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APPLICATION OF SATELLITE BASED REMOTE SENSING TO THE ESTIMATION 

AND MONITORING OF CROP HEALTH 

 

The effect of loss in the availability of farm products has a lot of negative impact on the 

society. The decrease in crops production has created disparity between the food demand of 

world population and the global agricultural output. Crop production faces alot of challenges, 

some of which includes water scarcity, bad soils, unsuitable temperatures, pests, diseases and 

weeds which attacks the crops. Ground based or manual agricultural approach to detecting 

pest invasion and rapidly curbing it is not only time consuming and laborious, it is not also a 

real-time option especially for large scale farmlands.  Remote sensing provides a rapid, 

intrusive and a more viable option for the collection and analysis of spectral properties of 

earth surfaces from various distances, ranging from satellites to ground-based policy. This 

study is aimed at assessing the applicability of remote sensing instrumentation and its 

techniques in evaluating and estimating crop health. This is to boycott the long process, time 

consuming and expensive biological laboratory tests always carried out by agricultural 

scientists to estimate the same attribute of crops. Sentinel-2A images and Landsat 8 images 

were acquired for use in this study. The total area covered for this research is101 Hectares. 

These images were preprocessed using ArcGIS software in order to remove effects of 

atmospheric conditions on the reflectance properties of the image channels. The images were 

processed to produce several representations of vegetation indices, soil indices and tasseled 

cap indices. Correlation, regression and analysis of variance (ANOVA) statistical tools were 

employed to assess the agreement of these vegetation and soil indices and their correlation 

with that of the tasseled cap indices. On the other hand, laboratory tests were performed to 

assess sampled crops and estimate their health status. A PCA model was developed to convert 

the laboratory test results to an equivalence of the remote sensing NDVI, a de-facto 

vegetation index for assessing crop health. Statistical analysis was performed to evaluate the 

relationship between the outputs from the remote sensing approach and the agricultural 

approach of crop health estimation, and the result shows a very weak correlation (0.16) 

between the two techniques. This implies that on general consideration of crop health 

estimation, there are just 1.6% (approximately negligible) chances that the result from the 

remote sensing technique will give equivalence to that of the laboratory result in agriculture. 

Statistical and graphical analysis performed based on each crop species reveal that cassava 

gave a 48.8% similarity with that of laboratory, 50.2% for groundnut and 63.8% for maize 

similarity respectively for two techniques, for rice health status, the study found out that the 

remote sensing technique could give 23.9% similar to that of laboratory. This makes it 

unreliable for such approach to be used in estimating maize health analysis. The result also 

found out that when satellite images are employed for estimating soya beans health, the 

output will be negatively correlated with that of the laboratory. For yam specie, the results 

show that there is no any correlation between the results from the laboratory and that of the 

remote sensing (0.021). Therefore, attention should be focused on the northern region of the 

study area for cultivation. Also, result obtained from this study should be further validated in 

order to establish a more valid PCA model for the study variables. 
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CHAPTER ONE 

1.0                          INTRODUCTION 

1.1 Background to the Study 

The relevance of food production has been recognized by Sustainable Development Goals 

(SDGs) and this is as a result of the strong relationship that exists between food and 

insecurity. A lot of measures have been put in place to curb the challenges of low food 

production, especially in developing countries. Furthermore, despite the fact that agricultural 

production has been decreasing in most developing countries, most of these developing 

countries rely so much on agriculture for survival and as sources of income (Adesugba and 

Mavrotas, 2016). This underscores the importance of the development of automated 

technologies, such as satellite based remote sensing, for estimating and monitoring crops 

health and for the quick identification of pest invasion on plants, before they wreck and cause 

irreversible havoc on the plants thus, negatively influencing the rate of food production. 

Standard means for estimating and monitoring crop health and identifying crops diseases are 

major issues in agricultural sectors (Savary et al., 2015). Most farmers previously rely on 

manual checking of their crops for signs or symptoms that are detectable within human 

limitation, this process of disease identification leans on the variety of crop, size and area 

where the crops were planted, and in the case for most commercial farms, the farm land are 

habitually very large, this approach of checking crop condition is prolonged and very 

stressful (Oerke, 2006).Manual inspection strongly depends on the categories of infection or 

stress showing clearly detectable symptoms, which in the mid age regularly occurs to latter 

stages of infection. In order to determine the causal agent of such ailment in crop, it is 

achievable through either manual assessment or laboratory examination. Due to advancement 
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in the agricultural practice, which is a major cause why the largely manual process needs to 

be replaced with a more sophisticated, precise, and sensitive approaches (Mahlein, 2012). 

 
Remote sensing is the science (with some approaches of art) of obtaining, without being in 

contact in the actual sense, Earth’s surface information. This is achieved through the sensing 

and recording of energy that is emitted or reflected and processing, analyzing, and applying 

that information. Remote sensing procedure encompasses interplay of interest target or object 

and radiation that are incident (Archana, 2015). The range of EMS commences from the 

shorter wavelengths (gamma and x-rays inclusive) to the longer wavelengths (radio waves 

for broadcasting and microwaves). Remote sensing solely depends on electromagnetic 

spectrum. The human eye is capable of detecting wavelength approximately ranging from 

0.4 to 0.7μm. Chlorophyll is regarded as the most essential organic molecules present on 

Earth. Photosynthesis makes use of these molecules as its elemental pigments. Vicissitudes 

in the absolute consistency of foliar chlorophyll and the comparative proportions of 

chlorophyll ‘a’ and ‘b’ are effectuated by a multiplicity of biological stresses, leaf evolution 

and senescence. Such pigment adaptation interacts directly to the ratio of initial production. 

Furthermore, the chlorophylls proportionately contain a large measure of total leaf nitrogen. 

Consequently, chlorophyll concentration assessment may indirectly impart a definite result 

in the determination of plant nutrient. From a scientific view, the information pertaining to 

spatial and temporal changes of the chlorophyll properties of leaf is of a substantial relevance; 

especially carry out an investigative process of plant–environmental interactions, and from 

an applicable perception of agriculture, environmental management and forestry through the 

use of maps (George, 2008). 
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Application of mapping and satellite based remote sensing in crop production have a 

significant impact in modern practice agriculture also to combat the ecological problems 

traceable to climatic variation amongst other non-climatic factors. Classification of crops is 

a source of vital information required in making diverse decisions needed for agricultural 

resources management. Processing of satellite imageries is capable to render the users, 

propitious and precise knowledge on crop class and genuine evaluation of crop yield applying 

sophisticated classification methods. Decision on the satellite imagery for grouping and 

segmentation of crops is dependent on criteria such as economic constrain, availability, crop 

type variability, and size of the area of study. 

 
Open source data like Moderate Resolution Imaging Spectrora diameter (MODIS), Sentinel 

and Landsat images have been used in some applications for mapping and analysis regarding 

vegetation or vegetative zones (Zheng et al., 2015). Mix-pixel is a well-known challenge 

which is often encountered in MODIS due to poor coverage (250–500 m). Thus, land sat 

images (30m) when compared to MODIS especially for areas with small agricultural lands, 

provides better and more accurate results. The Sentinel-2 is a European Satellite which yields 

a multispectral image at average spatial resolution of 10m and good temporal resolution (five-

days), and which can reduce the side-effects of its relatively rough spatial resolution (Drusch, 

2012). The Sentinel-2 satellite Multi-Spectral Instrument (MSI) has about thirteen (13) bands 

and three spatial resolutions. The newly launched Sentinel-2 images served several purposes 

in the remote sensing environment (Whyte, 2018). Such as, crop health estimation, mapping 

changes in land cover, forest monitoring and for providing information on pollution of lakes 

etc. The invention of unmanned aerial vehicles such as DJI Phantom which is simple to 

operate has immensely contributed to the affordability of precise agriculture. The system of 
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unmanned aerial vehicles (UAV) generally called drones, can be mounted with 

hyperspectral/visibility sensors to record countless images of an area that can be 

systematically processed adopting photogrammetric procedures to construct and orthophoto 

and NDVI maps (Chris, 2014). 

 
NDVI can be described as a binary measure that makes use of the visible and near-infrared 

bands of the EMS, and it is often used to carry out analysis on remote sensing observations 

and detect whether the observed target contains green (living) vegetation or not (Gitelson et 

al., 1996). NDVI has been applied to several studies on vegetation, been implemented to 

check crop fertility, performance level of pasture, and rangeland carrying capacities among 

others. NDVI values are associated with vegetation, NDVI values varies between -1 to +1. 

Values that exceeds +0.1 represent vegetation and values which are closer to 0 represent 

naked soil and rock while negative values represent water, clouds and snow. NDVI value 

positive increase means that there is vegetation. Vegetation indices are utilized as a surrogate 

to estimate vegetation activity. Hence, NDVI is a much reliable component that can be used 

to estimate crop health status. 

 
The Tasseled Cap transformation was developed to map and evaluate urban and vegetation 

changes detected by different satellites; it converts the readings from group of frequencies 

into composed values. The weights are assigned to separate frequencies and the weighted 

sum of each frequency was taken. The light intensity of a single pixel in the scene is measured 

as the weighted sums. Distinct composed values are the linear combination of individual 

frequencies. Some of these weights are negative and some are positive. Three bands are 

commonly used in tasseled cap transformation-based analysis. Band one which is 
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correspondence with image “brightness” gives a measure of soil brightness that used to 

develop brightness index. Band two is correspondence with “greenness “or photo 

synthetically-active vegetation to derive greenness index. The third tasseled-cap band is 

usually construed as the wetness index in which describes the interdependence of soil and 

canopy moisture. (Riffi and Fizazi 2012). 

1.2 Statement of Research Problem 

The reliability of detecting and identifying of the plant health and plant stress are a prevailing 

challenge in agriculture. Ideal approaches of detecting plant diseases or infections often rely 

on manual checking of crops for visible indicators of the presence of such diseases by 

agronomists. 

 
According to the crop variability and the extent of the crop area, which for multitude of 

commercialized farms is tremendous in many cases, the standard methodology has proved to 

be time demanding, laborious and expensive. The manual process of disclosure is dependent 

upon the disease or stress clearly exhibit evident visible symptoms, that recurrently manifest 

from the middle stage to late stage of infection, which makes quick and adequate intervention 

difficult and sometimes, impossible. This is why there is a perceptive interest in the 

agricultural sector to provide alternative optimized approaches for real-time or near real time 

monitoring of crop growth and health. Also, it is needful today because of the trending 

precision agriculture which comprises mostly GPS and other geo-informatics techniques. 

1.3 Aim and Objectives of the Study 

The aim of this research is to estimate crop health using Remote Sensing approach with a 

view to enhancing crop yield in Garatu village 
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In the interest of achieving the stated aim, the objectives of this research are to: 

1. Extract vegetative information from  sentinel 2 images  

2. Evaluate crops health from the extracted vegetative information. 

3. Carry out tissue test for the validation of the extracted crop health information. 

4. Carry out (T.test and Pearson correlation) analysis for the results obtained from 

Objectives (2) and (3). 

1.4 Research Questions 

1. How best can vegetation indices be extracted from satellite image data 

2. How correlated are the result obtained from satellite images and crop health 

estimation 

3. How best can you validate result obtained on crops health from satellite images 

4. Is there any statistically significant relationship between vegetation index gotten from 

satellite images and tissue test result obtained from the lab relationship between. 

