular 

emphasis on CR networks, PUEA is the most challenging one (Muñozet al., 2020b). 

This attack is possible because of the flexibility enabled by software based air interface 

of CR. 

 

2.5.2   Threats in link layer 

The transfer of data from one node to another is done at link layer. Attacks common to 

this layer are three: Spectrum Signal Data Falsification (SSDF), Selfish Channel 

Negotiation (SCN) and Control Channel Saturation Denial of Service (CCSDoS). In 

SSDF (also known as byzantine attack), the malicious node sends wrongly sensed 

spectrum results, which leads to inaccurate decision by the fusion centre. The SCN 
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attack occurs when malicious nodes provide wrong channel information to change the 

route of the node. On the other hand, CCSDoS occurs when the attacker reserves the 

control channel and in turn gets it saturated.  

 

2.5.3   Threats in network layer 

Two types of attacks peculiar to this layer are sink hole and Hello Flood Attack (HFA). 

Sink hole attack is the attack in which attacker claims to be the most appropriate route 

to a particular destination, with the intention that packets sent through it is discarded 

while malicious packets are passed on. HFA occurs when the transmitting power of the 

broadcast message sent to all the nodes in the network by the attacker is so convincing 

to the point that it can claim to be the closest neighbour in the network of those nodes. 

 

2.5.4   Threats in transport layer 

Transfer of data between two end hosts occurs in the transport layer. Two types of 

attacks common to this layer are lion attack, where PUEA is launched by the attacker to 

force the CR nodes to undergo frequency hopping among the channels so as to disturb 

transport control protocol (TCP). The second attack common to transport layer is jelly 

fish attack. Although jellyfish attack is a network layer attack, it impedes optimum 

operation of the transport layer. 

 

2.5.5   Threats in application layer 

The attacks related to the four preceding layers are inimical to the application layer. 

They all have adverse effects on application layer in various ways. Hence, attacks on 

various other layers of the protocol stack should be avoided for proper functioning of 

the application layer.  
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2.5.6   Security objectives for the wireless network 

To be able to secure wireless network, network’s resources should only be available as 

and when required by the individuals, as well as the devices concerned. Moreover, only 

authorized individuals and devices should access the networks resources. Unauthorized 

individuals should be denied access; otherwise, an attacker can easily manipulate SUs 

and successfully launch its attacks. Similarly, network data should be confidential to the 

point that no unauthorized user can read such network data because, if every node 

including the mischievous node is able to understand the network data, it can easily be 

attacked. In the same vein, changes in data during transmission should be known to the 

participating nodes. Thus, all changes (intentional/unintentional) occurring in the data 

during transmission must be detectable for possible avoidance. 

 

2.6   Primary User Emulation Attack 

Topmost of the security issues threatening the successful operation of CRNs is the 

PUEA (Sultana & Hussain, 2018; Haji et al., 2020). PUEA denotes a situation whereby 

SU mimics a PU’s signal for selfish or malicious purposes(Sharifi et al., 2015).  PUEA 

is possible since CR is a highly reconfigurable device due to its software-based air 

interface (Lin & Wen, 2016; Fihri et al., 2018). One of the greatest challenges of 

distinguishing (PUE) from Primary user (PU) is the fact that FCC specified that “no 

modification to the incumbent system should be required to accommodate opportunistic 

use of the spectrum by secondary users”(Federal Communications Commission 03-322, 

2003;Chen & Park, 2006; Ghanem et al, 2016). Thus, equipping PU’s signal with 

signature or using an interactive protocol between an incumbent signal transmitter and a 

verifier is not an option. FCC also ruled that there should be physical security of the 

PUs in primary exclusive region (Federal Communication Commission, 02-135, 2002). 
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2.7   Classification of Primary User Emulators 

There are different types of PUEs in literature (Marinho et al., 2015; Yu et al., 2015; 

Fauzi & Khan, 2017) and they are classified as follows: 

i. Selfish primary user emulator 

ii. Malicious primary user emulator 

iii. Power-fixed primary user emulator 

iv. Static primary user emulator 

v. Mobile primary user emulator 

 

2.7.1   Selfish primary user emulator 

Selfish PUE is often carried out by two attackers. The aim is to establish    dedicated 

links, to transmit without allowing other SUs to have access to the same fallow 

spectrum bands.  

 

2.7.2   Malicious primary user emulator 

Malicious primary user emulation attack impedes the Opportunistic Spectrum Sharing 

(OSS) process of the SUs by preventing them from detecting and using PU’s spectrum 

holes. A malicious PUE mimics the PU’s signal features and launch a jamming signal 

when the PUs is not using the spectrum band. The malicious PUE transmits in idle 

bands during PUEA in other to deny the SUs from accessing the white space and not to 

interfere with the PU. Unlike the selfish PUE, the malicious PUE obstructs opportunity 

spectrum sharing (OSS) in several bands concurrently by using:  

i. Waiting time for SU to be sure the band is vacant. 

ii. During spectrum handoff 
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2.7.3   Power-fixed primary user emulator 

A power-fixed attacker launches its attacks by using a predefined invariable power level 

that is independent of the PU’s power. Such an attack has the capability of defeating 

any defensive approach that depends mainly on the power of the received signal. Since 

most SUs use energy detection for sensing spectrum, it becomes easy for PUE attackers 

to mimic power level of PU. 

 

2.7.4   Static primary user emulator 

Static attacker maintains fixed location in all rounds of attacks. Location techniques 

such as dedicated positioning sensors, angle of arrival or time of arrival are used to 

reveal this location. It can easily be detected using the difference between its location 

and that of PU.  

 

2.7.5   Mobile primary user emulator 

Unlike static PUE, mobile PUE is not static. This makes localizing mobile PUE more 

difficult when compared to static PUE. This implies that the algorithm for localizing 

mobile primary user emulator is more complex than that of static primary user emulator. 

  

2.8   Conditions for Successful Primary User Emulation Attacks 

The following are the conditions that make PUE attacks on CRN successful (Ammar et 

al., 2015): 

i. No primary user-to-secondary user interaction 

ii. Different characteristics of PU and SU signals 

iii. Channel measurement and primary signal learning 

iv. Avoiding interference with the primary networks. 
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2.9   Impacts of Primary User Emulators on Cognitive Radio Networks 

PUE is responsible for most severe security challenges faced by CRNs. The following 

are possible effects of PUE attacks on CRNs (Ammar et al., 2015; Yu  et al., 2015; 

Sultana & Hussain, 2018; Srinivasan et al., 2019).  

i. Quality of service (QoS) Degradation: PUEA results in discontinuity of 

secondary services, as a result, it causes recurrent spectrum handoff which leads 

to delay and jitter. 

ii. Bandwidth Wastage: CRN was deployed to tackle the problem of spectrum 

underutilization caused by permanent spectrum allocation policy. However, the 

spectrum hole is often time stolen by PUE, which results in spectrum bandwidth 

waste. 

iii. Connection Unreliability: PUEA in CRN greatly increases unreliability in the 

CRN connection. With the presence of PUEA, there is no guarantee of service as 

a result of frequent spectrum handoff, under which the SU may not find 

available channel. 

iv. Interference with the Primary Network: There is a possibility of interference 

with the primary network if PUE fails to accurately detect the presence of PU. 

v. Denial of Service (DoS): As a result of the high frequency with which PUE 

attacks occur, SUs will not find channels for their transmission. In this case, they 

will be denied access to the network.  

 

 2.10   Primary Exclusive Region 

This is the area beyond which Secondary users must not go closer to primary 

transmitter. Primary exclusive region (PER) is also called keep-out-region. The keep-

out-region for various TV transmitters are as shown in Table 2.2  
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              Table 2.2: Keep-out-regions from TV Transmitter 

 

TV Transmitter Keep-out-region 

 

Digital Television 

 

132 km 

 

Customer Premise Equipment 

 

142 km 

 

Base Station  

 

155  km 

 

Source: (Kang, 2009). 

  

 2.11   Review of Detection Schemes for Primary User Emulation Attacks 

Primary user emulation attack affects successful operation of CRN. Hence, it is 

necessary to curb its activities on the CRN. With the specification of the FCC which 

states that there should be physical separation between SUs and PUs, localisation of the 

attacker is the best way to detect PUE. Localisation is the estimation of the spatial 

coordinates of a node as accurately as possible. There are two broad categories of 

localisation: Range-free localisation and Range-based localisation. 

 

2.11.1   Range-free localisation scheme 

This method does not make use of distance, angle estimation or other special hardware. 

Here, nodes communicate with each other to find out their respective distance. It is not 

highly accurate, but less expensive and less complex (Shakshuki et al., 2019). 

 

2.11.2   Range-based localisation schemes 

Range is the distance within which something can be reached or received. Range-based 

localisation algorithms estimate the distance and angle between sensor nodes. The 

algorithms compute the distance between nodes and use the principle of geometry to 

calculate the location for the same nodes. These algorithms are employed to compute 
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range metrics such as angle in Angle of Arrival (AOA) and distance in Time of Arrival 

(TOA), Time Difference of Arrival (TDOA) and Received Signal Strength (RSS). 

When implementing any localisation technique, certain parameters such as accuracy, 

cost, energy efficiency, and size of the hardware, should be considered as they show 

similarities and differences between various approaches (Kumar & Singh, 2016; 

Shakshuki et al., 2019).  

 

2.11.3    Concepts used in range-based localisation 

Several concepts are used in range-based localisation. They include triangulation, 

lateration, angulation, trilateration, multilateration and angulation.  

Triangulation is the use of geometry of triangles to estimate the position or location of 

an object or a person. Triangulation is classified into lateration  and angulation. 

Lateration is the estimation of distance between nodes. Trilateration is the estimation of 

the position of un-localised node by computing the distance from three nodes through 

intersection of three circles, which gives a single point that will eventually be the 

position of the un-localised node.  Trilateration method is used to find the location of 

the sensor node when the distance is being calculated.  Although this method has high 

accuracy, it requires more than three nodes for its location estimation and consumes a 

lot of power. 

 

Typically, angulation is the means by which the location of the node is determined by 

considering the angle between the nodes. While triangulation is the means by which 

position of the un-localised node is computed by measuring at least two angles of un-

localised node from two localised nodes (Khudhair et al., 2016). 
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2.11.4   Range-based localisation techniques 

The different categories of Range Based techniques are: 

i. Time of Arrival 

ii. Time Difference of Arrival 

iii. Angle of Arrival  

iv. Received Signal Strength  

 

2.11.4.1   Time of arrival 

The velocity of a radio signal and the time lapse between when the signal was 

transmitted by the transmitter and the time it reaches the receiver is used to calculate the 

position of the receiver. Upon the receipt of signal by a receiver, it sends it back to the 

transmitter. The time lapse and the preset speed are used to compute the position of the 

receiver  (Li et al., 2016). Figure 2.10 is the typical two-dimensional localisation using 

time of arrival (TOA). 

 

Figure 2.10: Typical two-dimensional Localisation Using Time of Arrival 

 

A node m estimates its distance from its neighbour n by using (2.4): 
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   12mn

m m n nDis vt vt vt vtrec rectra tra
                          (2.4) 

where, 

      is the distance between m and n,    
  denotes the time signal was received at node 

m,     
  indicates the signal was transmitted from node m,     

  signifies the time the 

signal was received at node n and     
  is the transmission time of signal from node n 

while v denotes velocity of the radio signal. 

 

The source localisation for 3D using TOA is (Li  et al., 2016): 

          
     

1/2
2 2 2

vt x x y y z zi i i i
 

      
 

                                   (2.5) 

where, 

 v is the signal propagation speed, ti gives the signal travelling time to the receiver from 

the source i. The position of the receiver i in space is represented by xi, yi, zi. The 

position of the node to be determined is x, y, z. 

The general Linear Least Square (LLS) and Maximum Likelihood (ML) cost functions 

for TOA measurements are respectively given as:  
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2
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N

TOA i i
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J
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 
                                       (2.7)      

where, 
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 JTOA denotes cost function for TOA, ti represents time of transmission and X is the 

position of the transmitter while xi position of the receivers. 2
 
signifies variance i

th
 

receiver whereas N is the number of receiver. 

TOA has two main limitations which are:  

i. Inability to match all receivers at microsecond: This problem is overcome with 

the application of roundtrip propagation time which computes the difference 

between when the signal sent from a transmitter to the receiver is sent back to 

the transmitter by the receiver.  

ii. Internal delay by the transmitter also affects accurate computation of position of 

the receiver. Moreover, it is required that the node to be detected cooperates 

with other nodes. Therefore, TOA cannot be used to localise an attacker as it 

will not cooperate with other nodes. 