 
1.5 Justification of the Study 

 

Nigeria being a fast-developing nation, having an approximate population of over 200 

million citizens relies heavily on agriculture production, so as to avoid risk of food crisis. A 

lot of farmers in Nigeria face different challenges in monitoring their farm produce and have 

very limited chances of getting good farm yield; this is as a result of manually checking of 

crop disease and monitoring of crop health, which is both intensive and demanding. 

Identifying the causal agent is achieved by detecting manually or diagnostic tests. The 

implementation of remote sensing can be used to curtail the stress and challenges that farmers 

majorly face in the process of detecting diseases and stress of crops at early stage. These 
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precise procedures can engender a diminished rate of pesticide and herbicide utilization, as 

well as impacts that are subsequently beneficial for the grower finances, ecosystem services, 

for the environment, and the end consumer. The introduction of precision farming, using 

remote sensing approach will help farmers understand how to study their crop growth by 

providing real time monitoring approach, with very little understanding of the GIS 

approaches. Hence, this research will help resolving some of the challenges faced by farmers 

in monitoring their crop health. 

1.6 Study Area 

The investigations were performed as a case study of Garatu village, located within 

geographical coordinate (214292mE, 1045668mN), (214781mE 1045819N), (214935mE 

1045517mN) and(214579mE 1045259mN), under Bosso LGA area is situated at about 

19.49km away from F.U.T Minna permanent site (Gidan Kwanu campus). Economically, 

agriculture plays a substantial role in the area, most people who reside in the area are farmers 

whom solely rely on agriculture for survival, several crops such as yam, maize, cassava, 

groundnut, soya beans, and rice, are being planted on the specified area of interest. Figure 1 

shows the exact geographical representation of the study area. For this study area, Sentinel 2 

images were obtained from European Space Agency (ESA) (www.copernicus.datahub.com). 

The total area covered for this research is101 Hectares.  

http://www.copernicus.datahub.com/
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Figure 1: Map of the study 
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CHAPTER TWO 
 
 
2.0                    LITERATURE REVIEW 

 

2.1 Precision Agriculture 

 

Precision Farming (PF), also referred to as Precision Agriculture (PA) or site-specific crop 

management (SSCM) is an integration of information- and production-based farming 

mechanism that is developed to amplify long term, site-specific and whole farm production 

adequacy, productivity and profitability while reducing to minimum unintended impacts on 

wildlife and the environment” (Earl et al., 1996). The elemental rationale of PF is to optimize 

inputs adequacy as measured by outputs, which is for optimizing inputs in accordance to field 

inconsistency in order to maximize yields mitigating production costs and ecological impacts 

of agricultural practices, by giving the appropriate amount of input at the suitable place and 

the right time. Precision Agriculture firstly came from the application of imageries acquired 

from space borne satellites and aerial vehicles for the prediction of weather, fertilizer 

variability rate evaluation, and indicators for varieties of crop health. Secondly, the 

implementation brings about the collective use of machine data to ascertain the efficacy of 

mechanized planting, topography mapping, and soil data. 

 
2.1.1 Evolution and recent advances in precision farming 

 

Precision farming is among the most recent agriculture modern inventions (Crookston, 

2006). Precision farming is in general referred as engaging in proper practice at the right 

location and time at the appropriate potency. Since early 1980s when it began, precision 

farming has been endorsed for approximately millions of hectares of agricultural cropland 

across the globe. The specific focus of precision farming is on the use of Geographic 

Information Systems (GIS), farming by soil, variable rate fertilizer, site-specific farming, 
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management zones, Global Positioning System (GPS), yield monitoring, variable rate 

herbicides, variable rate irrigation, remote sensing, automatic tractor navigation and robotics, 

proximal sensing of soils and crops, and profitability. Consequently, it is definite to ascertain 

that agricultural labor activity would be tremendously minimized in the future. The era to 

efficiently integrate information technology and agricultural science for enhanced economic 

and ecological sustainability in crop production. This has birthed Precision Farming. 

 
2.1.2 Purposes of precision farming 

 

1. Boosting efficiency of production 

2. Optimizing quality 

3. Minimizing environmental impact 

4. Minimizing risk 

5. Reduced production costs. 

6. Overall yield increase. 

7. Enhanced decision-making in agricultural management. 

8. Reduced environmental impact. 

9. Assemblage of farmers’ cognizance for improved management with time. 

(McBratney et al., 2005). 

 
2.1.3 Tools for precision farming 

Precision Farming is an integration of mutually interrelated diverse technologies that 

substantiate it developments. Precision farming (PF) has been conceptualized since the 

beginning of mechanized development in agriculture, which affirms that the implementation 

of precision farming was actively engaged by taking advantage of technology development 

that has led to quantifying and fields natural variability differential management.  
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Goddard et al., (1995) said the invention of Global Navigation Satellite System such as GPS 

prompted the process. Production of maps about variation in geospatial objects and details 

(such as pH, crop yield, topography, moisture levels, potassium, magnesium, levels of 

nitrogen, moisture levels, etc.) is dependent on the Researcher’s and or farmer’s capability 

to locate precisely, position of points on the field. In addition, Whelan and McBratney (2003) 

said such maps produced can be compared by interpolating onto a common grid. Spatial and 

Temporal dynamics of crop types are the core part of PF, while the spatial and temporal 

performances of the dynamics are elemental to characterizing amendment approaches, or 

recipe maps. 

2.2 Remote Sensing 

Remote sensing (RS) basically is referred to as the art of acquiring the observables 

concerning physical entities. Remote sensing is systematic process of using sensors mounted 

on space borne satellites or aircraft for actualizing the observation of the atmosphere and 

surface of the earth. Remote sensing accounts for the emitted or reflected electromagnetic 

energy from the target object under observation. The magnitude of the radiation (radiance) 

from the target objects is subjected to the both the characteristics of the objects and the 

radiation incidence on the objects (irradiance) (Campbell, 1996). The sensors in remote 

sensing measure information about objects by the process of recording the magnitude of 

electromagnetic energy transmission from the physical surface of the radiating and reflecting 

objects. The possibility of obtaining images of the earth in varying sections of wavelength of 

the (EMS) is achieved through remote sensing techniques. Amongst other essential attributes 

of remotely sensed images is the region of wavelength that they represent in the 

electromagnetic spectrum. The near infrared and visible light bands of the radiated energy 
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from the sun forms some images sensed by the sensors, while some are the measured energy 

remittance of the surface of the earth that lie thermal infrared wavelength region. The two 

categories of remote sensing procedures are the active and passive systems. The active 

systems are those systems with their inbuilt energy source (RADAR) and the passive systems 

rely on energy sourced from external entities for illumination of the features; commonly the 

sun. 

2.2.1 Principles of remote sensing 

In remote sensing, the distinctive procedure of detecting and discriminating spatial features 

surmises recognizing and cataloging of surface materials or object’s reflected or radiated 

energy radiance. Surface materials revert distinguished magnitude of bands of energy in the 

electromagnetic spectrum that incident on it (Curran, 1985). The process is subjected to the 

physical, chemical and structural characteristics of the materials, surface anomaly, and angle 

of the incidence, magnitude and radiant energy wavelength. Remote sensing broadly 

compounds multi-disciplinary science that combines a wide range of field which includes 

optics, spectroscopy, photography, computer, electronics and telecommunication, satellite 

launching etc. Remote sensing is an integration of all these aforementioned technologies as 

a whole, known as Remote Sensing System (RSS). 

2.2.2 Stages in remote sensing 

 
There are various stages involved in carrying out as successful remote sensing operation. 

 

• Electromagnetic radiation emission (EMR), sun or self-emission  

• Source-to-Earth absorption, scattering and transmission of energy 

 
• Earth-EMR interaction; emission and reflection  

• Energy transmit from Earth surface to the remote sensor 

• Output of sensor data 
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• Transmission of data, its processing and analysis (Joseph, 1996). 

 

 

Figure 2.1 represents the process involved in remote sensing operation. 
 

Figure 2.1: RS processing. Image source: (Sabins, 1997). 
 
2.2.3 Application of remote sensing data in agriculture 

New RS multispectral and hyperspectral sensors are rapidly producing an immense expanse 

of information efficiently and at greater spectral and spatial resolutions. The interpretation of 

these images in the respective reflectance in the visible, near infrared and mid-infrared 

regions of the EMS as the physical properties namely; soil moisture, crop cover and crop 

health and are of significant usefulness for such tasks as mapping of the plant stress, 

application of pesticide and fertilizer application and management of irrigation system (Singh 

et al., 2007). The application of hyperspectral and multispectral remotely sensed data has 

enabled the assessment of varieties of crops nutrient contents, namely; paddy, sorghum, corn, 

broccoli, citrus, grapes and apple. Geostatistics, image classification and analysis, and 

artificial intelligence are the major techniques that expedite the interpretation of the remotely 

sensed data. Remote sensing technology in addition performs a significant function in the 

assessment of the condition of crops and the yield prognosis, specific crop acreage 

estimation, yield prognosis, detection of crops pest and diseases, mapping and location of 
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disastrous happenings, management of wild life, information management about water 

supply, climate assessment, management of range land, and survey of livestock. Remote 

sensing can be used as an efficient method to monitor some categories of crops diseases and 

insect pests (Reidell et al., 2004).described the techniques of remote sensing to be effectually 

an economical methodology for identifying pest and disease infested plants. With the 

application of the techniques of remote sensing, they achieved the detection of insect pests 

specifically and also categorically differentiated the damage caused by insects from the 

damage caused by diseases on oat. The agricultural applications of remote sensing have 

advanced to a level in which remotely sensed information (imageries) have been useful for 

several levels of strategic decisions that are relevant to the security of food, alleviation of 

poverty and development sustainability. 

 
2.2.4 Application of remote sensing to vegetation 

 

In the 1980s, remote sensing and GIS implementation was adopted into agriculture 

alternatively for the estimation of growth and health of crop, ecological stress and crop 

output. Individual researchers have played extremely important role in establishing the thread 

that binds the spectral and agronomic traits of plant canopies and for determining the 

functional indices of vegetation on the basis of spectral reflection (Chang et al., 2016). With 

the use of passive sensors, the acquisition of electromagnetic wave reflectance data from the 

canopies can only be achieved through remote sensing applications. The sensitivity of the 

sensing devices to some regions of light spectra such as visible spectral, ultraviolet region, 

near-infrared and mid-infrared band are the basis of remote sensing to vegetation index 

analysis (Bin et al., 2016). 
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2.3 Satellite Images 

 

The existence of satellites for the past few decades has contributed tremendously in diverse 

applications such as in collection of earth’s surface related information which among many 

other aspects may include: its applicability in military to track patterns of the entire globe’s 

weather, Earth’s crust assessment, vegetation assessment, ocean temperature, ocean current, 

polar ice instability, pollution (Krisnah, 2007). The applicability of the analyzed satellite 

images in archaeology has emanated with the several other uses, however archaeologist have 

in resent time shown interest in the exploitation of further details of the expansive scope of 

the available analytical tools for the assessment of the earth’s surface and subsurface satellite 

image data. The declining cost, inclined resolution and satellites images greater availability 

for the civilians has effectively improved the use of satellites has contributed tremendously 

to many sectors of human endeavors such as in military intelligence, tracking and monitoring 

operations both on the surface and sub-surface of the earth together with temporal variation, 

and monitoring of spatial phenomena (Krisnah, 2007). Imaging technology with the use of 

satellite has brought about the growth of multispectral and hyperspectral sensors across the 

globe, it is a paramount means for mapping objects and phenomena by sensing unique 

material bonds and chemical from airborne and satellite sensors. From the definition of RS 

which is the science and art of observing and recording information about the environment 

or an object needless of physical contact with the object. Inverse problem is the principle on 

which satellite imaging technology is based; even if the target environment or object cannot 

be measured directly, there are some other variables existing that can be observed and 

recorded which have relationship with target object, making use of computer models that are 

data-derived (Victor, 2007). The emission’s frequency can then be related to the temperature 
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in that environment through various relations of thermodynamics. There are two major types 

of satellite imaging techniques, which are: 

1. Multispectral imaging technique: in this technique, EMR of several wavelengths 

(multi-spectral) are usually taken.  RS systems of multispectral imaging utilize arrays 

of sensor that are parallel and sense radiation in small number of broad wavelength 

bands.  Many multispectral satellite systems observe 3 to 6 bands of spectrums within 

visible to middle infrared section of the EMS. However, there are some of these 

systems that use at least one of thermal infrared bands. Discrimination of various 

species of vegetation, Soils, rocks, turbid and clear water, man-made features, and so 

on is possible by multispectral remote sensing.  

 
2. Hyperspectral imaging technique: This imaging approach is different from multi-

spectal and regular imagery because it furnishes finer detail across the EMS. In place 

of gaining radiance data in only six bands which varies across locations from 100nm 

to 3000nm in width (such as MSS sensors and Landsat TM), hyperspectral sensor 

provides in hundreds of different bands spectral emissivity data, each of which is 

within 10-20nm in width. 

 
2.3.1 Differences between multispectral and hyperspectral images 

1. Multispectral imaging produces two dimensional images of a few to hundred 

wavelength bands whereas Hyperspectral images obtains a large three-

dimensional block of hundreds or thousands of images dimensionally denoted as 

(x, y, λ), where x, y and λ represent spatial and spectral dimensions respectively 

(Peg Shippert, 2009). 
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2. Multispectral imaging processing is faster and easier with its smaller data set 

whereas Hyperspectral imaging having larger complexity of data, higher resolution 

spectra and it is more versatile having various emerging applications. Figure 2.2 

shows the major differences between a hyperspectral and a multispectral image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Difference between multispectral and hyperspectral images 

Image source: (Peg Shippert, 2009). 
 
 
2.3.2 Application of satellite image technology 

 

1. Satellite Imaging Corporation provides satellite imagery that is applicable in 

agricultural assessments and analysis (crop health & growth assessment, irrigation 

system charting, crop yield evaluation and assessment of soil vulnerability). 

 
2. Remote Sensing provides imperative information for such evaluations as resources 

management and ecological vulnerability study. 

 
3. Satellite imaging provides orthorectified imagery that is essential for the assessment 

and management of forest area and game reserves. 

 
4. Satellite imaging provides vital data applicable to examine terrain dynamics, and 

military defensive operations. 
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2.4 Sentinel Images 

The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high 

resolution optical imagery and provide continuity for the current (Satellite pour 

I’Observation de la Terre) SPOT and Landsat missions (Lillesand et al., 2014). Sentinel-2 is 

a multispectral operational imaging mission within the (Global Monitoring for Environment 

and Security) GMES program, jointly implemented by the EC (European Commission) and 

ESA (European Space Agency) for global land observation (data on vegetation, soil and 

water cover for land, inland waterways and coastal areas, and also provide atmospheric 

absorption and distortion data corrections) at high resolution with high revisit capability to 

provide enhanced continuity of data so far provided by SPOT-5 and Landsat-7 (Martimort et 

al., 2007). Sentinel-2 is the first satellite of a pair projected in the Sentinel-2 mission of the 

European program Copernicus and the European Space Agency (ESA). Different Sentinel 

missions are being deployed with satellites carrying various payloads designed for Earth 

Observation purposes (ESA, 2016). Sentinel-2 is equipped with multispectral instrument 

(MSI) for capturing spatial features and phenomena within 13 spectral bands of the EMS. 

Depending on the specific spectral band desired by the user, sentinel images spectral 

resolution ranges within 10m – 60m and currently, depending on the geographical latitude 

sentinel-2 has temporal resolution of 10 day. The launching of Sentinel-2A & 2B which were 

2015 and 2017 respectively, boasted the temporal resolution to 5 days on the equatorial 

region and 2 to 3 days on mid-latitudes. The applicability of Sentinel-2 images in precision 

agriculture is a function of its improved resolutions (Spatial & Spectral) together with its 

non-commercialized access for the users. 
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2.4.1 Application of sentinel_2 in precision agriculture 

 

The use of Sentinel_2 imagery in agricultural applications requires an introduction period for 

users, which are less familiar with the unique properties of this sensor. The orbital 

constellation of Sentinel-2 satellite is configured to enable the acquisition of multispectral 

and higher resolution images with consistent global revisit period. 

 
The Multi-Spectral Instrument (MSI) is the sensor carried as payload and has a push-broom 

configuration (Boschetti et al., 2018). The MSI sensor acquires in 13 different spectral bands 

(Visible, NIR and SWIR) with a ground sample resolution (GSD) of 10 m. One of the 

objectives of sentinel -2 is to create a synergy with already existing land monitoring missions 

(e.g. USGS Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) and the 

SPOT series). The use of sentinel images has helped in several ways to monitor crop growth, 

as a result of its resolution compared to other satellites images. 

2.5 Spectral Reflectance 

 

2.5.1 Spectral reflectance properties of leaves 

 

Green plant leaves typically display very low reflectance and transmittance in visible regions 

of the spectrum (i.e., 400 to 700 nm) due to strong absorption by photosynthetic and 

accessory plant pigments (Chappelle et al., 1992). By contrast, reflectance and transmittance 

are both usually high in the near-infrared regions (NIR, 700 to 1300 nm) because there is 

very little absorption by sub cellular particles or pigments and also because there is 

considerable scattering at mesophyll cell wall interfaces (Slaton et al., 2001). The disparity 

in reflectance properties between visible and NIR wavelengths substantiate a majority of 

remote procedures for monitoring and management of crop and natural vegetation. Plant 

stress typically results in lower chlorophyll concentrations that support expression of 
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accessory leaf pigments namely; carotenes and xanthophylls. This consequentially broadens 

the green reflectance peak (normally located near 550 nm) towards longer wavelengths, 

increasing visible reflectance and causing the tissues to appear chlorotic. Figure 2.3 shows 

Leaf reflectance, absorption and transmission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.3: Leaf reflectance, absorption and transmission. Image source: (Slaton et al., 

2001). 
 
2.5.2 Spectral reflectance properties of soil 

 

The spectral signatures of most agricultural soils are relatively simple when compared with 

plants. They normally demonstrate monotonic proliferation in reflectance throughout visible 

and NIR regions (Prince, 1990). High soil water and high organic matter contents commonly 

cause lower reflectance while dry, smooth surfaced soils have a tendency to be brighter 

(Daughtry, 2001). The existence of specific minerals in soil has been linked with unique 

spectral features (e.g., higher red reflectance in the presence of iron oxides). Soil spectra in 
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SWIR display more features when compared with those observed in shorter wavelengths but 

are still controlled by water content, litter, and minerals (Henderson et al., 1992). 

2.5.3 Vegetative indices for crop health estimation 
 
Vegetation Indices (VIs) refers to mathematical compression of spectral bands that describes 

spectral features of green plants to differentiate them from other attributes. Some of these 

features can be achieved by summing up the red spectral band (chlorophyll absorbent) with 

the NIR bands (repellant), the shortwave infrared is another major feature to be considered 

(Njoku, 2013). This value is gotten by rationing their variations and summation by forming 

a single combination of band (Zhang and Ni-meister 2014). 

 
(Solomon et al., 2014), discovered that, vegetative indices in the red edge region are used as 

indicators of plant physiological stress, which implies the physical health of the plantations. 

One such parameter for the determination is the ratio of chlorophyll fluorescence (CF) 

emissions (red and far red light produced in photosynthetic tissue) between 690-740 nm 

which is inversely related to the amount of photosynthesis (Liew et al., 2008) Plants growing 

under stressful conditions show leaf chlorosis which is a result of chlorophyll pigment 

disintegration in total chlorophyll concentration 

(Adam et al 2014) stated that vegetation indices have been applied in several fields of 

Agriculture and forest management. For instance, (Weigand et al., 1991) and (Zhang et al., 

2003) used NDVI and EVI respectively to monitor crop health. The illustration tells us that 

the highest NDVI value implies healthiness of the particular crop while the lower NDVI 

value suggests that the affected crops are weak or unhealthy (Dong et al., 2016).also used 

vegetation indices to monitor different crops strength. 
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(Gunlu et al., 2014).used the same indices to monitor the strength of forest plantations by 

employing several techniques such as k-nearest, neural network, multi-linear regression and 

nearest neighbor algorithm for the prediction of biomass. However, saturation was observed 

as a major challenge in implementing the VIs because it strongly affects the correctness of 

the estimation, which makes the final results unreliable (Lu et al., 2014). Light reflectance 

from a vegetation surface depends on several factors among which is the amount and 

composition of the light that strikes the leaf surface, since solar irradiation varies with time 

and atmospheric conditions (moisture, clouds, dust particles and gases), which gives 

inconsistent results in repeated spectral data acquisition. To overcome such problems 

vegetation indices (VIs) are used for a more consistent interpretation of leaf properties using 

spectral data. Vegetation indices comprises of surface reflectance at two or more wavelengths 

or bands usually determined as ratios, differences or sums, at different wavelengths, or by 

using a linear combination of spectral data (Jackson and Huete, 1991). More related reviews 

are discussed in subsection 2.9 

2.6 Normalized Differential Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses the 

visible and near-infrared bands of the electromagnetic spectrum, and is implemented to 

explore remote sensing measurements and evaluate whether the target being observed 

contains live green vegetation or not. The NDVI is a systematic procedure widely 

implemented for the measurement of crop health in agricultural applications, because of the 

variability in soil spatial properties, divers’ locations in a field may necessitate different 

aggregate of nitrogen to attain high yield (Ricotta et al., 1999). Having ascertained the point 

information of NDVI, with the aid of Geo-statistics, the surface spatial continuity is produced 
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and the crop features are presented to remodel the precision agriculture. NDVI has been used 

in vegetation assessment since it has been found applicable for the estimation of crop yield, 

pasture efficiency, and rangeland capacity among others. It is often directly related to other 

ground parameters such as percent of ground cover, photosynthetic activity of the plant, 

surface water, leaf area index and the amount of biomass. 

 
Healthy vegetation commonly absorbs significant portion of the visible light incident on it, 

and consequentially reflects a huge ratio of the near-infrared light while visible and less near-

infrared light is reflected when the vegetation is unhealthy or sparsely distributed. The bare 

surface soil on the other hand fairly reflects both the red and infrared portion of the 

electromagnetic spectrum. NDVI focuses on the satellite bands that are most sensitive to 

vegetative information (near-infrared and red). The difference between the red and near-

infrared reflectance is directly proportional to the vegetation distribution, which implies that; 

how vast the vegetation is depends on the hugeness of the difference. 

 
This algorithm can be mathematically expressed as the subtraction of red reflectance from 

the near-infrared and dividing it by the summation of their bands respectively. Equation 2.1 

represents the NDVI formula (Holme et al., 1987). 