 

2.11.4.2   Time difference of arrival 

Time Difference of Arrival (TDOA) was developed to overcome the limitations of Time 

of Arrival (TOA). It computes the location of a node by using the difference of arrival 

time of the radio and ultrasound signals at different nodes. Each node has microphone 

and speaker. When anchor node sends signal to other nodes, it waits for some time lapse 

before generating chirps with the help of a speaker.  The microphone saves the time it 

identifies the chirps. Unlocalised node utilizes this time information to estimate how far 

it is from the anchor node. Figure 2.11 is the schematic diagram of two-dimensional 

localisation using TDOAs. 
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Figure 2.11: Schematic Diagram of Two-Dimensional  

Localisation Using TDOA 

 

For two references, m and n the TDOA measurement can be transformed into a distance 

by (2.5) (Li et al., 2016; Ghanem et al.,  2016): 

                           
( ) .

mn m n m n mn
Dis dis dis c t t c t                     (2.8)                          

mn
Dis  is distance between references m and n. c represents the speed of sound, tm is the 

time sound travels from the transmitter to the reference node m while tn denotes the time 

signal is received at reference node n. 

 

The source localisation for 3D using TDOA is (Li et al., 2016): 

     
            

1 21/2 2 2 22 2 2

ij i i i j j jv t x x y y z z x x y y z z              
      

,               (2.9)                               

i,j=1,2………..,N       

where, 

v is the signal propagation velocity, ti is the time signal transverses  between the 

transmitter and receiver i, 
ijt denotes the time difference in travelling times ti and tj. 
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The location of the transmitter i is represented by(xi, yi, zi) while that of the receiver is 

(x, y, z). The general Linear Least Square (LS) and Maximum Likelihood (ML) cost 

functions for TDOA measurements are respectively given as (Li et al., 2016): 

2

2

k
J t t s X x X x
TDOA i j i j

i

  
        

  
  (2.10) 

and 

  
2

22
,

t t s X x X xk i j i j
J
TDOA i

d i


    
 


                         (2.11) 

where,  

k is the number of the participating nodes  ( 4k  ). JTDOA denotes cost function for 

TDOA, ti represents time of transmission and X is the position of the transmitter, while 

xj position of the j
th

 receivers. 2  signifies variance of i
th

 receiver whereas N is the 

number of receiver. 

Although time difference of arrival (TDOA) localisation method has higher accuracy 

and precision, it requires extra hardware which makes it more complex and expensive.

   

 2.11.4.3   Angle of arrival 

As a localisation technique, Angle of arrival (AOA) utilizes angular measurements to 

detect a node. If orientation of the angular measurement is 0
0
 and points to the north, it 

is absolute AOA, otherwise it is a relative AOA. Because AOA requires extra wares, it 

is highly expensive to deploy. However, it is highly accurate in localizing a node 

(Khudhair et al., 2016). 
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AOA
,k i measured from node k to node i expressed as:  

                         , , ,k i k i k in  
                                       (2.12)                                                           

where, 

, arctan k i
k i

k i

x x

y y


 
  

 
 gives the actual AOA at node i from node k 

,k in  is the noise 

On gathering angular measurements from all the nodes, we have the following equation: 

                                    n                              (2.13) 

where, 

  is a matrix showing all AOA measurements,  is the actual AOA measurement while 

matrix n  represents the noise of the AOA measurements with variance 2 . 

 

2.11.4.4   Received signal strength 

RSS-based localisation techniques arise from the fact that there exists a strong 

connection between the distance of a wireless link and RSS. If the signal travels a 

distance, d , its signal strength is inversely proportional to the square of the distance 

travelled. 

      
2

1
RSSI

d
                                       (2.14) 

This method is not very accurate due to the uncertainties of the communication channel. 

But it is less expensive, and easy to deploy.  

Two challenges are common with RSS-based method of localisation:  

i. Manipulation by rogue nodes. 
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ii. Inconsistency in the received signal strength. 

These challenges are surmountable by carefully processing several received power. 

Typically, RSS value decreases as the distance between transmitter and receiver 

increases. As such, if a group of receivers in a large network is able to collect sufficient 

number of received signal strength measurements, the location with the highest value of 

RSS is the location of the transmitter. The advantages of this method are:    

i. It prevents modifying PU’s signal 

ii. It allows localizing multiple transmitters that transmit signal                                             

concurrently.  

iii. RSS requires no cooperation with other participating nodes to accurately detect 

unlocalised node. 

RSS operates on three radio signal propagation models which are Log-distance model, 

free space propagation model and two-ray ground model (Chen et al., 2008b).  

i. Free Space Propagation Model 

The received signal power, recp , is related to distanced   (2.15): 

  
2

tra
rec f

p
p k

d


               (2.15) 

where, 

Prec is the received signal, kf is a constant that depends on transceiver characteristics, Ptra 

is the transmitted power, while dis the distance between the transmitter and the receiver. 

With this model it is assumed that there is no signal attenuation in the transmission 

channel. 

ii. Two-Ray Ground Model 
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Direct communication ray and reflected ray are the two rays a two-ray ground model 

receives. Two-ray model is given by: 

                     4

tra
rec f

p
p k

d
                                                   (2.16)  

iii. Log-distance Model  

The mathematical expression for Log-distance model is: 

   
tra

rec n

p
p

d
                                       (2.17) 

where, 

n  represent loss exponent, recp  is the received power and trap is transmitter signal power 

whereas d is the distance between the transmitter and the receiver. 

Another formula that relates received power to distance is the case of one metre 

reference distance. It is given as: 

                              1010.m.log ( )RSS d B                          (2.18) 

where, 

d is transmitter-to-receiver distance, B is RSS value measured by a receiver that is 

located one metre from a transmitter and m is the actual value of RSS measured at 

distance, d. Whereas Table 2.3 is the comparison of ranged-based localisation schemes, 

Table 2.4 presents suitability/unsuitability of the range-based localisation schemes for 

the detection of PUEs in CRNs. 

 

 

         Table 2.3: Comparison of Range-Based Localisation Methods  

Method Size of Accuracy Computational Precision Cost Energy 
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Hardware Complexity  Efficiency 

TOA Large Low High High High Low 

 

TDOA 

 

Large 

 

High 

 

High 

 

Low 

 

High 

 

High 

 

AOA 

 

Large 

 

High 

 

High 

 

High 

 

High 

 

Low 

 

RSSI 

 

Small 

 

Low 

 

Low 

 

Low 

 

Low 

 

High 

Source (Li et al., 2016) 

    

     Table 2.4: Suitability of Range-Based Schemes for Localizing PUE in CRN  

                         

Scheme Suitability Reason 

   TOA Unsuitable - Cooperation of the attacker is required. And 

PUE will not cooperate with other SUs. 

-Synchronization problem. 

 

  TDOA 

 

Unsuitable 

 

-It does not require cooperation of attackers. 

-Inability to handle tight synchronization 

among participating nodes. 

 

  RSS 

 

Suitable 

 

-It is applicable without cooperation among the 

participating nodes. 

 

  AOA 

 

Suitable 

 

-Cooperation of other nodes is not needed. 

Source: (Li et al., 2016) 

 

2.12   Review of Related Works 

In the work of Chen et al. (2008b) PUE attacks in hostile cognitive radio (CR) 

environment was identified and localised but consideration was not given to mobile and 

low power transmitter. Hence, this technique is not applicable in mobile cognitive radio 

network. 

 

Similarly, Penna and Cabric (2013) used direction of arrival of signal to detect the 

primary user. Each sensor was equipped with antenna that enabled higher localisation 

accuracy. Equipping all the sensors in the network with antenna is highly expensive. 



38 
 

However, optimally positioned sensors that are equipped with antennas also localise the 

primary users with higher accuracy but it would be less expensive.  

 

In a related development, Chunsheng and Song (2014) used signal features such as 

active and idle periods of the PU to identify primary user emulation attacks (PUEAs) in 

CRNs without prior knowledge of primary user (PU). Although it is applicable in every 

type of primary user, it cannot classify Signal Activity Pattern (SAP) when multiple 

PUs are present in the CRN.  

 

Advanced Encryption Standard (AES) was used in Ahmed et al. (2014) to detect PUE 

in CRNs. Since no additional hardware is required, it is financially less expensive. It is 

highly efficient for spectrum sharing when applied directly to today’s Digital Television 

(DTV). However, plug-in AES chip makes it complex. The plug-in AES chip can lead 

to compatibility issues with other hardware components.  

 

In the work of  Ammar et al. (2015), distance was measured based on location 

coordinate and received signal strength. It successfully ensures trustworthiness among 

nodes in cognitive radio network by distinguishing primary and malicious users. But it 

failed to consider RSS of varying frequency to localise transmitters at different 

locations.  

 

In Chen et al. (2016), density function and signal propagation was user to detect PUEA. 

In this technique, secondary user (SU) does not need location information of the 

primary user to identify the PUE. Although it has the advantage of not requiring extra 

hardware, it has low accuracy since each SU carried out detection independently.  
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In the same vein, Mrabet et al. (2018) used detection technique based on Kalman Filter 

to detect mobile primary user by measuring the received energy at the secondary node. 

It considered free space propagation model. Therefore, it is not applicable in a cluttered 

environment. It could not find the initial location of the PU and it cannot detect 

attackers that are very close to the PU.  

 

Khaliq et al. (2018) used location verification aided mean field game approach for 

detection of PUE. It also allows detection of attacks by each node without additional 

cost. With a mean field game approach SUs autonomously make detection decision. It 

can detect multiple PUE and can also be applied in a distributed manner but it cannot be 

implemented on vehicular CR ad hoc networks. Moreover, it did not consider other 

game theoretic approaches. 

 

Recently, Haji et al. (2020) used sparse coding through Machine learning approaches to 

accurately detect PUE and jammer. This scheme only outperforms energy detection-

based machine learning algorithms but it finds no application in other detection 

techniques.  

 

Also, Vasanthareddy & Sanjeev (2021) used received power and angle at which the 

power was received to accurately detect PUEA. However, Inclusion of secured Harsh 

Algorithm (SHA) makes the algorithm complex, expensive and unable to isolate the 

detected PUE from the network. 
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2.13   Research Gap 

From appendix A, hybrid localisation method (HLM) model using AOA and RSS has 

not been used to localise the primary user emulator (PUE). Moreover, based on the 

strengths of AOA (which include high accuracy and high precision) and that of RSS 

(which are: low computational complexity, low cost, high energy efficiency and small 

hardware) over other localisation schemes (as presented in Table 2.3) and their 

suitability for localising PUE (as presented in Table 2.4), they are adopted for 

hybridisation in this work. 

 

Existing literatures show that Cooperative Spectrum Sensing (CSS) is classified into 

distributed and centralized spectrum sensing (Akyildiz et al., 2011; Sharma & Sharma, 

2017). In centralized spectrum sensing, a decision centre (DC) computes the accurate 

location of the transmitter and sensing schedule of each SU over a particular channel 

(Yang et al., 2012; Treeumnuk et al., 2013; Akhtar et al., 2014; Ashokan & Jacob, 

2017; Shrivastava et al., 2018; Akbari et al., 2018).  This makes it more proficient than 

distributed spectrum sensing (Hajiabadi et al., 2017; Verma et al., 2018; Souza et al., 

2018).   

 

Furthermore, to the best of our understanding, there has not been any work done in the 

area of using Cooperative Spectrum Sensing-based Hybrid Localisation Method (CSS-

HLM) to accurately detect PUEs in CRNs. Thus cooperative spectrum sensing is 

adopted in section 3.4 of this work. 
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CHAPTER THREE 

3.0        RESEARCH METHODOLOGY 

3.1   Background to the Methodology  

In this chapter, the methods used to detect primary user emulator (PUE) and isolate the 

detected PUE are presented. To address the problem of detecting PUE, the problem was 

approached from the perspective of hybridizing RSS and AOA methods of localisation. 

Furthermore, a technique was developed to isolate the detected PUE from the CRN. 

Computer simulation using MATLAB (2009) version 7.8.0.347 tool was used to obtain 

the results from these developed techniques. 

 

3.2   Materials 

In this research, Laptop (HP Elite Book 8440p with Core i7 & CPU m620@ 2.67GHz, 

installed memory of 4.00GB, 64-bit operating system, x64-based processor) and 

MATLAB (2009) version 7.8.0.347 was used to carry out the simulation. 

 

3.3   Method  

PUE poses a severe security challenge to the full deployment of CR. The implication is 

that the activities of PUE will lead to eventual collapse of CRN. Therefore, there is need 

to develop a fast, accurate and energy efficient technique to detect and isolate PUE from 

CRN. 

 

3.4   Hybrid Localisation Method for Detection of PUE in CRNs 

In this section, special attention was paid to detecting the PUE using the blend of Angle 

of Arrival (AOA) and received signal strength (RSS) schemes of localisation. Sections 

3.4 give full description of the system model used and how it was achieved. 
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3.4.1   Hybrid localisation method model 

Figure 3.1 presents cognitive radio network (CRN) model, which operates in television 

(TV) spectrum holes. It consists of the mobile switching centre (MSC), the secondary 

base stations (SBSs), the primary user (PU) transmitter, the secondary users (SUs) 

transmitter and the primary user emulator (PUE). Federal Communications commission 

(FCC) regulation requires that SUs should only operate outside primary exclusive 

region (PER). Hence, there is physical separation between SUs and the PU receiver (Xie 

et al., 2013). Furthermore, there should be a protected band that gives the minimum 

distance  ( ), of SUs from the primary receiver. This is to shield the primary 

transmitter from finite interference. PER and  ( )make up the no-talk-region as shown 

in Figure 3.1. SU should have the capability to estimate its location (Celebi& Arslan, 

2007; Vu et al., 2009)and this information can be shared with other SUs. Consequently, 

SUs are conscious of their locations, as well as that of the PU and they use the location 

information to compute their individual distances from each other, from the PU and the 

relative angular measurement between each SU and the PU (Xie et al., 2013). 
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MSC

Communication between 

SBS and MSC

 

Figure 3.1: Hybrid Localisation Method Model 

 

3.4.2   No-talk region 

Figure 3.2 portrays the no-talk-region, rn. It comprises the primary exclusive region 

(PER)rp, and extra safety band dn(∆) which halts SU’s signal from interfering with the 

primary transmitter (Unnikrishnan & Veeravalli, 2008). SUs can communicate exterior 

of  the no-talk-region given by (3.1) using (3.2) which is the equation that defines the 

white space (Faruk & Ayeni, 2013).  
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PU

rp

SBS

rn

dn(∆)

 

Figure 3.2: Digital Television PER and No-Talk Region  

(Faruk & Ayeni, 2013) 

 

nr                                                                             (3.1) 

 

 : 0,1DI                                                                 (3.2) 

      

(3.3) is the primary exclusive region, (3.4) is the extra safety band, and (3.5) is the no-

talk-region. 

 1

0( )p p Tr l p G r N     
                                       (3.3) 

 1

0( ) ( )n p T id l p G r N       
                                      (3.4) 

( , , , ) ( , , ) ( )n T t p T t nr p h r p h d    
                                 (3.5)                              

where, 

rp represents the radius of the PER,  dn(∆) gives additional protection from PER, the no-

talk-region is denoted by rn, ∆i signifies the safety margin,  path-loss is represented by 

lp, Ψ(r) indicates the fade margin, λ is wavelength, PT, is the transmit power of the PU, 

No is the noise floor and ht denotes antenna height while G represents antenna gain.
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      '

1,        if  , \

, , , 0,        if  ,

0,        if  ,

n

D

n

x y r

I x y f t x y

x y r




 
                        

(3.6) 

PUE (IPUE) can communicate from the locations described by (3.7): 

 

                                                               

           (3.7)               

 

 

where, 

(x, y) is the location of SU from where it transmits, f denotes the frequency of 

transmission, and t signifies the transmission time. DI  is the white space where SU can 

transmit. 

 

3.4.3   Layout of the cognitive radio network 

The layout of the CRN is shown in Figure 3.3. It consists of the no-talk region, primary 

user, secondary users, primary user emulators, and the coverage area of the primary 

user. The dimension of the layout in Figure 3.3 is 100 km x100 km.  

  '

1,        if  , \

, , , 1,        if  ,

0,        if  ,

n

PUE

n

x y r

I x y f t x y

x y r




 
 
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Figure 3.3: Layout of the Cognitive Radio Network 

 

3.4.4   Hybrid localisation method model assumptions 

The summary of assumptions upon which this work was based are as follows: 

i. SUs are outfitted with directional antennas to calculate the AOA. 

ii. The transmitter is physically separated from all SUs and the PUEs. 

iii. Different received signal strengths are obtained at each SU. 

iv. PUE is localised using two SU nodes. 

v. Received signal strength at SU is used to estimate the Euclidean distance 

between the PUE and the SU.  

vi. Each SU computes how far it is from PU and the angle at which it receives 

signal. 

vii. SUs communicate among themselves via the SBS. 
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viii. SUs and PUEs are all non-static communication devices. 

 

3.4.5   Hybrid localisation method model operation 

When a signal is received, each SU estimates its distance and the angle at which the 

signal arrived from the transmitter. Each SU transmits the location information to the 

SBS within its cell, which then relays this information directly to the other SUs within 

that cell and to the SUs in other cells through their respective SBS through MSC. The 

estimated location of the signal transmitter is compared with the actual location of the 

legitimate PU and finally decides whether the transmitter is the legitimate PU or not 

(Leónet al., 2012; Piasana & Marchetti, 2014). 

 

3.4.6   Primary user emulation attack scenario 

A typical primary user emulation (PUE) attack setup is shown in Figure 3.4, where SUs 

in the network receive  the transmitted signal from the PUE (Yadav et al., 2018).  

SU1

SU2 SU3 SU4

PUE

SU5

PU

 

 Figure 3.4: Primary User Emulation Attack Launching Scenario (Mergu, 2019) 

 

In the localisation setup of the typical PUE shown in Figure 3.5, the locations of 

secondary user 1 (SU1) is (x1, y1,) and that of secondary user 2 (SU2), is (x2, y2). 

Similarly, the radius of coverage areas of SU1 is r1 and that of SU2 is r2. While (xa, ya) 
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and (xb, yb) represent the overlie points of the coverage areas of SU1 and SU2. Whereas 

angles ϕ and θ are the angles at which PU’s signal was received at SU1 and SU2 

respectively. PQ is the distance between the centres of SU1 and SU2. α1 is the angle at 

which PUE’s signal was received at SU1 and α2 is the angle at which PUE’s signal was 

received at SU2. 

 

Figure 3.5: Localisation Process by Two SUs 

 

The primary user (PU) is located at (       ), PUE is sited at point (     ) while SUs 

are(     ) where,             . D is the distance between the two SUs participating 

in the detection. 

                
2 2

2 1 2 1( ) ( )D x x y y   
                   

(3.8)
                           

 

(3.9) to (3.13) give the intersection points, (xa,ya) and (xb,yb)  of the two SUs that 

partake in localizing the PUE (Kumar & Singh, 2016).  
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a
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
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                                   (3.10)
 

           

2 2

1 2 2 1 1 2 2 1

2 2

(x x )(r r )
2 ( )

2 2
b

x x y y
X

D D


   
  

                                  
(3.11) 

            

2 2

1 2 2 1 1 2 2 1

2 2

(x x )(r r )
2 ( )

2 2
b

x x y y
X

D D


   
  

                                   (3.12)
 

1 2 1 2 1 2 1 2

1
( )( )( )( )

4
D r r D r r D r r D r r          

                                 
(3.13) 

The distance, di(PU) between the PU and i
th

 SU is given in (3.14) 

  2 2

( ) ( ) ( )i PU PU i PU id X x Y y                                                    (3.14) 

(3.15) gives the AOA of signal at SU1 while (3.16) gives AOA of signal at SU2 

                              

1 1

1

tan PU

PU

Y y

X x
   
  

 
                         (3.15) 

                               1 2

2

tan PU

PU

Y y

X x
   
  

 
                                               (3.16) 

In a transmission environment with losses, the received power is estimated as 

(Lo )r t shadowing othersp p ss Loss  
                       (3.17) 

 

here, 

              is loss due to shadowing  and          is other losses in the 

communication environment  while pt is the transmitted power pris received power.
 

Hence, the power received at i
th

 SU
 

                               
  L( )r t di

p p p                                     (3.18) 
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where 

                                            
P L L
L shadowing others
   

 

         

 

1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

,1 ,2 i,3 ,

( )    ( )    ( )     ( )

( )    ( )    ( )    ( )

                               

( )   ( )      ( )    ( )

r r r r j

r r r r j

r

r i r i r r i j

p p p p

p p p p
p

p p p p

 
 
 

  
 
 
 

                        (3.19)

     
 

But   

 

According to Fihri et al.(2018) and Rappaport (2002), 

                                      
0(d) (d )

0

10 logL L e

d
p p n

d

 
   

                                        

(3.20) 

By substituting (3.20) into (3.18), we obtain  

                        

( 0)
exp

10

t r L dp p p
d

n

  
  

 
               (3.21)   

where, 

the transmit power of PUE is Pt, the received power at SU is Pr, the distance between  

SU and PUE is d, pathloss is denoted by PL(do) is the reference of 1m and loss exponent, 

n of 4, putting a typical urban environment into consideration.
. 

Because of the dynamics of the communication environment, there are two issues that 

can affect the value of the received power:  

Exploitation by rogue or several transmitters.  

i. Inaccurate measurement of the received power. 

These challenges can be tackled by averaging of several received powers. 

Using (3.22), the average of multiple samples of the received power,   , is used to 

obtain a better estimate of the received power. 
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                                         ( )

1

1 N

r iaverage riN

N

p p
N 

               (3.22) 

Here, Pr(iaverage) represents the average of the power received at the i
th

 SU and PriN is the 

N
th 

sample value of the received power, Pr  at the i
th

 SU in dBm.  Substitute 

(3.22) into (3.21) to obtain (3.23):                                                 

                                    ( 0) ( )
exp

10

t L d r iaverage

i

p p p
d

n

  
  

 
            (3.23) 

(3.23) presents the distance separating the PUE from i
th 

SU 

where, 

di gives the distance between the transmitter and i
th

 SU, Pt represents the transmitted 

power from the transmitter, Pr(iaverage) is the average power received at the i
th

 SU, n 

denotes the pathloss exponent which describes the propagation environment, while d0 is 

the reference distance from which the line of sight propagation is assumed and PL(d0) 

typifies the pathloss at the reference distance.  

 

In Figure 3.5, for SU1 and SU2 with distance D between them, the PUE is separated 

from SU1 and SU2 with distance d1 and d2 respectively. The angle of arrival (AOA) at 

SU1 and SU2 from PUE is expressed as:  

                         

2 2 2

1 2
1

1

cos
2

D d d
arc

Dd


  
  

 
               (3.24) 

                                        2 180 t  
                            (3.25) 

where,
 

                         

2 2 2

2 1

2

cos
2

D d d
t arc

Dd

  
  

 
                           (3.26)

          

  

Hence, 
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   
    

  
             (3.27) 

The distance and AOA at SUi from PUE for two SUs used in the localisation of PUE, is 

given by 

                                          
( )i i i i id s n                                                  (3.28)                                         

di is the distance separating PUE and i
th 

SU, i  
gives the AOA of i

th
 SU from PUE and 

ni is the noise in the distance, Si and AOA, i  measurements.  

Distance, d and AOA,   from PUE and Si with i  corrupted with noise n at i
th

 position 

of SU are given in (3.29) and (3.30) respectively 
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                             (3.34) 

Equations (3.33) and (3.34) give the location of the PUE. 
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The flow process of the hybrid localisation method is presented in Figure 3.6 while the 

algorithm for implementing the hybrid localisation scheme is presented in algorithm 

3.1. 

Signal 

features = PU’s 

features?

Estimate AOA; estimate distance 

between transmitter and SUs

compute transmitter’s

AOA, 

distance, and transmitter location = 

that of PU?

Yes

No

Start

Detection of signal by SUs

Stop

Yes

Update SU with estimated AoA and 

distance

Signal features ≠ PU’s 

signal features

The transmitter = PUE
The transmitter =  PU

No

PU Signal features: transmit power, modulation type, 

pulse shaping, bandwidth, frame format, operating 

frequency

 

Figure 3.6: Hybrid Localisation Flowchart 

 

 

 

 

                       Algorithm 3.1: Hybrid Localisation 

1 { 

2 start 
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3 Input PU’s signal characteristics = transmit power, bandwidth, 

pulse shaping, frame format, operating frequency, band 

modulation type 

4 SU senses signal from unknown transmitter 

5 SU extracts signal characteristics 

6 If { 

7         Signal characteristics ≠ PU’s signal characteristics 

8         transmitter ≠ PU 

9 Go to step 1 

10 Else 

11 Go to step 12 

12 Estimate AOAi 

13 Estimate Euclidean distance, di 

14 Estimate loci 

15 If { 

16 AOAi, di and loci of the transmitter = AOAi, di and loci of the PU 

17 Then 

18          Transmitter = PU 

19 Else 

20          Transmitter = PUE 

21                                                                    }} 

22        End 

23 { 

 

To evaluate the performance of the hybrid localisation scheme, comparison was made 

between estimated locations and the actual location of the PU using the root means 

square error (RMSE). Low RMSE signifies better performance.  

                     
    

2

1

1 N

est reali i
i

RMSE L L
N 

                          (3.35) 

where, 

Lest is estimated coordinate, Lreal is the actual coordinate and N is the number of 

estimations. 

 

3.4.7   Simulation of hybrid localisation method 

The simulation for the hybrid method was carried out using MATLAB (2009) version 

7.8.0.347. The layout of the CRN which is the simulation layout is shown in Figure 3.3. 
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The PU transmitter was fixed at (X,Y) (50,50) on a network area of 100km by100km, 

while the PUE and SUs were distributed randomly in the network. SU1 and SU2were 

respectively at initial positions of (      ) (19, 22) and (      ) (24, 23). The no-talk-

region has radius of 10km, while coverage area of PU is 50m.  PUE’s transmit power 

was 20dBm, the loss exponent, n, was set at 4. The path loss within the reference 

distance, do, of 1m was set at 1dBm (Rappaport, 2002).   