 
𝑁𝐷𝑉𝐼 

=   
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
                                                                                                                (2.1) 

 
 
 
This mathematical expression agrees that two indistinguishable patches of vegetation could 

exhibit distinct values if one were, for instance in bright sunbeams, and another under a 

cloudy sky. The bright pixels would all have larger values, and consequently a larger absolute 

variation between the bands. This is avoided by dividing by the sum of the reflectances. 
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Theoretically, NDVI values are represented as a ratio ranging in value from -1 to +1 but in 

reality, water is denoted by extreme negative values, bare soil represented by values near 

zero and green vegetation is symbolized by values that are beyond 6. 

 
2.6.1 Plant reflectance and normalized difference vegetation index (NDVI) 

 

Reflectance is referred to as the reflected energy proportion from an object to the energy 

incident on the object. Considerably, crops spectral reflectance varies in the near-infrared 

region and visible red denoted as λ within 700mm to 1300mm and 550mm to700mm of the 

electromagnetic spectrum respectively Kumar and Silva (1973). Generally, plants 

comparatively have low reflectance in the blue and red percentage of the EMS owing to the 

absorption of chlorophyll, with a little higher reflectance in the green; consequentially plants 

come into sight as green. The radiant energy off the near-infrared reflects keenly from the 

surface of plant leaf and the reflectance proportion is measured by the characteristics of the 

leaf tissue: their cellular structure and air-cell wall-protoplasm-chloroplast interfaces. These 

anatomy properties are impacted by environmental influences including soil humidity, 

nutritive status, soil salivation, and leaf phase (Ma et al., 2001). The vegetation and soil 

variance are at optimum in the red and near infrared region. Therefore, spectral reflectance 

information is applicable to assess various indices of vegetation that are associated with 

agronomic and biophysical plant parameters related to photosynthesis process and 

productivity of plant (Ma et al., 2001; Adamsen et al., 1999). Since vegetative indices are 

sensitive to red and near infrared light, it has been found to be successfully applicable in 

plants photosynthesis process. The photosynthesis process of plant is a function of the 

chlorophyll activeness in the plant. 
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2.7   Agricultural Diagnosis Test 

2.7.1 Plant chlorophyll 

 

Chlorophyll is the green pigments in every green plant that aids the plant to source for energy 

from visible light. (Richardson et al., 2002) described chlorophyll as the domineering factor 

that controls the optical properties of leaf for healthy green vegetation which is an 

indispensable component for photosynthesis. Hence, plants naturally absorb light energy 

from the sun to hoard it as their chemical energy. The plants use the energy to associate 

carbon dioxide and water into carbohydrate to support their life process. There may be many 

influences that affect the photosynthesis; the main factors are light intensity, carbon dioxide 

concentration, and temperature. The chlorophyll content could depend on seasonal and 

environmental changes. There are several methods to measure the content of chlorophyll. 

Figure 2.4 presents the corresponding absorption spectra of chlorophyll a and b pigments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Absorption of spectra Chlorophyll a, b and carotenoids 

Image source: (Richardson et al., 2002) 

The most important naturally occurring pigments essential for the oxygenic transformation 

of light energy are the chlorophyll a and b. The highest level at which chlorophyll a is 

absorbed transpires at 0.43 and 0.66 μm, while chlorophyll b is absorbed extremely from 
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0.45 to 0.65 μm. The comparative deficiency of the absorption of chlorophyll within the red 

and blue light region renders the leaves as green to sight. 

 
2.7.1.1 Application of leaf chlorophyll content 

 

The adequate content of chlorophyll in leaves is unambiguously related to the capacity and 

efficacy of photosynthesis materials which makes available the helpful understanding 

regarding potential of photosynthesis and elemental production for land managers and eco-

physiologist. Considering that nitrogen status is one of the substantial components of 

chlorophyll content, which implies that the nitrogen of leaf is entrenched in chlorophyll. In 

the light thereof, the assessment of the level of nitrogen in a plant can be achieved by taking 

measurement of the chlorophyll content so as to provide essential data foe adjusting the 

frequency of fertilization of nitrogen (Richardson et al., 2002). In general, the process of 

shunting the destructive techniques of estimating vegetation chlorophyll content is attributed 

to considerable prominence to managing operations in agriculture, exceptionally to precision 

farming (Gitelson et al., 2003). (Kaufman et al., 2010) verified the scientific interest, that 

chlorophyll content is one of the criterions with ultimate prevalence to investigate 

hyperspectral studies in agriculture. 

 

2.7.1.2 Chlorophyll measurement 

The level of concentration of chlorophyll in plants is normally measured with laboratory 

equipment called spectrophotometer. For several decades, discrete optically effectual 

techniques to carryout leaf chlorophyll content assessment efficiently without destructive 

process have been developed. Chlorophyll index is the output of the optical approach, having 

measured absorbance and reflectance of light in sample leaves (Gessner, 2014). The leaf 
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absorbance of chlorophyll distinctly within red and near-infrared regions of wavelength can 

be actualized with the use of chlorophyll-meter. 

 
The measurement of the absorbance by the leaves of two different wavelengths in the spectral 

domain of red ad near-infrared can be actualized with the aid of chlorophyll-meters. Index-

values are calculated as the output of the measured specific leaf chlorophyll content e.g. 

(SPAD-VALUE and CCI-value) SPAD value is the ratio between leaf reflectance in red-

light at 650nm and in near-infrared light at 940mm. CCI-values is the variability red light 

and near-infrared light. The occurrence of strong chlorophyll absorption in the red-light 

domain and the evaluation of near-infrared light is achieved to register the leaf structural 

variability (Richardson et al., 2002). It should be considered that the leaf chlorophyll content 

evaluation regresses with increasing chlorophyll content. 

 
2.7.1.3 Importance of chlorophyll measurement 

 

Chlorophyll is the most profuse pigments in plants. This is responsible for the plant’s green 

leaves. Chlorophyll is profuse in plant leaves, through which the leaves absorbs light for the 

energy requirement for photosynthesis. The Chlorophyll’s absorbent of blue and red light in 

the absence of green light makes chlorophyll appears green. Photosynthesis which is the 

process whereby the plants green pigments (chlorophyll) utilizes sunlight to transform carbon 

dioxide and water into plants developing blocks. Considering nitrogen as a part of 

chlorophyll, the volume of nitrogen in the plant can be indirectly determined by measuring 

the chlorophyll in the plant. This possibility allows for extra resourceful inventorying of 

fertilizer applications. Photosynthesis is not only influential on plants; it is also significant to 

the sustenance of living things on earth, because plants through this process of photosynthesis 

consume carbon dioxide and gives out oxygen that we need to breathe. 
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2.7.2 Tissue test 

Tissue testing encompasses analyzing the foliar tissue (grass clippings) for nutrient content, 

Plant tissue testing contributes to the achievement of a significant level of fertilizer 

management precision. Carrijo and Hochmuth (2000). Regular tissue testing can help to 

make a diagnosis on the apparent nutrient or can aid the efficient management of fertilizer. 

Testing leaf tissues is functional for the assessment of the nutritive level of trees; hence it is 

specifically influential for macronutrients, primarily nitrogen (N) and potassium (K) that 

readily move with soil water. 

2.7.2.1 Importance of tissue test 
 

1. To confirm visual nutrient deficiency symptoms: It can be very hard to determine if 

a plant is experiencing nutrient deficiencies by just observing it in the field. Many 

individual nutrient symptoms look alike, and it can be hard to pinpoint exactly if a 

nutrient is deficient or other stress symptoms are present. A tissue test can confirm if 

a crop is suspected of being deficient of a specific nutrient. 

 
2. Monitor and adjust your crop fertility plan: Tissue testing can provide information to 

confirm if your fertility plan is working and help you evaluate new fertilizer 

placement or timing techniques. Tissue testing can also provide guidelines to farmers 

that are looking at applying a base level of nutrients with seeding and then topping 

up nutrient requirements in a foliar treatment. 

1. Detect “hidden hunger”: Crops can experience minor nutrient deficiencies without 

showing any visual symptoms. A tissue test can point towards these minor nutrient needs 

that would otherwise go undetected. An application to address a small need can contribute 

to obtaining the crops top end yield potential. 
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2.8 Pests and Diseases of Farm Crops 

A pest is any living organism, which could be plant, animal or fungus, capable of invading 

another plant, animals or human. Pests can be insects, rodents, birds and other animals, 

weeds, fungi, or microorganisms such as bacteria and viruses that have a damaging influence 

on crops. It is a broad conception, that an organism can be a pest in some settings yet 

constructive, tamed or permissible in other settings. Animals are referred to as pests when 

they mutilates agricultural farm produce either livestock or crops by depending on them for 

their survival such as moth invading apples, weevils on cotton, rodents on groundnuts 

(Barrientos, 1998)., etc. Plate I show an example of farm pest  

 
 

 
 

 

 

 

 

 

 

 

 

PlateI: Farm rodents (Barrientos, 1998) 

2.8.1 Ground nut 

 

It is an herbaceous annual plant, cultivated for its oil and edible groundnuts. It is usually 

small, erect, has thin stem and leaves that are feather-like. Its leaves are in alternate pairs in 

arrangement and possess near the stalk, attachments that are leaf-like. This plant produces 

white, yellow, cream or orange flowers which yield pegs (Wright, 2012). Groundnut being 

an oil seed crop, it contains 40 to 49% oil. Apart from protein, groundnuts are resourceful for 

B, Zn, P, and Ca. The groundnuts also contain vitamin E and small amounts of vitamin B 
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complex. Below is an image of groundnut foliage and groundnut kernels. Groundnut is an 

annual plant, which survives only one growing season. Plate II shows an example of 

groundnut leaf and harvested seedlings 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Plate II: Groundnut at germinating stage and after harvest 

Image source: (Wright, 2012) 

 

Table 2.1 (a) Disease and symptoms of groundnut (Wright, 2012) 

DISEASE SYMPTOMS 

Fungus  Numerous spots on upper surface of leaflets. 

 Entire plant or discrete parts may wilt and die. 

 Pods and stems become covered in fungal 

sclerotia. 

Charcoal rot  Water soaked lesion on stems of seedlings close 

to soil line 

 Lesions are initially water-soaked but turn 

brown, if lesions girdle the stem, plant wilts and 

branches die. 

 Infections beginning in the roots cause leave to 

turn yellow and wilt and cause stems to be 

blighted. 

  

  

2.8.2 Soybeans (Glycine max) 

Soybean is a leguminous vegetable of the pea family that grows in tropical, subtropical, and 

temperate climates. Soybean was domesticated in the 11th century BC around northeast of 

China. It is believed that it might have been introduced to Africa in the 19th century by 
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Chinese traders along the east coast of Africa. (Earl, 2011). It contains a proportion of not 

less than 36% protein, 30% carbohydrates, and exceptional amount of dietary fiber, vitamins, 

and minerals. In addition, contains 20% of oil that makes it a significant crop for the 

production of consumable oil. Plate III shows an image of soyabean plantation and the 

harvested seedlings of the soyabeans. Table 2.3 shows a list of soyabeans diseases and their 

possible symptoms. 

 

 

 
 
 
 
 

 

 

 

 

 

 

Plate III: Soya beans farmland and seedlings (Earl, 2011) 
 
Table 2.2 shows diseases and symptoms of soya beans (Earl, 2011) 

DISEASE SYMPTOMS 

Anthracnose  Foliar symptoms often occur at early 

reproductive growth stages with irregular 

shaped brown lesions that develop on stems, 

petioles and pods. 