 

3.5   Cooperative Spectrum Sensing-Hybrid Localisation Method  

PUE’s detection in CRNs using fusion of RSS and AOA localisation method was 

achieved in section 3.4. Because localisation significantly depends on the received 

signals from a prospective PUE, it is tricky to accurately localise PUE as its signals 

have been sternly affected by various attenuation factors (Ashokan & Jacob, 2017). 

Consequently, to mitigate such effects, cooperative spectrum sensing (CSS) has been 

adopted. Here, SUs collaborate to make decisions concerning the presence or absence of 

PUE.  

 

3.5.1   Cooperative spectrum sensing-hybrid localisation method model operation 

The model to study the effects of cooperative sensing on the hybrid of RSS and AOA 

localisation schemes for the detection of PUE in CRN is depicted in Figure 3.7. It 

comprises the SUs, PUE, secondary base station (SBS), a building, a tree, a hill, and a 

car. PUE is the transmitter, SUs are the receivers. The RSS at the SUs is affected by the 

obstacles (building, tree, hill, and car). RSS from PUE to SU1 is affected by the 

building, RSS at SU2 is affected by the tree, and RSS at SU3 is affected by the hill while 

the car affects the signal strength received at SU6. Even though no visible obstacle 

exists between SU4, SU5 and PUE, the RSS at SU4 and SU5 are not the same as the 
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transmitted power due to atmospheric condition and differences in the distance 

separating them from the PUE.  

  

Moreover, an SU may not receive signal from PUE as a result of hidden node and 

receiver uncertainty (Fang et al., 2017). Hidden node problem occurs when an obstacle 

prevents an SU from detecting transmitted signal. To solve the problems above, 

centralized cooperative spectrum sensing is employed, with the SBS as the decision 

centre (DC) (Zhang & Lil, 2017).  This model adopts parallel model of CSS which 

follows the three steps of local sensing, data reporting, and data fusion. DC makes the 

final decision from the reported data and broadcasts it to the selected pair which will 

participate in the localisation process. Finally, DC broadcasts localisation result to the 

entire SUs in the CRN after localisation is achieved. Since there is no information about 

the PUE signal, energy detection was adopted. 
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Car

Hill

SU3

PUE

Communication between SBS and SUSU1

SU2

SU4
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Shadowing
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uncertainty

 

Figure 3.7: A Typical CRN with SUs, SBS and a Potential PUE 
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3.5.2   Application of energy detection in localizing primary user emulator 

In energy detection, the test statistics Ti(X), binary hypothesis testing xi(m), probability 

of detection, Pdi, probability of false alarm (Pfi), and probability of miss detection, (Pmi) 

are given in (3.36) - (3.43) (Gupta et al., 2016;Lin et al., 2018). 
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            (3.37) 

m=1, 2, 3, ………K where K is the total number of received signal samples collected by 

SU.  xi(m) is the received signal at i
th 

SU. i= 1, 2, 3, …….N, while s(m) is the PUE 

signal. ( )s m  has zero average with variance 2

s . The white Gaussian noise with zero 

mean is denoted as ( )u m with variance of 2

n . H0 is a hypothesis describing absence of 

PUE and H1denotes existence of PUE. 
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given, ( )Q x  as general Q -function defined by (3.42) 
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SUs individually carry out detection of PUE and transmit their detection results to the 

FC with H0indicating absence of PUE and H1 indicating presence of PUE respectively. 

 

3.5.3   Decision fusion 

The Decision fusion (DF) plays a very crucial role in the second stage of CSS. It makes 

the final decision on the detection of the PUE from the detection results of the SUs in 

the CRN. If Λ denote the number of SUs that detect PUE, FC finally determines the 

presence or absence of the PUE from the report of the M participating SUs using the 

decision strategy γ(.) (Han et al., 2010): 

                                                           

0

1

,    if   

,    if   

H M

H M


 
 

                                    

(3.44) 

Final detection probability and final false alarm probability for different values of Mare 

respectively given as: 
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                (3.46) 

If the cooperative function, ( )P f p is the expression that the result of cooperative 

detection is p, the detection probability or false alarm probability  at each SU is P. 

Combining (3.45) and (3.46) gives a uniform cooperative function given by 
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In Figure 3.8, we consider a decision centre (DC) portrayed secondary base station 

(SBS) that coordinates the cooperative spectrum sensing in the CRN. Sensing of PUE’s 

signal is done by each secondary user (SU) and result is reported to the DC which fuses 

the data together to give final decision. The final decision is transmitted to the SUs 

subsequent to the conclusion of localisation with the aim to isolating the PUE. 

Communication between SBS and SUs during detection process is done below the noise 

floor of PU at very low transmit power to avoid possible interference with the PU. 

 

SU1

SU2 SU3

SU4

PUE

SU5

SBS

communication 
between SU and 

SBS

PUE signal

 

Figure 3.8: Cooperation of SUs to Detect a Potential PUE 

As portrayed in Figure 3.9, the secondary base station (SBS) which is the decision 

centre (DC) forms four clusters where each cluster has different propagation 

environment. This results in SUs having similar RSS within a cluster and within close 

neighbouring clusters. Since distant clusters exhibit different communication 

environment, their SUs have variant RSS. SU6 and SU7 are closely related SUs within 

the same cluster (that is cluster 2) while SU1 and SU11are closely related SUs within 

different but neighbouring clusters (clusters 1 and 4).  
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Figure 3.9: Cluster of SUs Around a SBS 

 

3.5.4   Cooperative spectrum sensing-hybrid localisation method model 

assumptions 

To realize Cooperative Spectrum Sensing-based Hybrid Localisation Method for the 

detection of PUEs in CRNs, the following assumptions were made: 

i. Mobile cognitive radios are deployed within and around buildings, hills,   cars, 

and other obstacles. 

ii. Transmitted signal is mainly affected by scattering from surfaces or diffraction 

over and around buildings and other obstacles. 

iii. All SUs’ received power are from the same source 

iv. Different values of signal strength are received at SUs 

v. SUs in the same cluster experience the same environmental effects  

vi. All SUs communicate directly with SBS and vice versa 

vii. Communication among the SUs is via the SBS 
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viii. Secondary users (SUs) in the same cluster and the ones in the neighbouring 

clusters have closely related RSS 

ix. Energy detection is used by SUs to sense the PUE’s signal. 

 

3.5.5   Cooperative spectrum sensing-hybrid localisation method model operation  

RSS values are obtained at the time and point of localizing PUE. From RSS, distance 

between the transmitter and the SUs as well as the angle with which the signal arrives at 

SUs are obtained.  HLM then uses distance and the measured angle to localise the 

primary user emulator (PUE). When they change position new pairs of SUs are selected 

based on their RSS to localise the PUE while discarding the former measurements. Two 

SUs are to be selected based on their received signal strengths (RSSs) on some received 

power interval [0, w] from a number, N, of SUs. Possible pairs to be selected are pair of 

SUs with maximum RSS, a pair of  SUs with minimum RSS, a pair of SUs with 

medium RSS, a pair of SUs with one having highest RSS and the other with lowest RSS 

and a pair of SUs that have closely related RSS. The goal is to select the pair of SUs 

that enable the hybrid scheme to perform with higher accuracy, speed, and energy 

efficiency. Supposing all SUs received power from the same source (PUE), but they do 

not depend on each other, let f(Pr) indicate received power density on [0, w] while F(pr) 

denote the corresponding received power distribution function. Then, 

0

( ) ( ) ,  0
rp

r r r rF p f p dp p w                          (3.48) 

                          

 

Because communication environment is dynamic, the average of multiple samples of 

the received power,   , is employed to acquire accurate estimate of the received power 

at each SU with the aid of equation (3.22). 

Figure 3.10 is the flow Process for selection of SUs pairs for PUE Localisation.  
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Figure 3.10: Flow Process for selection of SUs pairs for PUE  Localisation 

 

3.5.6   Simulation of effects of cooperative spectrum sensing on hybrid Localisation  

method 

MATLAB (2009) version 7.8.0.347 was used to carry out the simulation that 

investigated effects of cooperative spectrum sensing on the hybrid localisation method 

for detection PUE in CRNs. The SUS and PUE were randomly distributed on the 

network area of 100 km by 100 km. The initial position of secondary user 1 is (x1, y1) 

(5, 5) and that of secondary user 2 is (x2, y2 ) (8, 8) while that of the PUE was at (Xe, Ye) 

(5.9, 9.0). The transmit power of PUE was 20dBm, the path loss within the reference 

distance, d0is 1m is 1dBm and loss exponent, n, is 4.   
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3.6   Isolation of Primary User Emulation in Cognitive Radio Networks 

In this section, the method for the methodology for isolating is presented. It describes 

the system model and the operation of the system model. 

 

3.6.1   Primary user emulator isolation model 

The proposed PUE isolation model shown in Figure 3.11 comprises of the PU, SBS, 

SUs, and the PUE. SUs are aware of their location and that of the PU. This scheme is 

made up of two parts: Detection of PUE (which was accomplished in section 3.3) and 

isolation of PUE. The detection of PUE is established by individual sensing results of 

SUs. Each SU senses the transmitter and computes its distance from the transmitter and 

the angle at which it receives the signal. The estimated distance and the AOA are 

compared with the known distance and AOA of PU from SUs. If the estimated distance 

and AOA are the same as that from the PU, the transmitter is assumed to be the PU, 

otherwise, it is the PUE. SUs forward their computed locations to the SBS which finally 

uses the location information from SUs to compute the exact location of the transmitter 

and compares it with the actual location of the PU. Any deviation from the actual 

location of the PU shows that the transmitter is a PUE.   
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Figure 3.11: Primary User Emulator Isolation Model 

Each SU is assigned an initial detection result of (0). When the SU’s detection of the 

transmitter is consistent with the actual location of the PU, the reported detection status 

is said to be 1, otherwise, it is 0. Transmitter detection is given as:  

                                                 tx : [1,0]                                      (3.49) 

Thus, the i
th

 SU’s detection result can be calculated as follow: 

Using (3.23) to compute distance for detection of the transmitter, the detection status is 

given as: 

                             
( )

1,        if  tx \ 0
  

0,        if  tx \1
i txd


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
                         (3.50)                        

Similarly, (3.24) and (3.27) give AOA of the signal at SU1 and SU2 with the detection 

status given in (3.51) 

                                

( )

1,        if  tx \ 0
  

0,        if  tx \1

 

i txAoA
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 
              (3.51) 



65 
 

Furthermore, the location of PUE is computed using (3.33) and (3.34) while the 

detection status is given by (3.52) 

                             
i(tx)

1,        if  tx \ 0
loc

0,        if  tx \1


 


          (3.52) 

From the detection results of distance, AOA, and location, a fusion rule based on the 

AND operator is used to make final decision if the transmitter is the PU or PUE (Lin et 

al., 2018). If computed results by the SBS are all high threshold (1s), it is the PU, 

otherwise, it is a PUE. For the three inputs (distance, AOA, and location), eight possible 

results are expected from the SBS. The final decision on the status of the transmitter is 

as shown in Table 3.1 

 

       Table 3.1: Detection Decision Table 

Distance from 

SU to transmitter 

Angle of arrival of 

signal from the 

transmitter 

location of the 

transmitter 

Detection 

result 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

Based on the computation of SU detection parameter, the detection result of SU is set to 

be low (0) if transmitter is PUE and high (1) if transmitter is PU.  Once SBS finally 

determines that all of the results are high, transmitter is adjudged legitimate PU. But 

once any of the result is low (0), the transmitter is adjudged PUE and hence isolated 

from CRN. The algorithm for isolating primary user emulator is as follows: 
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                    Algorithm 3.2: PUE Detection Decision 

1 { start 

2 di = 1, PU; di = 0, PUE; AOAi = 1, PU; AOAi = 0, 

PUE; loci = 1, 

PU; loci = 0, PUE; 

3 If{  

4 di(tx) = di(PU) 

5 di =1 

6 Else 

7 di = 0 

8 If{ 

9 AOAi(tx) = AOAi(PU) 

10 AOAi= 1 

11 Else  

12 AOAi= 0 

13 If{ 

14 loc(tx) = loc(PU) 

15 loc =1 

16 Else 

17 loc = 0 

18 If{ di, AOAi, loc) =1 

19 tx = PU 

20  Else 

21 tx = PUE 

22  If {  

23 tx = PU 

24     Cooperate 

25  Else 

26     Flag it 

27  }}}} 

28  End 

 

3.6.2   Isolation process 

Once it is established that a particular SU is a PUE, SBS will no longer select it to 

participate in the detection process. Moreover, information on the network status as well 

as spectrum holes will not be shared with PUE. 

The two SUs to participate in detection processes are selected using (3.53) while 

communication with participating SUs,  in the network is given as (3.54). 