 Premature defoliation may occur throughout 

the canopy on maturing plants when 

anthracnose lesion girdles the leaf petiole 

Bacterial blight  Leaf symptoms begin as small, angular, 

translucent, water soaked yellow to light 

brown spots. 

 As the spots age, their centers darken to a 

reddish brown become sunken and are 

surrounded by a water-soaked margin 

bordered by a yellowish green  
 

 

 

 

 

 



33 

 

2.8.3 Cassava (Manihotesculenta) 

 

Cassava has been proven to be one of the major indispensable foods in many sub-Saharan 

African countries (Hauser, 2006). The production and processing of Cassava persist to be 

predominantly habitual in most of the producing countries despite the high potentials for its 

commercial production and processing. Cassava roots are very rich in starch and contain 

small amounts of calcium (16 mg/100 g), phosphorus (27 mg/100 g), and vitamin C (20.6 

mg/100 g). However, they are poor in protein and other nutrients. The cassava plant, grows 

exceptionally well in low fertility and drought prone environments (Howeler, 2012). Plate 

IV: shows cassava foliage and harvested cassava farm produce. Table 2.4 shows a list of 

cassava disease and symptoms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate IV: cassava foliage and harvested cassava (Howeler, 2012) 
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Table 2.3: Shows diseases and symptoms of cassava 

DISEASES SYMPTOMS 

Witches broom  Plants are stunted with an excessive 

proliferation of branches. 

 Shoots grows smaller leaves and 

shortened internodes; thus, no 

chlorosis is present 

Bud necrosis 

 
 Patches of dark brown or gray fungal 

growth on stems 

 Necrotic areas covered by buds on 

the stem. 

 

2.8.4 Rice (Oryza Sativa)  

Rice (Oryza sativa) is the major food crop in the world. Nearly 40% of the world population 

consumes rice as the major staple food. Most of the people, who depend on rice as primary 

food, live in the less developed countries. It is usually grown as an annual plant, but in the 

tropics, it can be grown as a perennial. (Roy et al., 2011). Depending on the variability and 

soil, rice plants height ideally ranges from 1-1.8m. Rice is majorly cultivated on soils with 

great capacity to hold water though its growing and mature period (Siddiq et al., 2005). 

Plate V illustrates rice plantation showing the growing grains. Table 2.5 shows a list of rice 

disease and symptoms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate V: showing rice plantation: image source (Roy et al., 2011) 
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Table 2.4: shows diseases and symptoms of rice (Siddiq et al., 2005) 

 

2.8.5 Yam (Genus Dioscorea) 

 

Yams (Dioscorea species) are annual root tuber-bearing plants with more than 600 species 

out of which six are socially and economically important in terms of food, cash and medicine 

(IITA, 2009). There are different species of yam which include; water yam, Chinese yam, 

white yam, yellow yam etc. Ike and Inoni, (2006). They are cultivated in the tropical regions, 

and mostly cultivated in geographical areas where the dry and wet seasons of rainfall abound 

such as the savannah region of West Africa (FAO, 1997). Plate VI shows the leaf of a 

growing yam. Table 2.6 shows a list of yam disease and their symptoms. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISEASE SYMPTOMS 

Leaf streak  Water-soaked streaks between leaf veins which are 

initially dark green and then turn translucent. 

 Leaves turn brown and then gray-white in color 

before they die. 

 Streaks grow larger, coalesce and turn light brown 

in color. 

Rice bacterial blight  Water-soaked stripes on leaf blades. 

 Yellow or white stripes on leaf blades, leaves appear 

grayish in color. 

 Plants wilting and rolling up, stunted growth. 
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Plate VI: Foliage of a yam (IITA, 2009) 

Table 2.5: Disease and symptoms of yam (IITA, 2009) 

Disease Symptoms 

Anthracnose (Scorch) 

 
 Small, dark brown spots or black lesions on leaves 

which may be surrounded by a chlorotic halo 

 Leaf necrosis, dieback of stem, withered leaves and 

scorched appearance 

Yam mosaic disease 

 

 The common symptoms are infected leaves which 

show yellow and green patterns (called mosaics) 

between the veins or may show a narrow green strip 

bordering the veins (called vein banding). 

 If the disease is severe the leaves becomes long, thin 

and strap shape and whole plant become stunted. 

 
 
 
2.9 Review of Related Literatures 

Bunkei et al, (2007) studied a phenomenon, on the responsiveness of the EVI and NDVI on 

topographic effects: The both indices examined are global vegetation indices aimed at 

providing spatial and temporally consistent information about global vegetation. Several 

ecological factors that affect the accuracy of these indices were highlighted e.g. atmospheric 

http://www.growerjim.blogspot.com/
http://www.growerjim.blogspot.com/
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condition and soil background, these are potential error source and also the topographical 

factor is also non-negligible agent. The effect is likely to be greater at location of high 

mountain density; the soil adjustment factor “L” in the EVI makes it more responsive to 

topographic requirements compared with NDVI. Hence, the initial removal of the 

topographical effect from the reflectance data before the computation of EVI together with 

other vegetation indices was recommended. 

𝐸𝑉𝐼 =   𝐺 ×
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + (𝑐1 × 𝜌𝑟𝑒𝑑𝐶2
× 𝜌𝑏𝑙𝑢𝑒) + 𝐿

                                                               (2.2) 

 

𝐸𝑁𝑉𝐼 

=   𝐺 ×

𝜌𝑛𝑖𝑟
𝜌𝑟𝑒𝑑−1⁄

𝜌𝑛𝑖𝑟
𝜌𝑟𝑒𝑑

⁄ + 𝑐1 − 𝑐2 ×
𝜌𝑏𝑙𝑢𝑒

𝜌𝑟𝑒𝑑
⁄ + 𝐿

𝜌𝑟𝑒𝑑
⁄

                                                    (2.3) 

 

𝑁𝐷𝑉𝐼 

=   
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑
                                                                                                                            (2.4) 

 

𝑁𝐷𝑉𝐼 

=   

𝜌𝑛𝑖𝑟
𝜌𝑟𝑒𝑑−1⁄

𝜌𝑛𝑖𝑟
𝜌𝑟𝑒𝑑+1⁄

                                                                                                                            (2.5) 

 

 

Where G = Gain factor 

𝜌𝑛𝑖𝑟 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑎𝑡𝑛𝑒𝑎𝑟𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

𝜌𝑟𝑒𝑑 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑎𝑡𝑡ℎ𝑒𝑟𝑒𝑑𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

𝜌𝑏𝑙𝑢𝑒 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑎𝑡𝑡ℎ𝑒𝑏𝑙𝑢𝑒𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

𝐶1 𝑎𝑛𝑑𝐶2 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠𝑢𝑠𝑒𝑑𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 

L = Canopy background 

Owing to the fact that the topographic effect is in two categories, these are, direct and indirect 

topographic effect. A non-lambertian model for topographic effect model based was adopted 
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on the Bi-Directional Reflectance Function (BDRF) developed by (Mineart1941) which was 

one of the earliest surfaces statistical BDRF models. Equation 2.6 shows the lambertian 

model 

 
 

𝐿𝑇 =   𝐿𝑜

cos 𝑒

(cos 𝑖 . cos 𝑒)𝑘
                                                                                                       (2.6) 

 
 
Where LT and LO are the radiance from an inclined surface and normalized radiance 

respectively and k is the Minnaert constant. The results of the study show that EVI is further 

responsive to topography in contrast with NDVI, thus, recommending EVI for addressing 

topographic and background soil noise simultaneously. 

 
Meng and Wu-bing, (2007) also carried out an investigation on methods of monitoring crop 

condition using remote sensing approach and developing trend in china where emphasis was 

made on obtaining crop condition data at an early stage in crop growing season. The study 

enumerated five models for monitoring crop condition (health) which are thus; 

 
i. Direct crop monitoring model 

ii. Classification models 

iii. Same-period comparing model 

iv. Crop growing process model 

v. Diagnosis model 

 

Emphasis was made on the universality of remote sensing using satellite images as the top 

and richest data source for monitoring a large-scale crop condition. Temporal sequence of 

NDVI within the crop period is utilized and profiles of crop growth are developed by 

acquiring statistics of NDVI at certain scale such as a province. Recommendation was made 
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that crop condition monitoring should be connected to crop yield assessment because the 

condition of a crop in particular has effect on the final yield of the crop. 

 
Sabtu et al. (2013) examined the efficacy of geospatial technologies in tackling issues of crop 

pests and diseases distressing crop conditions and its impact on the overall yield rate of the 

entire population. Emphasis was made on the fact that remote sensing has not much been 

applied to a small area due to multiple land use and the limited size of the crops. Suggestion 

was made that GPS technology could be more applicable in such a situation. 

Meera et al. (2015) carried out a temporal and spatial change examination over Vellore 

district of Tamil Nadu using multispectral images of landsat TM and INSAT, the landsat is 

a seven band images and the INSAT is a three-band remote sensing image. The reason for 

the INSAT is because it contains the major three bands necessary for the assessment of 

vegetation index. The images were downloaded from the National remote sensing of Vellore 

and the former from the USA NASA. The image processing and classification were carried 

out using ERDAS IMAGINE remote sensing software. The remote sensing technique 

adopted for this study is the Normalized Difference Vegetation Index (NDVI) and the span 

of the data used is 2001 and 2006. The NDVI analysis was repeated at different threshold of 

NDVI and the results yielded that, NDVI in 2006 is greater than that of 2001, this is as a 

result of high vegetation recovered during this period and more land recovered from 

barrenness, which implies that there is increasing vegetation activities on the Valore district 

and more land are reclaimed from barrenness or aridity. 

 
Cristiano et al. (2016) also came up with a study on Agronomic characteristics associated 

with the normalized difference vegetation index (NDVI) in the peanut crop. The objective of 

this study was to evaluate the normalized difference vegetation index (NDVI) generated by 
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a terrestrial sensor and its relationship with agronomic variables of peanut crops grown at 

different densities The variables of vegetation cover yield and plant population strongly 

correlated with the NDVI obtained by the terrestrial sensor. The results indicated that the 

NDVI obtained through the Green Seeker sensor can be used to estimate productivity, 

vegetation cover and plant population on peanut crop. This may provide an additional tool 

for farmers to evaluate the potential of their culture; enabling even that agronomic measures 

can take effect so that this potential is improved A map showing the distribution of NDVI 

values across the study site was provided with the index value from 0.0 to 1.0 at an interval 

0.2, and physical judgment also agreed with the findings. 

 
Analysis of variance (ANOVA) was implemented in order to check the correspondence 

between the NDVI obtained from the Green seeker sensor and the satellite remote sensing 

 
The regression analysis revealed that there was a quadratic positive magnitude of the NDVI 

versus yield resulting in a correlation of determination of 0.60. In the phonological growth 

stage studied, when the crop is fully developed, there may be homogeneity of reflectance, 

saturating the NDVI In order to draw a viable conclusion, the variation in the yield over the 

field was verified using exploratory statistical analysis which involved derivation of mean, 

standard deviations, minimum and maximum values likewise normality test was performed. 

At the initial stage of planting the NDVI was negative and tends to zero which is sensitive to 

soil. It shows that there is larger portion of the soil exposed and at the later stage of 

germination, specifically stage five; the NDVI has a greater value which reflects a 

progressive growth and potential good yield. 

 
Ashish et al. (2017) reviewed the concept of Precision agriculture (PA) which was tagged 

otherwise as satellite farming or Site-Specific Crop Management (SSCM) is a concept of 
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managing the farming on the basis of carrying out observation, measurement, and 

acknowledgement of inter and intra-field inconsistency in crops. The aim of precision 

agriculture is to develop a Decision Support System (DSS) development for overall farm 

administration with the for the purpose of ensuring optimum yields from inputs whereas 

conserving resources. 