                (3.53)  ( ) 1 2 3 42 : , , , ,............... \signals NSU SU SU SU SU SU PUE 
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 1 2 3: , , ,................. \SBS SU SU SU PUE                                     (3.54)

  

3.6.3 Isolation algorithm 

The flow process for the isolation of primary user emulator (PUE) is presented    in 

Figure 3.12 

Should SBS selects it for 

detection process, use  its  sensing

 information for detection process, share information 

on the network status with it and share 

spectrum holes  with it?

Yes

Start

SBS detects some to be legitimate SU and the others 

to be PUE

Stop

No

SUs and PUEs are in the CRN

Legitimate SU

PUE

 

Figure 3. 12: The Flow Process for the Isolation of PUE 

 

The algorithm for isolating the primary user emulator (PUE) from the cognitive radio 

network is given by algorithm 3.3:  
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         Algorithm 3. 3: Isolation of PUE 

1 {Start  

2 SBS categorizes CRs in the CRN into SUs and PUEs. 

3 SBS separates them into SUs and PUEs 

4 Should SBS select it for detection process, use its sensing information 

for detection process, share information on the network status with it 

and                                  

share spectrum holes with it using equations (3.53) and (3.54)?  

5 If yes 

6 It is SU 

7 Else 

8 It is PUE 

9 Stop} 

 

3.6.4   Sensing and transmission times of secondary user 

When SBS detects spectrum hole, it allocates it to only one SU in a time span. A time 

span is the epoch an SU is allowed to use the detected spectrum hole. This analysis is 

restricted to only one SU in one frame time or a time span, T+T1, as depicted in Figure 

3.13. T is the sensing time and T1 is the transmission time. The SU transmits when the 

SBS correctly or wrongly decides the absence of the PU  

 

 Figure 3.13: Sensing time and transmission time of SU  

                                      (Liang et al., 2008; Stotas & Nallanathan, 2010). 

For i
th

 SU transmitting over the white space, the effective throughput Gi  is given as 

(Liang et al., 2008): 

       1
0 0 1 1

1

1 1i i f i d

T
G C p p H C p p H

T T
    
 

                     (3.55) 

whereCoi and C1i are the capacity of the normalized channel used by i
th 

SU under the 

hypothesis of H0 and H1 respectively. 
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Supposing the SNR for secondary transmission of the SU is SNRS = 44dB. The capacity 

of the normalized channel used by i
th 

SU in the hypothesis of H0 and H1 are given by 

(3.56) and (3.57) respectively. 

                           
 0 2log 1 6.66i SC SNR       (3.56)    

               
1 2log 1 6.61

1

S
i

P

SNR
C

SNR

 
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 
                (3.57) 

SNRS and SNRP are signal-to-Noise-Ratio for SU and PU respectively. Since P (H0) >P 

(H1), C0i ≫C1i and 1−Pf>1−Pd  (Shrivastava et al., 2018), i
th

 SU’s throughput is 

estimated thus: 

    0 01i
i i f

i

T
G C p p H

T T
 


                                                          (3.58) 

The total energy ,

Tr

i jE  consumption of an i
th

 SU in transmission mode scenario is given 

by (3.59) (Saeed et al., 2017). 

       , , ,

, max ,| h |Tr TX cs i j TX i j C i j

i j ctr cs i j TX TXE P T P T P P                   (3.59) 

Where,  

,

Tr

i jE  is the total energy consumption for i
th

 SU. TXP , ctrT  and csP are the transmission 

power of the i
th 

 SU, the time control message duration and circuit power of the SU 

respectively. The transmission duration of the i
th

 SU on channel j is given by ,i j

TX  

whereas ,i j

csT is channel switching latency. The maximum transmission power is 

represented by max

TXP . While ,h i j is gain of the channel. 
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3.6.5   Simulation and analysis for PUE isolation 

By sending PU-like signal when the legitimate PU is absent, PUE decreases the 

performance of CRN. It is assumed that PUE knows the behaviour of the PU a priori. 

Therefore, in this section, we study the effect of PUE on the CRNs in the absence of PU 

by paying attention to the throughput of i
th

 SU in the presence of PUE. To verify 

analytical results of our formulation, MATLAB (2009) version 7.8.0.347 based 

simulation was used to investigate the effect of the PUE on the throughput of SU. The 

parameters used for this simulation are as follows: the sensing time is 100 milliseconds 

whereas the transmission time ranges between 5 milliseconds to 25 milliseconds. The 

normalized channel capacities (coi) of the licensed channel used by i
th 

SU under the 

hypothesis of H0 is 0.2 while the probability of PU (H0) absence is 0.8. 
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CHAPTER FOUR 

4.0        RESULTS AND DISCUSSION 

4.1   Preamble to Results and Discussion 

On successful completion of detection of PUE using hybrid of AOA and RSS and 

successful development of technique for isolating the detected PUE in chapter three, the 

results obtained from the designs in chapter three are discussed in this chapter. The 

analyses of the results are divided into diverse sections which are sequentially arranged 

according to design methodology in chapter three. Therefore, in section 4.2, we 

analyzed the results obtained from section 3.4. Similarly, section 4.3 analyzed results 

obtained in section 3.5 while section 4.4 analyzed results obtain in section 3.6 

 

4.2   Hybrid Localisation Method Results 

In Figure 4.1, the distance between SU1 and primary user (PU) is compared with the 

distance between SU1 and the primary user emulator (PUE). It was observed that at 

different positions of SU1, the distance between SU1 and PU was different from the 

distance between SU1 and PUE. It is worth noting that these results validate the 

correctness of the algebraic derivations in (3.23) and show that the computer simulation 

tracked the correct positions of the nodes in the cognitive radio network (CRN). 



72 
 

 
       Figure 4.1: Distance between SU1 and PU Compared with Distance between  

PUE and SU1 

 

In Figure 4.2, various locations of SU2 were considered and the distance between 

SU2and PU was compared with the distance between SU2and PUE in each case. In each 

scenario, the distances from SU2 to PU were entirely different from the distances from 

SU2to PUE. For example, when SU2 was at position 5, it was 39 km away from PUE 

and 74 km away from the PU. Likewise, at position 10, SU2 was 45 km away from the 

PUE and 62.5 km away from the PU. In both cases, it is noted that PU was farther away 

from SU2 than from PUE. 
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        Figure 4.2: Distance between PU and SU2 Compared with Distance between                       

PUE and SU2 

 

As seen in Figure 4.3 using (3.24), at position 1, SU1 is 45
0
 from PU while it is 77

0
 

PUE. Similarly, at position 9, SU1 is 25
0
 from PU while it is 117

0
 from PUE. 

Furthermore, at position 13, SU1 is 50
0
 from PU while it is 72

0
 from PUE. It can be 

observed that at each of the fifteen different positions of SU1, angle of arrival (AOA) of 

the PU’s signal to SU1 is different from that of PUE. It can thus be extrapolated that, PU 

and PUE are at different positions since they do not have the same AOA.   
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Figure 4.3: Angle of Arrival of the Signals from PUE and PU at SU1 

 

Using (3.27) to compare the signal received at SU2 from PU and PUE in terms of the 

angle at which the signal arrived at SU2 as pointed out in Figure 4.4, the angles at 

various location ofSU2 are diverse with the exception of position 3. At position 3, the 

AOA of signal from both PU and PUE is 103
0
. It means that in an attempt to carry out 

its mischievous activities, PUE can assume a position that either produces the same 

AOA or distance from PU to SU. This informs the need for hybridisation as both AOA 

and RSS cannot be compromised at the same time. 



75 
 

 

Figure 4.4: Angle of arrival of the signals from PUE and PU at SU2 

 

4.2.1   Performance analysis of hybrid localisation method    

The performance of the HLM was carried out via RMSE (given by 3.35) as displayed in 

Figure 4.5. It is noticed that both RSS and AOA localisation methods converged at the 

50
th

 iteration with RMSE of 0.20 and 0.01 respectively. This means that, AOA out 

performed RSS in terms of speed, energy efficiency and accuracy which made it faster 

than RSS and AOA schemes. Similarly, HLM converged at the 20
th

 iteration with 

RMSE of 0.005. Therefore, the HLM outperformed the RSS and AOA localisation 

schemes respectively by a good margin both in speed and accuracy. Moreover, the 

performance of the HLM out-performed RSS and AOA presented in (Fihri et al., 2018; 

Penna & Cabric, 2013) and shown in Table 4.1.  
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                        Figure 4.5: Performance of Angle of Arrival, Received Signal Strength 

and Hybrid Localisation Methods 

 

4.2.2   Significance of the hybrid localisation method results 

Table 4.1 displayed the comparison of hybrid localisation method with similar 

localisation techniques. The HLM in this workout performed better than RSS and AOA 

techniques by Fihri et al. (2018) and Penna & Cabric, (2013) respectively. Fihri et al. 

(2018) used three SUs for detection. This actually makes the algorithm complex, time 

consuming and expensive. However, HLM used only two SU nodes to detect PUE; 

hence, it is less complex, faster and less expensive. Although Penna & Cabric, (2013) 
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achieved PUE detection faster with higher accuracy, their model is more complex and 

expensive because it used different multi-antenna. Conversely, our AOA which did not 

incorporate multi-antenna is less complex with higher accuracy. Likewise, the HLM 

exhibited higher accuracy with 5.00x10
-3

 RMSE. Furthermore, the HLM converged at 

lesser number of computations. Hence, it is faster and higher in terms of energy 

efficiency.  

 

          Table 4.1: Performance of Localisation Methods 

 

Localisation Method Amount of Iterations RMSE 

 

RSS (Fihri et al., 2018) 

 

55 

 

2.2x10
-1

 

 

AOA(Penna & Cabric, 2013) 

 

30 

 

1.2x10
-2

 

 

RSS (our algorithm) 

 

50 

 

2.00x10
-1

 

 

AOA (our algorithm) 

 

50 

 

1.00x10
-2

 

 

The  Hybrid of RSS and AOA 

 

20 

 

5.00x10
-3

 

 

4.3   Effects of Cooperative Spectrum Sensing on Hybrid Localisation Method 

In this section, pairs of SUs were used to localise the PUE. These pairs include: two 

SUs with maximum RSS values, two SUs with minimum RSS values, two SUs with one 

having maximum RSS value and the other having minimum RSS value, two SUs having 

median RSS values and two SUs with closely related RSS values. (3.28) was used for 

all computations in this section.  

 

In Figure 4.6, two SUs with maximum received signal strength (RSS) were used to 

localise PUE using (2.23). It is interesting to know that the RMSE of 1.3X10
-2

 at the 

10
th

 iteration peaked at 1.4X10
-2

 at the 20
th

 iteration. The reduction of the RMSE was 
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sharper between 20
th

 and 30
th

 iterations but progressively reduced afterwards until it 

converged at the 70
th

 iteration with RMSE of 6.0X10
-3

. 

 

Figure 4.6: Performance of CSS-HLM using two SUs with Maximum RSS  

 

Similarly, localisation of primary user emulator (PUE) by two secondary users (SUs) 

with the minimum received signal strength (RSS) was demonstrated in Figure 4.7. 

Using the two SUs with the minimum RSS gave a Root Mean Square Error (RMSE) of 

1.9X10
-1

 at the 10
th

 iteration but converged at the 80
th

 iteration with the RMSE of 

8.1X10
-3

. It thus shows that if two SUs with the minimum RSS values are used for 

localisation, convergence can only be achieved at the 80
th

 iteration. 
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    Figure 4.7: Performance of CSS-HLM using two SUs with Minimum RSS  

 

The performance of the hybrid localisation method in the detection of PUE in CRN 

shown in Figure 4.8 was carried out with two SUs with median RSS. At 10
th

 iteration, it 

has RMSE of as high as 1.65X10
-1

 but as the number of iteration increased, accuracy 

also increased until convergence was achieved at the 80
th

 iteration with RMSE of 

6.80X10
-3

.  
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        Figure 4.8: Performance of CSS-HLM using two SUs with Median RSS    

 

In Figure 4.9, one of the two SUs that participate in the localisation of PUE has the 

maximum RSS whereas the other has the minimum RSS. Although the RMSE reduced 

with increase in the number of iterations, it never attained convergence even at 100
th

 

iteration.  RMSE reduced rapidly between 10
th

 and 20
th

 iterations but reduced 

progressively until 40
th

 iteration where convergence seemed to have been achieved. But 

as the number of computation increased from 50
th

 iterations, convergence was never 

achieved even after the 100
th

. It can be deduced that using the highest and the lowest 

RSS, is not an ideal pair for detecting PUE in CRN.    
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Figure 4.9: Performance of CSS-HLM with two SUs having Maximum and RSS  

 

Figure 4.10 shows the effects cooperative spectrum sensing has on the HLM in 

localising PUE in CRN using two closely related RSS values is shown in Figure 4.10. 