 
Ashishi et al. (2017) also traces the history of PA to the green revolution in 1960s and judged 

that in the very few years to come, the need for human power in farming will be less relevant 

due the advent of highly sophisticated machines equipped with the state-of-heart digital 

equipment for carrying out farming operation. The likes of these are: VRT, SSCM, GIS, and 

GPS. The tools require little contribution from man for their operation which strongly backs 

the earlier proposition that the need for man power in farming will be less relevant. So, 

technology will be highly dependable energy in farming. 

 
Basic Steps in Precision Farming 

 
The basic steps in precision farming are; 

 
i). Variation Assessment 

 
ii). Variation management and 

 
iii). Estimation 

Tiang et al. (2019) conducted a study about the prospective bands of sentinel 2 images for 

image classification in precision farming utilizing a five classes classification of land cover 

as the case study, The study explored classic index based classification methods and 

computer learning algorithm, Support Vector Machine (SVM) with four different approach 

for band selection in image classification; index based approach, index related band 
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approach, Mutual Information (MI) selected bands and full band approach. The result shows 

the learning algorithm (unsupervised) outperforms the classical approach and also an 

improved classification implementation may be accomplished by explicitly employing the 

bands selected subsequent to comparative MI rank order in accordance to utilizing empirical 

and specific bands that are indices related. This suggested methodology has been found to be 

applicable in effective monitoring process of vegetation, its physiology status detection as 

well as irrigation decision. 

 
The work thus, recommended that prospective researches may be summed up in the 

following aspects: 

 
1) Furthermore, exploring other information such as texture data may be added to the 

spectral band information. 

2 Additionally, sophisticated classifying algorithms which include random forest and 

their variants can be explored. 
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CHAPTER THREE 

3.0 MATERIALS AND METHODS 

3.1 Research Design 

This chapter presents the method adopted in carrying out this research. It also describes the 

relevant details about the data and materials used for the research, their source, relevance, 

the processing operations carried out, and the work flow of the methodology employed to 

achieve the desired aim. Since one of the major issues encountered by farmers is basically 

on how to monitor their farm produce and prevent high loss, which is as a result of adopting 

classical and conventional ways by waiting for visible symptoms before applying preventive 

measures on such crops. Hence, this chapter provides detailed information on how to apply 

the use of GIS and remote sensing to address such issue. 

Figure 3.1 shows the flow of the methods employed in this study, data acquired and 

processing while Table 3.1 presents the necessary software employed in this study and the 

purpose to which they were put. 

 
Table 3.1: Software and tools used in this study  
 Software Purpose 

   

 ArcGIS 10.3 Extracting vegetation indices pixel value 

 QGIS Vegetation indices calculation 

 ENVI For image classification 

 Microsoft excel Descriptive statistics 

 SPSS For  performing  statistical  tests  on  results 

  Obtained 

 CorelDraw For picture enhancement and merging 
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Figure 3.1: Work flow of the methodology 
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3.2 Data Acquisition 

 

This study comparatively analyzed crop health status using agricultural-based approach and 

remote sensing (geomatics) approach. The data acquired were classified as remotely sensed 

data and field data, and their details are discussed in subsections 3.2.1 and 3.2.2. 

 
3.2.1 Acquisition of satellite image (Sentinel-2) 

 

Remote sensing is daily evolving. Several types of data that are remotely sensed can be used 

in extraction of normalized difference vegetation index so far, the necessary channels were 

included in the satellite acquiring the images. LANDSAT, SPOT, Sentinel and so on are 

examples of satellites equipped with the channels (acquiring different bands) that can acquire 

data about earth features in varied spectral bands. One of the distinguishing differences 

among these satellites is the resolution of the image they are acquiring (due to the differences 

in the facilities they are equipped with, the altitude at which they are operating among others). 

Resolution of satellite images determines the accuracy of the product gotten from these 

images. This study employed sentinel image. Sentinel image is open source imagery from 

European Space Agency (ESA). ESA has continuously been launching satellites into space 

for the purpose of earth observation and global monitoring. Different sentinel missions in 

space which include: sentinel 1-5 and sentinel 5P. From multi-perspective view of various 

researchers in monitoring and estimation of crop health, Sentinel 2 is widely used because of 

its ability to penetrate into the soil. A sentinel-2 image was obtained from European Space 

Agency (ESA) (www.copernicusdata hub) for the month of August 2019. This was captured 

in the growing season (rainy season). Spectral bands of Sentinel-2 have three different spatial 

http://www.copernicus/
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resolutions (10m, 20m, and 30m), so all the images were resampled at 20m spatial resolution. 

Table 3.2 shows a list of data set acquired and there spectral, spatial and temporal resolutions.  

Table 3.2: spectral, spatial and temporal resolutions for dataset acquired  

 

3.2.2 Acquisition of field data 
 
Field data implies data captured about the sampled crops understudy. From the field, for the 

purpose of remote sensing analysis and agricultural laboratory analysis, crop samples and 

their coordinate positions were obtained from the field. The positioning satellite receiver 

(Garmin etrex – handheld GPS) was configured first to select the datum, unit. Clarke 1880 

(Minna datum) was selected as the reference datum for the positioning while meter was 

selected as the unit of the coordinate values. Before recording the position of the sampled 

crops, enough satellites were ensured stabilized and observed by the receiver (to observe at 

3m horizontal accuracy) then the coordinates were recorded in a projected universal 

transverse Mercator (UTM zone 32). The sampled crops include cassava, rice, soyabeans, 

yam, maize and groundnuts. Table 3.2 shows the sampled crops and their observed 

coordinate values. 

S/No Sentinel-2 bands Central 

wavelength( μm) 

Resolutions (m) 

1 Band 1-Boastal 

aerosol 

0.443 60 

2 Band 2- Blue 0.490 10 

3 Band 3-Green 0.560 10 

4 Band 4-Red 0.665 10 

5 Band 5-Vegetation 0.705 20 

6 Band 6-Vegetation 0.740 20 

7 Band 7-Vegetation 0.783 20 

8 Band 8-NIR 0.842 10 

9 Band 8A-Vegetation 0.865 20 

10 Band 9-Water 

vapors 

0.945 60 

11 Band 10-SWIR 1.375 60 

12 Band 11-SWIR 1.61 20 

13 Band 12-SWIR 2.190 20 
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Table 3.3: Sampled field crops and their position coordinates 

Point ID (crop) Eastings (m) Northings (m) 

AGP1-334(Maize) 217321 1047389 

AGP1-334(Groundnut) 217321 1047389 

AGP2-335(Maize) 217360 1047446 

AGP2-335(Groundnut) 217360 1047446 

AGP3-336(Yam) 217352 1047528 

AGP4-337(Yam) 217265 1047452 

AGP5-338(Rice) 217352 1047565 

AGP6-339(Rice) 217171 1047618 

AGP8-341(Rice) 217145 1047675 

AGP9-342(Rice) 217243 1047529 

AGP10-343(Yam) 217174 1047476 

AGP11-344(Yam) 217171 1047494 

AGP12-345(Cassava) 217151 1047360 

AGP13-346(Soyabeans) 217108 1047394 

AGP14-347(Soyabeans) 217126 1047422 

AGP15-348(Soyabeans) 217207 1047362 

AGP16-349(Soyabeans) 217232 1047388 

AGP17-350(Cassava) 217205 1047394 

AGP18-351(Maize) 217201 1047360 

AGP19-

352(Groundnut) 

217174 1047385 

AGP20-353(Soyabeans) 217249 1047348 

AGP21-

354(Groundnut) 

217271 1047337 

AGP22-355(Maize) 217275 1047336 

AGP23-356(Cassava) 217330 1047295 

AGP24-357(Cassava) 217465 1047224 

AGP11-344(Maize) 217171 1047494 
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3.3 Data Processing 

 
For the extraction of needful chlorophyll information and other crop related parameters, the 

sentinel-2 satellite imageries downloaded were processed using the required software. Also, 

for extraction of plant health information from the crops sampled from the field, tissue tests 

were carried out on the fetched field crops. This section contains the processes performed to 

achieve all these necessities. These processes include 

 
1. Image classification 

 
2. Implementation of NDVI 

 
3. Verification and validation of NDVI (Tasseled cap indices) 

 
4. Extraction of crop vegetation indices. 

3.3.1 Image classification 
 
Classification in remote sensing implies grouping of picture elements on an image into 

different and similar spectral classes or groups. Classification in remote sensing is one of the 

approaches for identifying different features and segmenting them into various classes. We 

have supervised unsupervised and object-oriented technique of classifying images. The 

difference between these techniques is the degree of supervision by human users. Supervised 

classification which is always controlled by human expert is known to be the most accurate 

and reliable. Also, we have different type of classifiers (classifying algorithms) ranging from 

neural network approaches like SVM to software implemented approaches like maximum 

likelihood, minimum likelihood, mahanalobis, Supervised classification was performed in 

this study by making use of pre-installed SVM algorithm on ENVI software. 
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3.3.1.1 Performing Supervised Classification using Support Vector Machine (SVM) 

Import your satellite imagery “Gara_july.tif” files into the ENVI interface through the “file” 

button. After importing the file, then select the “Region of Interest tool” on the menu bar to 

create a training data for different feature classes to be classified. 

When creating training data on the region of interest window, click on New 

ROI Change the Name and Color, of the feature class. 

Start obtaining the sample training data by drawing polygon on the area of interest, and do 

the same for all the classes. 

 
Save the training data by selecting file export export  to classic. 

After  creating  the  training  data,  then  in  the  toolbox,  select  classification 

Classification  Support Vector Machine to select the SVM algorithm. 

On the SVM pop up window, select the “Gara_july.tif” and then click next to select the 

trained data classes. “Rock surface, Water bodies, Sandy soil, Clay soil, Vegetation”. Change 

the location of the output file to the folder you desire. 

 
Then click ok, for the classification to be done. 
 
 
 
3.3.2 Implementation of NDVI 

 

Normalized Difference Vegetation Index is the most applicable of the many vegetation 

indices used in assessing plant health. This is as a result of the peculiarity of this study, this 

index was applied as a major remote sensing approach of assessing crops for their health 

status. As earlier introduced, NDVI ranges from -1 to +1 with negative ranges indicating 

water and built up areas while the positive region always indicating presence of crop and its 

health status. +1 indicates perfectly healthy crop which is many times not obtainable. 
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ArcGIS software was used to implement the algorithm. Raster calculator which allows 

arithmetic programming of raster images was the toolbox used in this study. 

 
3.3.3 Verification and validation of NDVI Using Tasseled Cap Indices (TCI) 

 

Due to the sensitivity of this study, the vegetation index implemented in this study was 

verified and validated by using greenness index which is a part of tasseled cap indices (TCI). 

 
3.4. Tasseled Cap Indices 

 

Tasseled Cap Transformation (TCT) algorithm was developed to map and assess vegetation 

changes as detected by different satellites. “Tasseled Cap” is a name that matches the shape 

developed from the graphical distribution of plotted data (Muhammad et al., 2014). TCT 

converts the readings from set of bands into composite values. In this transformation, weights 

are assigned to individual bands as multiplicative constant and weighted sum of bands 

combined are taken for each of TC indices. Some of these weights are negative and some are 

positive. Three bands are commonly used in tasseled cap transformation-based analysis. 