Here it can be seen that at the 10
th

 iteration, the RMSE was 1.8X10
-1

 but at the 20
th

 

iteration, convergence was achieved with RMSE of 4.7X10
-3

. Since convergence is 

achieved faster with this pair than any other pair, it can be extrapolated that a pair of 

SUs with closely related RSS values is better for detecting PUE in CRN than any other 

pair. 
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Figure 4.10: Performance CSS-HLM using two SUs with closely Related RSS  

 

4.3.1   Performance Analysis of CSS-HLM 

Figure 4.11 is the performance evaluation of the hybrid using SU pairs with closely 

related RSS values, minimum RSS values, maximum values, minimum and maximum 

RSS values and median RSS values. Clusters are differently cluttered, thus, SUs within 

the same cluster and neighbouring clusters have analogous signal propagation channel. 

This resulted in the related RSS in those clusters. But SUs in different clusters that are 

far apart. Thus, they experience variant signal propagation channel which leads to their 

variant RSS values. Consequently, different sets of SUs provided different results. It 

was observed that accuracy increased as the number of iterations (computations) 

increased in all cases. It was also observed that although two SUs with minimum RSSs 

and two SUs with median RSSs both converge at the 80
th

 iteration, they have RMSE of 

8.1x10
-3

 and 6.8x10
-3

 respectively. When two SUs with the maximum RSSs were used 

to localise the PUE, it converged at the 70
th

 iteration with RMSE of 6.0x10
-3

. On the 

other hand, when two SUs one of which has the highest RSS and the other with the least 
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value of RSS were used, convergence was not attained even at the 100
th

 iteration due to 

the fact that their locations were far apart.  But when two SUs with closely related RSSs 

were used to localise the PUE, it converged at the 20
th

 iteration with RMSE of 4.7x10
-3

. 

From these discoveries and as shown in Figure 4.11, it is extrapolated that, the HLM for 

detecting PUE in CRNs performs better when two SUs with closely related RSS are 

used to detect the PUE while the worse combination is SUs with maximum and 

minimum RSS values. 

 

Figure 4.11: Performance of CSS-HLM with two SUs having varying RSS 

 

4.3.2   Significance of the results 

The comparison of PUE detection using different pairs of SUs is shown in Table 4.2. 

Shows that the pair of SU that are closely related detects PUE faster with higher 

accuracy as convergence was attained after the 20
th

 iteration with RMSE of 4.7x10
-3

.  
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Furthermore, Figure 4.12 presents the total energy consumed by each pair of SUs as 

given by (3.59) over the convergence time and their respective RMSE values. It was 

discovered that SUs with closely-related pair of RSS converged fastest to its minimum 

RMSE value. Thus, it consumed the least energy. Basically, Figure 4.12 presents two 

interesting observations: the CSS-HLM can be used with or without clustering 

approach. In the clustering approach, it is suggested that SU pairs with closely related 

values of RSS should be selected from the same cluster or neighbouring clusters as this 

produces improved performance. However, in a non-clustered CRN, it is advised that 

SU pairs with maximum RSS values should be adopted for the best performance. 

 

          Table 4.2: Comparison of PUE detection using different pairs of SUs 

 

Combination of SUs RMSE Number of Iterations 

 

Minimum and maximum RSS 

 

1.5x10
-2

 

 

150 

 

Minimum RSS 

 

8.1x10
-3

 

 

80 

 

Median      RSS 

 

6.8x10
-3

 

 

80 

 

Maximum RSS 

 

6.0x10
-3

 

 

70 

 

Closely related RSS 

 

4.7x10
-3

 

 

20 
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         Figure 4.12: Energy Consumption of the CSS-HLM with a Pair of SUs 

                             Having Minimum, Median, Closely Related and Maximum RSS 

 

4.4   Isolation of Primary User Emulator 

In the absence of PUE, SU transmits for longer time leading to high throughput. But 

throughput of an SU will be less when PUE comes in with PU-like signal and SU 

breaks its transmission. As displayed in Figure 4.13, on transmitting for 25 

milliseconds, SU was expected to have a throughput of 104x10
-2

. Howbeit, if at any 

time SU quitted the spectrum for PUE with the assumption that PUE was the PU, its 

throughput dropped. For example, with the presence of PUE, SU’s throughput dropped 

at 25 milliseconds to 84x10
-2

. Similarly, when SU transmitted for 15 milliseconds but 

PUE took over the spectrum and transmitted for the remaining time, SU’s throughput 

would be 56x10
-2

 as against 7x10
-1 

when PUE was not present. In the same way, when 

PUE took over spectrum after 20 milliseconds of SU’s transmission, throughput 

dropped to 7x10
-1

 as against 9x10
-1 

when PUE was absent. 



86 
 

 

 

Figure 4.13: Throughput versus transmission time. 

 

Effect of false alarm on the throughput is portrayed in Figure 4.14. Here it was observed 

that when probability of false alarm was 0.0, it means PUE is not present and so, 

throughput was 25x10
-2

. But when probability of false alarm was 0.2, throughput 

dropped to 2x10
-1

. Similarly, when false alarm probability increased to 0.4, throughput 

became 15x10
-2

. But when false alarm probability was 1, throughput was 0. This shows 

that, at the point when the probability of false alarm is 1, it is certain that the PUE has 

taken over the spectrum and so, throughput of the SU at that point equals 0. Thus, 

higher probability of false alarm invariably leads to lower throughput and vice versa. 
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Figure 4.14: Throughput versus false alarm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 
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5.0    CONCLUSION AND RECOMMENDATIONS 

5.1   Conclusion 

A hybrid localisation method to accurately detect PUE in cognitive radio network 

(CRN) was developed in this research work. This is in contrast to the range-based 

localisation methods which are financially expensive and complex to deploy. The 

hybrid method uses just a pair of SUs to estimate the position of the PUE and validated 

the developed hybrid localisation method in section 3.4 via computer simulations. The 

simulations substantiate that the hybrid method localises PUE accurately and faster 

(Table 4.1). 

 

Moreover, while two SUs can be used to detect a PUE in CRNs, shadowing, fading, 

path loss and hidden node problems pose a fundamental challenge of uncertainty in the 

value of RSS at the SUs. This challenge affects accurate detection of PUE in CRN 

thereby leading to inefficient operation of CRN. To overcome this challenge, the best 

SUs (that are closely related in RSS values) were used in the detection procedure. To 

overcome channel impairment and mobility issues of centralized cooperative sensing, 

cluster-based centralized CSS was developed to select the right SUs for the hybrid 

localisation scheme. Computer simulations were then used to demonstrate cluster-based 

centralized cooperative sensing by means of two suitable SUs to localise the PUE. The 

simulation results ratify that SUs pair with closely related received signal strength 

(RSS) localises PUE more accurately (with RMSE of 4.7x10
-3

), faster (with 20 

iterations), and has an added advantage of being more energy efficient than any 

combination of SUs as it converged faster than any pair. The results further demonstrate 

that the combination of maximum (or highest) and minimum (or least) RSS values give 

the worse localisation result with a RMSE of 1.5x10
-2

.  
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Moreover, since PUE parades itself as the legitimate PU, it causes SU to quit using the 

spectrum while transmitting. This results in denial of service, connection unreliability, 

low throughput, bandwidth waste, degraded quality of service and eventual collapse of 

the CRNs if PUE is left in the network. To prevent this and perk up the general 

performance of CRNs, an algorithm for isolating PUE from a CRN upon detection was 

developed. 

 

5.2   Recommendations 

Based on the discoveries of this study, we recommend that further research is made on 

localisation of PUE with a view to designing a hybrid scheme that will utilise 

geographical poles to localise PUE from a CRN in which primary user, secondary user 

and primary user emulator are all mobile devices. We equally recommend that further 

research is made in the application of OR gate in isolating PUE for optimal operation of 

CRN. 

 

5.3   Contributions to Knowledge 

The following contributions were made at the end of this study:  

i. A hybridised technique of localizing PUE in CRN was developed  

ii. An efficient approach for selecting a pair of SUs for detecting PUE was 

developed.  

iii. An approach for isolating the detected PUE in CRN was developed. 
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S/N Title Author(s) Metrics Strength Weakness 

1. Defense 

against 

Primary User 

Emulation 

Attacks in 

Cognitive 

Radio 

Networks 

 

Chen et al.,  

(2008) 

Received 

power 

It identifies PUE 

attacks in hostile 

CR environment 

and localises it 

It did not consider 

localizing mobile 

and low power 

transmitter. 

2. Cooperative 

DoA-only 

localisation of 

primary users 

in cognitive 

radio networks 

 

 

 

 

Penna & 

Cabric, (2013) 

Direction of 

arrival of 

signal 

It does not depend 

on distance. 

It has antenna on 

all the sensors. 

This enables 

higher localisation 

accuracy.  

Equipping all the 

sensor in the 

network is highly 

expensive. Using 

fewer sensors-

equipped antenna 

that are optimally 

position will be 

less expensive    

3. Detection of 

PUE Attacks 

in Cognitive 

Radio 

Networks 

Based on 

Signal Activity 

Pattern 

 

Chunsheng & 

Song, (2014) 

Signal 

features 

Advance 

information about 

the PU is not 

required. 

It is applicable to 

both static and 

mobile PU. 

It can only detect 

single PU. But 

cannot detect 

multiple PU.  

4. Defense 

Against 

Primary User 

Emulation 

Attacks in 

Cognitive 

Radio 

Networks 

Using 

Advanced 

Encryption 

Standard 

 

 

 

 

 

 

Ahmed et al., 

(2014)  

Received 

Signal 

Strength 

It is less 

financially 

expensive as no 

additional 

hardware is 

required. When 

applied directly to 

today’s DTV, it is 

highly efficient for 

spectrum sharing. 

It requires plug-in 

Advanced 

Encryption 

Standard (AES) 

chip. This makes 

it complex. 

The plug-in AES 

chip can lead to 

compatibility 

issues with other 

hardware 

components  

5. Detection 

Threats and 

Mitigation 

Ammar et al. 

(2015) 

Measured 

distance 

based on 

It successfully 

ensures 

trustworthiness 

It did not consider 

RSS of varying 

frequency to 
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Techniques in 

Cognitive 

Radio based 

on 

Localisation of 

Signal Source 

and 

trustworthiness 

 

location 

coordinates 

and received 

signal 

strength  

among nodes in 

cognitive radio 

network by 

distinguishing 

primary and 

malicious users. 

 

localise 

transmitters at 

different locations  

6. Detecting 

primary user 

emulation 

attacks based 

on PDF-BP 

algorithm in 

cognitive radio 

networks 

 

Chenet al. 

(2016) 

 

Density 

function and  

signal   

propagation  

Secondary user 

(SU) does not 

need location 

information of the 

PU for its 

detection process. 

It does not require 

extra hardware. 

Detection is 

inaccurate since 

each SU carries 

out detection 

independently. 

7. Primary User 

Emulation 

Attacks: A 

Detection 

Technique 

Based on 

Kalman Filter 

Mrabet et al., 

(2018) 

 

Measured 

Received 

Signal 

Strength 

It uses Kalman 

filter frame work 

to track the 

position mobile 

PU.  

It is able to detect 

PUE attacks on 

non-stationary PU 

It considered free 

space propagation 

model. It difficult 

to be applied in a 

cluttered 

environment. 

It could not find 

the initial 

coordinates of the 

PU. It cannot 

detect attackers 

that are very close 

to the PU. 

 

8. Defence 

against PUE 

attacks in 

adhoc 

cognitive radio 

networks: a 

mean field 

game approach 

(Khaliq et al., 

2018) 

Transmitter 

location 

It allows detection 

of attacks by each 

node without 

additional cost. 

With a mean field 

game approach.                             

It also detects 

multiple PUE and 

applicable in  

distributed manner 

 

It cannot be 

implemented on 

vehicular CR ad 

hoc networks. It 

did not consider 

other game 

theoretic 

approaches. 

9. Primary user 

emulation and 

jamming 

attack 

detection in 

cognitive radio 

via sparse 

Haji, et al, 

(2020) 

Received 

signal  

Accurately 

detected PUE.  

Only outperforms 

energy detection-

based Machine 

learning 

techniques.  

Not applicable in 

other detection 
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coding techniques.   

10. Detection and 

Prevention of 

Primary User 

Emulation 

Attack in 

Cognitive 

Radio  

Networks 

Using Secure 

Hash 

Algorithm  

VasanthaReddy 

& Sanjeev, 

(2021) 

Received 

power 

Accurate detection Inclusion of 

secured Harsh 

Algorithm (SHA) 

makes the 

algorithm 

complex and 

expensive. 

Unable to isolate 

the detected PUE 

from the network 
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Appendix B: List of Published and On-Going Papers from Thesis 

A number of papers have been published from this research. We present in the table 

below, a list of the papers published. 

S/N  Paper Title  Paper Type  Status  Place of Publication  Rating 

1  

A Survey of 

Range-Based 

Techniques for 

Localizing 

Primary User 

Emulators in 

Cognitive 

Radio Network 

 

Conference Published 
Proceeding on Big Data Analytics & 

Innovation vol.1, pp192-198  

2  

A Hybrid 

Scheme for 

Localizing 

Rogue 

Secondary User 

in a Mobile 

Cognitive 

Radio Network  

Conference Published 

2
nd

 International Engineering 

Conference (IEC2017), Federal 

University of  Technology, Minna, 

Nigeria pp 266-270 

- 

3  

A Hybrid 

Localisation 

Scheme for 

Detection of 

Primary 
User Emulator 

in Cognitive 

Radio 

Networks 

Journal  Published  

International Journal of Computing and 

Digital Systems 
ISSN (2210-142X) 
Int. J. Com. Dig. Sys. 8, No.3 (May-

2019) 

http://dx.doi.org/10.12785/ijcds/080302. 