Band one which is correspondence with image “brightness” gives a measure of soil 

brightness that used to develop brightness index. Band two is correspondence with 

“greenness “or photo synthetically-active vegetation to derive greenness index. The third 

tasseled-cap band is usually interpreted as an index of “wetness” in which describes the 

interconnection of soil and moisture. 

 
TCI always provides a measure of Wetness, Brightness and Greenness of each picture 

elements. It makes use of linear combination of channels of satellite images (Landsat, SPOT, 

and Sentinel) 

 
For the purpose of assessing the accuracy and effectiveness of the Sentinel-2A images for 

assessing vegetation indices, the tasseled cap indices (TCI) for the study area were 
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implemented on the acquired Landsat 8 image covering the same area, having 11 complete 

channels (11 bands) and captured within the same period of time just as the Sentinel images. 

 
These indices were programmed in the ArcGIS environment and served as a means to verify 

the correctness of the generated NDVI. 

3.4.1. Vegetation brightness index 

The linear combination of satellite channels for tasseled brightness index is given as 

(Udaranga et al., 2017; Muhammad et al., 2014): 

 
𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥 

                        = (0.3029 × 𝐵𝑎𝑛𝑑2) +  (0.2786 × 𝐵𝑎𝑛𝑑3) +   (0.4733  × 𝐵𝑎𝑛𝑑4) 

                        +(0.5599 × 𝐵𝑎𝑛𝑑5) + (0.508  × 𝐵𝑎𝑛𝑑6)

+ (0.1872  × 𝐵𝑎𝑛𝑑7)                                                                          (3.3) 

Figure 3.2 shows the implementation of this algorithm in the ArcGIS environment.  
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Implementation of brightness index 
 
3.4.2 Vegetation Greenness Index 

 

The linear combination of satellite channels for tasseled greenness index is given as 

(Udaranga et al., 2017; Muhammad et al., 2014): 
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𝐺𝑟𝑒𝑒𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥 

                  =   (−0.2941 × 𝐵𝑎𝑛𝑑2)  +   (−0.243 × 𝐵𝑎𝑛𝑑3) + (−0.5424 × 𝐵𝑎𝑛𝑑4) 

                 +  (0.7276 × 𝐵𝑎𝑛𝑑5) + (0.0713 × 𝐵𝑎𝑛𝑑6) + (−0.1608 × 𝐵𝑎𝑛𝑑7)(3.4) 

3.4.3 Vegetation Wetness Index 

 

The linear combination of satellite channels for tasseled wetness index is given as (Udaranga 

et al., 2017; Muhammad et al., 2014): Figure 3.5 shows the implementation of the algorithms 

in the ArcGIS environment 

𝑊𝑒𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥 

                 =   (0.1511 × 𝐵𝑎𝑛𝑑2) + (0.1973 × 𝐵𝑎𝑛𝑑3) + (0.3283 × 𝐵𝑎𝑛𝑑4) 

                +   (0.3407 × 𝐵𝑎𝑛𝑑5) + (−0.7117 × 𝐵𝑎𝑛𝑑6)

+ (−0.4559 × 𝐵𝑎𝑛𝑑7)                                                                      (3.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.3: Implementation of wetness index 

 

3.5 Elimination of Soil brightness on the vegetation indices. 

 

The spectral signatures of crop canopies (as seen from satellite images) in the field are more 

complex and often quite unrelated from those of single green leaves measured under carefully 
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controlled illumination conditions. (Huete, 1988) Even when leaf spectral properties remain 

relatively constant throughout the season, canopy spectra change vigorously as the 

proportions of soil and vegetation change and the architectural arrangement of plant 

components vary. Vegetation indices (VIs) provide a very simple yet elegant method for 

extracting the green plant quantity signal from complex canopy spectra. VIs exploits the basic 

differences between soil and plant spectra. Soil-adjusted VIs such as SAVI and modified 

SAVI has been developed to minimize effects of varying background soil reflectance 

properties on VI performance (Qi et al., 1994). 

 
This study further investigated the soil factor effect on the differences in the healthiness of 

the crops as seen from their spectral reflectance mapped from the vegetation indices. In this 

regard, the Soil-adjusted Vegetation Index (SAVI) was implemented to investigate the effect 

of the soil brightness on the computed NDVI and TCI. 

 
NDVI products derived empirically have been noted for instability, varying in its form with 

soil color, soil moisture, and saturation effects from high density vegetation, in order to 

improve normalized vegetation index, postulated a vegetation index that corrected for the 

differential red and near-infrared extinction through the vegetation canopy. This is the Soil-

adjusted Vegetation Index (SAVI) which is a transformation technique which minimizes soil 

brightness effect from spectral vegetation indices involving red and near-infrared bands. 

Equation 3.6 shows the equation for soil adjusted vegetation index (SAVI) 

𝑆𝐴𝑉𝐼 =  
(1 + 𝐿)(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
                                                                                    (3.6) 

L Is a canopy background adjustment factor. (Huete, 1988) found out that a value of 0.5 in 

reflectance space minimizes soil brightness variations and eliminate the need for additional 

calibration for different soils. It really did eliminate soil-induced variations in vegetation 
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indices. Since the NDVI was produced with the sentinel images, the SAVI was also 

implemented with it in the ArcGIS environment. Figure 3.6 shows the programming for the 

implementation. 

Figure 3.4: Implementation of SAVI algorithm 
 
 
3.6 Extraction of Crops Vegetation Indices 

3.6.1 Extraction of crops NDVI 

 

Remote sensing techniques allow generalization of phenomenon. The NDVI map produced 

in this study covers the entire area. For the purpose of sampling and streamlining the 

vegetative analysis in the study area, the NDVI values of the sample crops were extracted 

from the map produced. To extract the unique NDVI values of the crops, the map was 

reclassified in form of digital number using the index distribution. Figure 3.7 shows the 
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NDVI unique values across the study area. Having done this transformation, each crop’s 

values were extracted 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 3.5: Extraction of crops NDVI 

 

3.6.2 Extraction of crops Greenness 

The greenness index of the TCI is known to be an alternative for investigating vegetation 

healthiness. The map of the TCI bands (greenness, brightness and wetness) were produced 

as explained in section 3.3.4. Meanwhile, for proper assessment, the greenness of the sample 

crops was used as sample to assess and validate the NDVI map produced in this study. 

Greenness map produced in this study covers the entire area, for the purpose of sampling and 

streamlining the vegetative analysis in the study area. The greenness values of the sample 

crops were extracted from the map produced. To extract the unique greenness values of the 

crops, the map was reclassified in form of digital number using the index distribution. Figure 



56 

 

3.8 shows the greenness unique values across the study area. Having done this 

transformation, each crop’s values were extracted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.6: Extraction of crops greenness 

Brightness and wetness values of the crops were also extracted and the analysis 

discussed in chapter four of this study. 

3.7 Sample Crop Tissue Test 

3.7.1 Steps for carrying out tissue test 

Hand washing should be done by the person taking the sample at the time he/she takes the 

sample. 

 
When the sample arrives at the laboratory, the following steps are typically taken. 

Step One: Be crop specific about crop sample 

Different crops require different sampling times for optimal results. 
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Step Two: Choose optimal leaves. 

In general, the uppermost, recently mature leaves from a plant will provide the most ideal 

plant sample. Typically, young developing leaves and older mature leaves will not accurately 

reflect the nutrient status of the whole plant. 

 
Step Three: Use healthy tissue. 

 

Plants should not come from areas of the field that have experienced long periods of stress. 

This stress includes, but is not limited to: drought, heat, standing water, nutritional stress, 

mechanical damage, disease damage and insect damage. If parts of the field are stressed, 

these areas should be sampled separately from the rest of the field so that a comparison can 

be done to determine the problem. Also, border rows and dead plants should not be included 

in the sample Mills and Jones (1996). 

 
Step Four: Collect a sufficient amount of plant material. 

 

Be sure to follow instructions regarding the number of plants that should be sampled. In order 

for analysis to be accurate, the lab needs a sufficient amount of plant tissue. For example, 

when sampling pre-V5 corn plants, the sample should be about the same size as a softball 

when balled up. Before analysis can be performed, the sample must be dried, which will 

greatly decrease its weight and mass. 

 
Step Five: Randomize the plant selection process. 

 

Randomly select plants, so that the sample is representative of the entire area. When the field 

being sampled is under stress, the number of plants sampled becomes even more important. 

These situations may require sampling more plants to accurately cover the variability in the 

field Mills and Jones (1996). 

 

 



58 

 

Step Six: Avoid contamination. 

 

If there is a chance that the plant sample could have fertilizer residue, soil, or other forms 

of contamination on the leaves or petioles, rinse the sample with bottled water. Tap water 

may contain ions such as iron, calcium and magnesium, which can affect analysis. After 

rinsing the plant tissue, it is critical to get samples to the lab quickly. The figure below 

presents tissue contents in plants and their physiological roles 

3.7.2 Analysis of tissue test 

 

Tissue test results can be analyzed to give a chemical evaluation of nutritional status. 

Concentrations of essential elements found in indicator tissue reflect the nutritional status of 

plants. Accurate explanation of plant analysis results is paramount to effectively relate 

agricultural-based approach of estimating crop health to the remote sensing technique. 

Guidelines for interpretation of analytical results have been developed over years based on 

researchers’ findings, experience and studies. Plant analysis continues to advance as an 

imperative management tool as informative databases for various crops at different growth 

stage. Meanwhile authenticity of interpretive guidelines varies with the degree of research 

conducted on various crops. In the guidelines, sufficiency ranges are always stated which 

indicate the expectation of nutrients contents in an ideal crop, these values are always based 

on surveys and experience. In this study, sufficiency ratio of the crop nutrients from tissue 

test was obtained as shown in table 3.4 containing the growth stage of the crop species 

(synonymous to their field growth stage during laboratory test) and the author who 

propounded the standard. 
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Table 3.4: N-P-K expected standard ratio for sampled crops  
S/No Crop species Growth stage at Ideal crop N-P- 

  sampling period K nutrient ratio 

   (%) 

1 Groundnut All growth stage 3.5:0.2:1.7 

2 Maize Tasseling 2.7:0.25:1.7 

    

3 Rice Mid-tillering 2.8:0.14:1.5 

4 Soyabeans Flowering 3.25:0.26:1.7 

    

5 Cassava Actively growing 4.0:0.3:1.5 

  crops  

6 Yam Actively growing 4.0:0.3:1.5 

  crops  

    
 
Meanwhile, the N-P-K ratio which is an expected standard for an ideal healthy crop is spatio-

dependent and also the soil content. Assumptions were made in this study that the standard 

is befitting for the study area since no work in this field has been done to deduce the standard 

expected nutrient contents. 

3.7.2.1 Best fit PCA Model for Transforming NPK into NDVI 

 
The focus of this study is to evaluate the applicability of remote sensing technique for 

estimating crop health status and to investigate its effectiveness if sufficient enough to serve 

as an alternativeto the long-process and expensive approach of agriculture. This poses the 

need to relate the results of the two approaches. Because of the differences in the outputs of 

the two techniques; remote sensing estimating crop health in form of NDVI and agricultural-

based in form of macro nutrients (Nitrogen, Phosphorus and Potassium) there is need to 

develop a best fit model that transforms one to the other. 
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PCA is an acronym for Principal Component Analysis which is a statistical or mathematical 

procedure that transforms the original coordinates or original state of a dataset into a new set 

of coordinates called principal components. Here, a model is developed to transform the NPK 

values to a scale synonymous to the NDVI scale. This will allow comparative analysis to be 

performed between the two approaches. Equation 3.7 shows the general transformation 

model (PCA model) from N-P-K to NDVI. 