Q2 

4  

Cooperative-

hybrid 

Detection of 

Primary User 

Emulators in 

Cognitive 

Radio 

Networks 

Journal  Published 

International Journal of Electrical and 

Computer Engineering (IJECE) 

Vol. 10, No.3, June 2020, pp. 1 – 9 

ISSN: 2088-8708  DOI 

:http://DOi.org/10.11591/ijece.v10i3 

Q2 

5  

Isolation of 

Primary User 

Emulator in 

Cognitive 

Radio Network 

 

Journal  
In 

progress   

6  

Hybrid 

Localisation of 

Mobile Primary 

User in 

Cognitive 

Radio Network 

Journal 
In 

progress 
-  
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Appendix C: Codes for Hybrid of AOA and RSS Schemes for Localising PUE in 

CRNS 

close all; 
clear all; 
clc 
z=15 
for v=1:z 

 
t1=1; u1=4; 
t2=1; u2=9; 

 
t3=4; u3=6; 
t4=1; u4=4; 

 
t5=6; u5=9; 
t6=1; u6=9; 

 
t7=4; u7=6; 
t8=6; u8=9; 

 
x1=t1+(u1-t1)*rand(1,1) 
 y1=t2+(u2-t2)*rand(1,1) 

 
 xc2=t3+(u3-t3)*rand(1,1) 
 yc2=t4+(u4-t4)*rand(1,1) 

 
 xc3=t5+(u5-t5)*rand(1,1) 
 yc3=t6+(u6-t6)*rand(1,1) 

 
 xc4=t7+(u7-t7)*rand(1,1) 
 yc4=t8+(u8-t8)*rand(1,1) 

 

 
 x2=t1+(u1-t1)*rand(1,1) 
 y2=t2+(u2-t2)*rand(1,1) 
 p1(:,v)=x1; 
 p2(:,v)=y1; 

 

  
 p3(:,v)=xc2; 
 p4(:,v)=yc2; 

 
 p5(:,v)=xc3; 
 p6(:,v)=yc3; 

 
 p7(:,v)=xc4; 
 p8(:,v)=yc4; 

 
X=5; Y=5; %position of the PU 
%Position of SU1 and SU2 respectively 
k=20;%Number of samples of RSS taken 
pt=80; %Transmit power of PU 
pt_pue=50; %Transmit power of PUE 
Ploss_do=1;%pathloss within the reference distance 
n1=3; n2=4%loss exponent 
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a=15; b=25;%Received power is between 60dB and 75dB 
r=20;% radius of PER in metres 
R=70; %Radius of coverage of PU in metres 
l=100;% length of design space 
j=20;% Number of RSS sampled 

 
%x1_arr = zeros(150,1); 
%%Zy1_arr = zeros(150,1); 
%y2_arr = zeros(150,1); 
s1=abs(sqrt((X-x1)^2+(Y-y1)^2));% Distance between SU1 and PU 
s2=abs(sqrt((X-x2)^2+(Y-y2)^2));% Distance between SU2 and PU 
D=abs(sqrt((x2-x1)^2+(y2-y1)^2))%Distance between SU1 and SU2 

 

 
k=20; 
for q=1:k 
    pr1(:,q)=a+(b-a)*rand(1,1);%RSS of SU1 from PUE 
end 
    m1=(1/k).*sum(pr1);%mean of the RSS of SU1 from PUE 

 
for p=1:k 
    pr2(:,p)=a+(b-a)*rand(1,1);%RSS 
end 
     m2=(1/k).*sum(pr2);%mean of the RSS RSS of SU2 from PUE 

 
for p=1:k 
    pr3(:,p)=a+(b-a)*rand(1,1);%RSS 
end 
     m3=(1/k).*sum(pr3); 

 
for p=1:k 
    pr4(:,p)=a+(b-a)*rand(1,1);%RSS 
end 
     m4=(1/k).*sum(pr4); 

 
for p=1:k 
    pr5(:,p)=a+(b-a)*rand(1,1);%RSS 
end 
     m5=(1/k).*sum(pr5); 

 
for p=1:k 
    pr6(:,p)=a+(b-a)*rand(1,1);%RSS 
end 
     m6=(1/k).*sum(pr6); 

 
     rss_su1(:,v)=m1%a set of received powers from of SU1 from PUE 
     rss_su2(:,v)=m2%a set of received powers from of SU2 from PUE 
     rss_su3(:,v)=m3%a set of received powers from of SU3 from PUE 
     rss_su4(:,v)=m4%a set of received powers from of SU4 from PUE 
     rss_su5(:,v)=m5%a set of received powers from of SU5 from PUE 
     rss_su6(:,v)=m6%a set of received powers from of SU6 from PUE 

 
     n=n1+(n2-n1)*rand(1,1);%loss exponent 
d1=10^((pt_pue-m1-Ploss_do)/(10*n))%Distance between SU1 and PUE 
d2=10^((pt_pue-m2-Ploss_do)/(10*n))%Distance between SU2 and PUE 

 
X1(:,v)=x1 
Y1(:,v)=y1 
X2(:,v)=x2 
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Y2(:,v)=y2 

 
pu_su1_set(:,v)=s1 % a set of distances between PU and SU1 
pu_su2_set(:,v)=s2 % a set of distances between PU and SU1 
dis_su1_pue(:,v)=d1 
dis_su2_pue(:,v)=d2 
dis_su1_su2(:,v)=D 

 
phi(:,v)=acosd((s1^2+D^2-s2^2)./(2*s1*D));%angle between su1 and pu 
theta(:,v)=180-acosd((s2^2+D^2-s1^2)./(2*s2*D))%angle between su2 and 

pu 
alpha1=acosd((d1^2+D^2-d2^2)./(2*d1*D));%angle between su1 and PUE 
beta1=180-acosd((d2^2+D^2-d1^2)./(2*d2*D)); 
xe=(x1*tan(alpha1)-x2*tan(beta1)-y1+y2)/(tan(alpha1)-tan(beta1)); 
ye=tan(alpha1)*xe-x1*tan(alpha1)+y1; 
Xe(:,v)=xe 
Ye(:,v)=ye 
alp(:,v)=alpha1 
bet(:,v)=beta1%angle between su2 and PUE 

 
%m_d2=sum(dis_su2_pue)/z; 
%ms_d2(:,v)=(m_d2-d2)^2 
%m_alpha=sum(alpha)/z; 
%ms_alpha(:,v)=(m_alpha-alpha)^2; 
%m_beta=sum(beta)/z; 
%ms_beta(:,v)=(m_beta-beta)^2; 

 
%phi=atan((Y-yi)./(X-xi));%AoA of RSS at ith SU from PU 
%theta=atan((Y-yi)./(X-xi));%AoA of RSS at ith SU from PU 
%d=NaN(1:2); 

 

 

 
%alpa=acos((d1)^2)+((D)^2)-((d2)^2)/(2*d1*d2);% AoA of RSS at SU2 from 

PUE 
%t=acos((d2)^2)+((D)^2)-((d1)^2)/(2*D*d2);% AoA between d2 and D 
%beta=180-t;%AoA of RSS at SU2 from PUE 
%Xe=(x1*tan(phi)-x2*tan(theta)+(y2-y1)/(x1*tan(phi)));%X-coordinate of 

PUE 
%Ye=(tan(phi)*((x1*tan(phi)-x2*tan(theta)+(y2-y1))/(x1*tan(phi)-

tan(theta))))-(x1*tan(phi)+y1);%Y-coordinate of PUE 
%Emulator=[Xe Ye]; 
p=(l/2)-r;%lower boundary 
s=(R/2)-r;%upper boundary 

 
%for j=j+1 
% SU1loc=p+(s-p)*rand(j,1); 
%SU2loc=p+(s-p)*rand(j,1); 
end 
m_d1=sum(dis_su1_pue)/z; 
m_d1_mat(1,1:z)=m_d1; 
m_diff_d1=(m_d1_mat-dis_su1_pue); 
squ_d1=m_diff_d1.^2; 
var_d1=sum(squ_d1)/z 
std_d1=sqrt(var_d1) 

 
m_d2=sum(dis_su2_pue)/z; 
m_d2_mat(1,1:z)=m_d2; 
m_diff_d2=(m_d2_mat-dis_su2_pue); 
squ_d2=m_diff_d2.^2; 
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var_d2=sum(squ_d2)/z 
std_d2=sqrt(var_d2) 

 
m_alpha=sum(alp)/z; 
m_alpha_mat(1,1:z)=m_alpha; 
m_diff_alpha=(m_alpha_mat-alp); 
squ_alpha=m_diff_alpha.^2; 
var_alpha=sum(squ_alpha)/z 
std_alpha=sqrt(var_alpha) 

 
m_beta=sum(bet)/z; 
m_beta_mat(1,1:z)=m_beta; 
m_diff_beta=(m_beta_mat-bet); 
squ_beta=m_diff_beta.^2; 
var_beta=sum(squ_beta)/z 
std_beta=sqrt(var_beta) 

 

 
%plot(pu_su1_set,su1_pr_pue); 
figure; 
th= 0:pi/50:2*pi; 
r=5; 
x=r*cos(th)+r; 
y=r*sin(th)+r; 
%subplot(2,2,1) 
plot(x,y) 
xlabel('x-axis'); 
ylabel('y-axis'); 
hold 
th= 0:pi/100:2*pi ; 
r=1; 
x=r*cos(th)+5; 
y=r*sin(th)+5; 

 
plot(x,y); 
hold on 
plot(p1,p2,'rs'); 
hold on 
plot(p3,p4,'rs'); 
hold on 
plot(p5,p6,'rs'); 
hold on 
plot(p7,p8,'rs'); 
hold on 
plot(5,5,'k*'); 

 

 
xlswrite('Result_PhD.xlsx',transpose(X1),'Sheet1','A2') 
xlswrite('Result_PhD.xlsx',transpose(Y1),'Sheet1','B2') 
xlswrite('Result_PhD.xlsx',transpose(X2),'Sheet1','C2') 
xlswrite('Result_PhD.xlsx',transpose(Y2),'Sheet1','D2') 
xlswrite('Result_PhD.xlsx',transpose(dis_su1_su2),'Sheet1','E2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su1),'Sheet1','F2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su2),'Sheet1','G2') 
xlswrite('Result_PhD.xlsx',transpose(pu_su1_set),'Sheet1','H2') 
xlswrite('Result_PhD.xlsx',transpose(pu_su2_set),'Sheet1','I2') 
xlswrite('Result_PhD.xlsx',transpose(dis_su1_pue),'Sheet1','J2') 
xlswrite('Result_PhD.xlsx',transpose(dis_su2_pue),'Sheet1','K2') 
xlswrite('Result_PhD.xlsx',transpose(phi),'Sheet1','L2') 
xlswrite('Result_PhD.xlsx',transpose(theta),'Sheet1','M2') 
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xlswrite('Result_PhD.xlsx',transpose(alp),'Sheet1','N2') 
xlswrite('Result_PhD.xlsx',transpose(bet),'Sheet1','O2') 
xlswrite('Result_PhD.xlsx',transpose(Xe),'Sheet1','R2') 
xlswrite('Result_PhD.xlsx',transpose(Ye),'Sheet1','S2') 

 
xlswrite('Result_PhD.xlsx',var_d1,'Sheet1','C19') 
xlswrite('Result_PhD.xlsx',std_d1,'Sheet1','C20') 
xlswrite('Result_PhD.xlsx',var_d2,'Sheet1','F19') 
xlswrite('Result_PhD.xlsx',std_d2,'Sheet1','F20') 
xlswrite('Result_PhD.xlsx',var_alpha,'Sheet1','I19') 
xlswrite('Result_PhD.xlsx',std_alpha,'Sheet1','I20') 
xlswrite('Result_PhD.xlsx',var_beta,'Sheet1','L19') 
xlswrite('Result_PhD.xlsx',std_beta,'Sheet1','L20') 

 
xlswrite('Result_PhD.xlsx',transpose(rss_su1),'Sheet2','A2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su2),'Sheet2','B2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su3),'Sheet2','C2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su4),'Sheet2','D2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su5),'Sheet2','E2') 
xlswrite('Result_PhD.xlsx',transpose(rss_su6),'Sheet2','F2') 

 
%plot(SU1_PU,SU2_PU,'rs') 
%subplot(2,2,2) 
%plot(D,d1,'-rs') 
%subplot(2,2,3) 
%plot(D,d2,'-rs') 
figure 
[xx,yy]=meshgrid(X1,Y1); 
zz=abs(sqrt((X-xx).^2+(Y-yy).^2)); 
%subplot(2,2,1) 
%surf(xx,yy,zz); 
%xlabel('X-axis of SU1') 
%ylabel('Y-axis of SU1') 
%zlabel('Distance between SU1 and PU') 
subplot(2,2,1) 
meshz(xx,yy,zz); 
xlabel('X-axis of SU1') 
ylabel('Y-axis of SU1') 
zlabel('Distance between SU1 and PU') 
subplot(2,2,2) 
zze=meshgrid(dis_su1_pue) 
meshz(xx,yy,zze); 
rotate3d on 
xlabel('X-axis of SU1') 
ylabel('Y-axis of SU1') 
zlabel('Distance between SU1 and PUE') 
%xlabel('X-axis of SU1') 
%ylabel('Y-axis of SU1') 
%zlabel('Distance between SU1 and PU') 
%subplot(2,2,4) 
%mesh(xx,yy,zz); 
%xlabel('X-axis of SU1') 
%ylabel('Y-axis of SU1') 
%zlabel('Distance between SU1 and PU') 
%end 

 

 

Appendix D: Codes to Evaluate Effects of Cooperative Sensing on the Detection of 

PUE Using the Developed Hybrid Scheme 
close all; 
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clear all; 
clc 

 
x1=5; 
y1=5; 
x2=8; 
y2=8; 
X1=5.8519; 
Y1=8.9881; 

 
k=10; 
z=10 
u=10 
pt_pue=50; %Transmit power of PUE 
%C=[19.88;19.9;19.92;19.94;19.96;19.98;19.99;19.995;19.995;19.995]; 
% b=20.00099; 
 

C=[19.97;19.98;19.99;19.991;19.992;19.993;19.994;19.995;19.999;19.999]

; 
 b=20.00099;%Received power of hybrid  
%a=18.5; b=19;%Received power of distance 
%a=19.984; b=20;%Received power of AoA 
Ploss_do=1;%pathloss within the reference distance 
n=3; 

 
for f=1:z 
    a=C(f) 
for v=1:z 

 
for p=1:k 
%pr1(:,q)=randi([a,b],1,1);%RSS of SU1 from PUE 
    pr1(:,p)=a+(b-a)*rand(1,1); 
end 
    m1=(1/k).*sum(pr1)%mean of the RSS of SU1 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr2(:,p)=a+(b-a)*rand(1,1); 
end 
     m2=(1/k).*sum(pr2)%mean of the RSS RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr3(:,p)=a+(b-a)*rand(1,1); 
end 
     m3=(1/k).*sum(pr3)%mean of the RSS RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr4(:,p)=a+(b-a)*rand(1,1); 
end 
     m4=(1/k).*sum(pr4)%mean of the RSS RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr5(:,p)=a+(b-a)*rand(1,1); 
end 
     m5=(1/k).*sum(pr5)%mean of the RSS of SU2 from PUE 

 
for p=1:k 
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%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr6(:,p)=a+(b-a)*rand(1,1); 
end 
     m6=(1/k).*sum(pr6)%mean of the RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr7(:,p)=a+(b-a)*rand(1,1); 
end 
     m7=(1/k).*sum(pr7)%mean of the RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr8(:,p)=a+(b-a)*rand(1,1); 
end 
     m8=(1/k).*sum(pr8)%mean of the RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr9(:,p)=a+(b-a)*rand(1,1); 
end 
     m9=(1/k).*sum(pr9)%mean of the RSS of SU2 from PUE 

 
for p=1:k 
%pr2(:,p)=randi([a,b],1,1);%RSS 
    pr10(:,p)=a+(b-a)*rand(1,1); 
end 
     m10=(1/k).*sum(pr10)%mean of the RSS of SU2 from PUE 

 
     Q=[m1;m2;m3;m4;m5;m6;m7;m8;m9;m10]; 
      P=sort(Q) 
for T=1:9 
         A(:,T)=(P(T)-P(T+1))*-1 
end 
     [B,I]=min(A) 

 
     m1=P(9) 
     m2=P(10) 

 
D=abs(sqrt((x2-x1)^2+(y2-y1)^2));%Distance between SU1 and SU2 
d1=10^((pt_pue-m1-Ploss_do)/(10*n));%Distance between SU1 and PUE 
d2=10^((pt_pue-m2-Ploss_do)/(10*n));%Distance between SU2 and PUE 
alpha1=acosd((d1^2+ D^2-d2^2)./(2*d1*D));%angle between su1 and PUE 
beta1=180-acosd((d2^2+D^2-d1^2)./(2*d2*D)); 
xe=(x1*tan(alpha1)-x2*tan(beta1)-y1+y2)/(tan(alpha1)-tan(beta1)); 
Xe(:,v)=xe; 
xe1(:,v)=(xe-X1).^2; 
ye=tan(alpha1)*xe-x1*tan(alpha1)+y1; 
Ye(:,v)=ye; 
aoae(:,v)=(alpha1-al).^2; 
ye1(:,v)=(ye-Y1).^2; 
%Xee(:,v)=sqrt(xe1); 
%Yee(:,v)=sqrt(ye1); 
dse(:,v)=(d1-d).^2; 
%drse(:,v)=sqrt(dse) 
 m1=P(5) 
 m2=P(6) 

 
D=abs(sqrt((x2-x1)^2+(y2-y1)^2));%Distance between SU1 and SU2 
d1=10^((pt_pue-m1-Ploss_do)/(10*n));%Distance between SU1 and PUE 
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d2=10^((pt_pue-m2-Ploss_do)/(10*n));%Distance between SU2 and PUE 
alpha1=acosd((d1^2+ D^2-d2^2)./(2*d1*D));%angle between su1 and PUE 
beta1=180-acosd((d2^2+D^2-d1^2)./(2*d2*D)); 
xe=(x1*tan(alpha1)-x2*tan(beta1)-y1+y2)/(tan(alpha1)-tan(beta1)); 
Xe(:,v)=xe; 
xe2(:,v)=(xe-X1).^2; 
ye=tan(alpha1)*xe-x1*tan(alpha1)+y1; 
Ye(:,v)=ye; 
aoae(:,v)=(alpha1-al).^2; 
ye2(:,v)=(ye-Y1).^2; 
%Xee(:,v)=sqrt(xe1); 
%Yee(:,v)=sqrt(ye1); 
dse(:,v)=(d1-d).^2; 
%drse(:,v)=sqrt(dse) 

 
 m1=P(1) 
 m2=P(2) 

 
D=abs(sqrt((x2-x1)^2+(y2-y1)^2));%Distance between SU1 and SU2 
d1=10^((pt_pue-m1-Ploss_do)/(10*n));%Distance between SU1 and PUE 
d2=10^((pt_pue-m2-Ploss_do)/(10*n));%Distance between SU2 and PUE 
alpha1=acosd((d1^2+ D^2-d2^2)./(2*d1*D));%angle between su1 and PUE 
beta1=180-acosd((d2^2+D^2-d1^2)./(2*d2*D)); 
xe=(x1*tan(alpha1)-x2*tan(beta1)-y1+y2)/(tan(alpha1)-tan(beta1)); 
Xe(:,v)=xe; 
xe3(:,v)=(xe-X1).^2; 
ye=tan(alpha1)*xe-x1*tan(alpha1)+y1; 
Ye(:,v)=ye; 
aoae(:,v)=(alpha1-al).^2; 
ye3(:,v)=(ye-Y1).^2; 
%Xee(:,v)=sqrt(xe1); 
%Yee(:,v)=sqrt(ye1); 
dse(:,v)=(d1-d).^2; 
%drse(:,v)=sqrt(dse) 

 
 m1=P(I) 
 m2=P(I+1) 

 
D=abs(sqrt((x2-x1)^2+(y2-y1)^2));%Distance between SU1 and SU2 
d1=10^((pt_pue-m1-Ploss_do)/(10*n));%Distance between SU1 and PUE 
d2=10^((pt_pue-m2-Ploss_do)/(10*n));%Distance between SU2 and PUE 
alpha1=acosd((d1^2+ D^2-d2^2)./(2*d1*D));%angle between su1 and PUE 
beta1=180-acosd((d2^2+D^2-d1^2)./(2*d2*D)); 
xe=(x1*tan(alpha1)-x2*tan(beta1)-y1+y2)/(tan(alpha1)-tan(beta1)); 
Xe(:,v)=xe; 
xe4(:,v)=(xe-X1).^2; 
ye=tan(alpha1)*xe-x1*tan(alpha1)+y1; 
Ye(:,v)=ye; 
aoae(:,v)=(alpha1-al).^2; 
ye4(:,v)=(ye-Y1).^2; 
%Xee(:,v)=sqrt(xe1); 
%Yee(:,v)=sqrt(ye1); 
dse(:,v)=(d1-d).^2; 
%drse(:,v)=sqrt(dse) 
m1=P(1) 
 m2=P(10) 

 
D=abs(sqrt((x2-x1)^2+(y2-y1)^2));%Distance between SU1 and SU2 
d1=10^((pt_pue-m1-Ploss_do)/(10*n));%Distance between SU1 and PUE 
d2=10^((pt_pue-m2-Ploss_do)/(10*n));%Distance between SU2 and PUE 
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alpha1=acosd((d1^2+ D^2-d2^2)./(2*d1*D));%angle between su1 and PUE 
beta1=180-acosd((d2^2+D^2-d1^2)./(2*d2*D)); 
xe=(x1*tan(alpha1)-x2*tan(beta1)-y1+y2)/(tan(alpha1)-tan(beta1)); 
Xe(:,v)=xe; 
xe5(:,v)=(xe-X1).^2; 
ye=tan(alpha1)*xe-x1*tan(alpha1)+y1; 
Ye(:,v)=ye; 
aoae(:,v)=(alpha1-al).^2; 
ye5(:,v)=(ye-Y1).^2; 
%Xee(:,v)=sqrt(xe1); 
%Yee(:,v)=sqrt(ye1); 
dse(:,v)=(d1-d).^2; 
%drse(:,v)=sqrt(dse) 

 
end 
%drmse(:,f)=sqrt(sum(dse)/z); 
%aoarmse(:,f)=sqrt(sum(aoae)/z); 
Ex=sqrt(sum(xe1)/z); 
Ey=sqrt(sum(ye1)/z); 
RMSE1_max(:,f)=(Ex+Ey)/2 

 
Ex2=sqrt(sum(xe2)/z); 
Ey2=sqrt(sum(ye2)/z); 
RMSE_mid(:,f)=(Ex2+Ey2)/2 

 
Ex3=sqrt(sum(xe3)/z); 
Ey3=sqrt(sum(ye3)/z); 
RMSE_min(:,f)=(Ex3+Ey3)/2 

 
Ex4=sqrt(sum(xe4)/z); 
Ey4=sqrt(sum(ye4)/z); 
RMSE_close(:,f)=(Ex4+Ey4)/2 

 
Ex5=sqrt(sum(xe5)/z); 
Ey5=sqrt(sum(ye5)/z); 
RMSE_highest_lowest(:,f)=(Ex5+Ey5)/2 

 
end 

 
%{ 
xlswrite('Result_PhD.xlsx',transpose(rss_su1),'Sheet2','A3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su2),'Sheet2','B3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su3),'Sheet2','C3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su4),'Sheet2','D3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su5),'Sheet2','E3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su6),'Sheet2','F3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su7),'Sheet2','G3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su8),'Sheet2','H3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su9),'Sheet2','I3') 
xlswrite('Result_PhD.xlsx',transpose(rss_su10),'Sheet2','J3') 
%} 
 %{ 
xlswrite('MSE.xlsx',transpose(dse),'Sheet1','G2') 
xlswrite('MSE.xlsx',transpose(drmse),'Sheet1','F20') 
%} 

 
%{ 
xlswrite('MSE.xlsx',transpose(aoae),'Sheet1','H2') 
xlswrite('MSE.xlsx',transpose(aoarmse),'Sheet1','J20') 
%} 
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Appendix E: Codes for Isolating Detected PUE 

 
close all; 
t=100; %sensing time 
c=6.66; %channel capacity 
pf=0.2; %Probability of false alarm 
ho=0.8; %Probability of PU’s absence 

 
forti=5:25 %transmission time increases 
   G1(ti,:)=ti/(t+ti)*c*(1-pf)*ho 
   G2(ti,:)=ti/(t+ti)*c*(1)*ho 
T(ti,:)=ti 
end 

 
plot(T,G2,'*b-') 
hold 
plot(T,G1,'*r-') 

 
xlabel('Trasmission time (ms)') 
ylabel('Throughput') 
legend('Without PUE','With PUE') 
grid on 

 

 

 
t=100; %transmission time 
c=6.66; %channel capacity 
ho=0.8; %Probability of absentism of PU 
ti=5; 

 

 
 PF=[0:0.2:1]%Probability of false alarm increase 

 
   G1=ti/(t+ti)*c*(1-PF)*ho 

 
plot(PF,G1,'*b-') 

 
xlabel('Probability of false alarm') 
ylabel('Throughput') 

 
grid on 

  