 
 

𝑇𝑇𝑁𝐷𝑉𝐼  =   
[
𝑁𝑖

𝑁𝑠
+

𝑃𝑖

𝑃𝑠
+

𝐾𝑖

𝐾𝑠
]

3
                                                                                                 (3.7) 

 
 
Where= Nitrogen content of crop specie estimated from laboratory tissue test 

= Standard Nitrogen content of an ideal crop specie as listed in table 3.4 

 
= Phosphorus content of crop specie estimated from laboratory tissue 

test = Standard Phosphorus content of an ideal crop specie as listed in 

table 3.4 

 
= Potassium content of crop specie estimated from laboratory tissue 

test = Standard Potassium content of an ideal crop specie as listed in 

table 3.4 

 
= transformed NDVI value from laboratory estimated NPK content of crop 

species For instance, obtaining the transformed NDVI value of AGP1-334 (Maize) which 

has N:P: K ratio equivalent to 0.184:0.06:0.5, 

𝑇𝑇𝑁𝐷𝑉𝐼𝑜𝑓𝐴𝐺𝑃1 − 334(𝑀𝑎𝑖𝑧𝑒) =  
[
0.184

2.7 +
0.06
0.25

+
0.5
1.7]

3
 

                                                               =  
[0.068 + 0.24 + 0.294]

3
 

                                                              =    
[0.602]

3
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                                                             = 0.201 

Chapter four of this research contains the transformed results and other analysis. 
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CHAPTER FOUR 
 
4.0 RESULTS AND DISCUSSIONS 

4.1 Land Cover Map of the Study Area 

Figure 4.1 shows the spatial distribution of the existing land covers in the study area. This 

output was obtained from the classification performed using SVM algorithm (supervised 

classifier algorithm). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1: Land cover map of the study area. 
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Table 4.1 shows the area covered (in squares of metres) by each of the land covers in the 

study area. 

 
Table 4.1: Land cover extents in the study area 

CLASSIFICATION AREA % 

COVERAGE (sq.m) coverage 

ROCKS 53246.442 5.138 

CLAY SOIL 159432.769 15.383 

VEGETATION 571254.779 55.119 

WATER BODIES 73951.329 7.135 

SANDY SOIL 178511.460 17.225 

TOTAL 1036396.779 100 

It is seen from table 4.1 that the study area is mostly covered by vegetation (55%) and is 

mostly found in the northern region of the study area. The water body in the study area is the 

least land cover type (7% of the entire extent). The non-vegetative areas in the study area are 

rocks, clay and sandy soil, these cover respectively 5.14%, 15.34% and 17.23% of the total 

extent of the mapped-out area of this study. 

4.2 Extraction of Vegetative Information (NDVI Map) 

 

This map produced was to assess the health status of the crops in the study area measured 

by the chlorophyll content on the crops which can be mapped using the vegetation indices. 

Figure 4.2 shows the Normalized Difference Vegetation Index map of the study area. An 

NDVI value ranges from -1.0 - +1.0 with the negative regions indicating water areas or built 

up areas. Ideally, healthiest vegetation always has its NDVI value as +1.0. 
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Figure 4.2: NDVI map of the study area 
 
Figure 4.2 shows the vegetation index for the study area mapped using Sentinel-2 image with 

date of acquisition (from the download file metadata) as month of August. The vegetation 

index values range from 0.062-0.631. The Northern and far southern region of the study area 

shows the healthiest vegetation in the study area. Remote sensing as a technique for crop 

monitoring and any other applications require ground truthing. For this reason, crop sample 

data were collected from the field and figure 4.3 shows the spatial distribution of crop species 

collected from the field. 
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Figure 4.3: Sample plants overlaid on the NDVI for August 

\In order to ascertain the applicability of remote sensing for monitoring crop health status, 

crop samples were collected from the field. Tubers and cereal crops in the study area were 

collected from the field and lab test carried out on them. The later section of this report shows 

the analysis of the agricultural lab test results carried out in the department of crop 

production, Federal University of Technology, Minna. The map shows that most of the cereal 

crops (including maize and groundnut) and some tuber crops are relatively the healthiest 

crops because their spatial locations on the NDVI map with indices value ranging from 0.468-

0.573. Out of the 24 sample crops fetched from the field, two sample cassava leaves (AGP 

23-356 and AGP 24-357) were out of the boundary of the study, hence neglected in the 

further analysis. Table 4.2 shows the NDVI values of the sampled crops extracted as 

explained in section 3.3.6.1. 
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4.3 Evaluating Crops Health    

Table 4.2: Sample crops NDVI values

CROP SAMPLES EASTINGS (m) NORTHINGS (m) NDVI 

AGP1-334(Maize) 217321 1047389 0.263 

AGP1-334(Groundniut) 217321 1047389 0.263 

AGP2-335(Maize) 217360 1047446 0.573 

AGP2-335(Groundnut) 217360 1047446 0.573 

AGP3-336(Yam) 217352 1047528 0.363 

AGP4-337(Yam) 217265 1047452 0.471 

AGP5-338(Rice) 217352 1047565 0.185 

AGP6-339(Rice) 217171 1047618 0.271 

AGP8-341(Rice) 217145 1047675 0.300 

AGP9-342(Rice) 217243 1047529 0.268 

AGP10-343(Yam) 217174 1047476 0.154 

AGP11-344(Yam) 217171 1047494 0.153 

AGP12-345(Cassava) 217151 1047360 0.435 

AGP13-346(Soyabeans) 217108 1047394 0.131 

AGP14-347(Soyabeans) 217126 1047422 0.269 

AGP15-348(Soyabeans) 217207 1047362 0.43 

AGP16-349(Soyabeans) 217232 1047388 0.089 

AGP17-350(Cassava) 217205 1047394 0.508 

AGP18-351(Maize) 217201 1047360 0.43 

AGP19-352(Groundnut) 217174 1047385 0.200 

AGP20-353(Soyabeans) 217249 1047348 0.191 

AGP21-354(Groundnut) 217271 1047337 0.103 

AGP22-355(Maize) 217275 1047336 0.103 

AGP11-344(Maize) 217171 1047494 0.153 
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Figure 4.4 shows a graphical representation of the sample crops and their NDVI values. 
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Figure 4.4: Graph of sample crops NDVI 

The graph shows that AGP2-335, identity of maize and groundnut sample collected from the 

same spot from the field is recognized the healthiest crop samples as deduced from the NDVI 

map. Contrariwise, AGP16-349, identity for soyabean crop displays the least healthy sample 

crop collected from the study area. These indications can be clearly seen on the map tagged 

figure 4.2. Also, the greenness map explained in the later section of this chapter is a 

confirmation of the results gotten from the greenness map. From the crops NDVI values 

extracted, there is no specific pattern in the healthiness of crop species. It is clearly seen that 

crops in the far southern region of the study area (correlating with the analysis performed on 

the land cover map in section 4.1.1) are seen to be the healthiest. Crop species show different 

health status across the study area. This can be to effect of the soil type, the planting season 
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or the moisture content across the study area.Table 4.3 shows a categorization and summary 

of the NDVI values of crop species using regressioncorrelation. 
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Table 4.3: NDVI distribution and patters of species of crops 

 Crop identity NDVI Remark 

Crop species    

cassava AGP17-350(Cassava) & 
AGP12-345(Cassava) 

 

0.435-0.508 

 

 

 

 

 

Closely related 

 

Groundnut 

 

AGP1-334(Groundnut) 

AGP2-335(Groundnut) 

AGP19-

352(Groundnut)AGP21-

354(Groundnut) 

0.103-0.573 

 

 

 

 

 

Sparsely related 

 

Maize 

 

AGP1-334(Maize) 

AGP2-335(Maize) 

AGP22-355(Maize) 

AGP18-351(Maize) 

AGP11-344(Maize) 

AGP5-338(Rice) 

 

0.153-0.573 

 

 

 

 

 

 

Spaciously related 

 

Rice 

 

AGP6-339(Rice) 

AGP8-341(Rice) 

AGP9-342(Rice) 

AGP13-

346(Soyabeans)AGP14347(

Soyabeans) 

AGP15-348(Soyabeans) 

0.185-0.300  

 

 

 

 

Closely related 

 

Soyabeans 

 

AGP16-349(Soyabeans) 

bAGP20-353(Soyabeans) 

 

0.089-0.269 

 

 

 

 

 

Spaciously related 

 

Yam 

 

AGP3-336(Yam) 

AGP4-337(Yam) 

AGP10-343(Yam) 

AGP11-344(Yam) 

 

0.153-0.471 

 

 

 

 

 

 

Spaciously related 
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4.3.1 Greenness Map 

 

Figure 4.5 is the greenness map of the study area in its general form. Greenness map depicts 

photo synthetically-active vegetation. It is an alternative means of measuring the presence of 

chlorophyll in vegetation, hence measure of health status of crops at their leave-shooting 

stages. This map is also an alternative for identifying vegetation covers in land covers. Unlike 

NDVI, there is no global range of values for “greenness” of vegetation an area of interest but 

it is established that there is a direct relationship between the greenness of a crop and the 

index values just like in the case of NDVI. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5: Greenness map of the study area. 
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The greenness values range from -1760.09 to +3077.42. This value is large due to the 

multiplicative constants and the band rationing leading to its production (combination of 

band 2 to band 7). With greenness index of the tasseled cap indices, negative greenness values 

could represent non-vegetative or brownish vegetation (indicating dying vegetation 

especially in the dry season). As earlier stated, the highest greenness value indicates the 

healthiest vegetation in the study area. Since they both measure the health status of 

vegetation, it is expected that the NDVI and greenness map should have a close correlation. 

Similar to the NDVI map, some part of the southern region and majorly the northern region 

of the study area has the healthiest vegetation in the study area with greenness value ranging 

from 1711.54-3077.42. To properly assess the relationship between the NDVI map and the 

greenness map, the greenness index values of the sampled crops were mapped and their 

values statistically assessed. Figure 4.5 and 4.6 shows the greenness and sampled crop maps. 

Figure 4.7 is a re-classified greenness map of the study area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.6: Greenness and sampled crop map of the study area. 
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Figure 4.7: Reclassified greenness map of the study area. 

 

For close examination, the greenness values of each of the sampled crops were extracted. 

Table 4.4 shows the extracted values for each of the sampled crops. 
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Table 4.4: Tasseled cap greenness index values of sampled crops 
 
Point ID POINT_X POINT_Y GREENESS 

AGP1-334(Maize) 217321 1047389 433.289 

AGP1-334(Groundnut) 217321 1047389 482.779 

AGP2-335(Maize) 217360 1047446 1194.345 

AGP2-335(Groundnut) 217360 1047446 1194.345 

AGP3-336(Yam) 217352 1047528 467.432 

AGP4-337(Yam) 217265 1047452 844.147 

AGP5-338(Rice) 217352 1047565 -443.132 

AGP6-339(Rice) 
 217171 1047618 -507.526 

AGP8-341(Rice) 217145 1047675 433.289 

AGP9-342(Rice) 217243 1047529 -238.952 

AGP10-343(Yam) 217174 1047476 87.193 

AGP11-344(Yam) 217171 1047494 294.396 

AGP12-345(Cassava) 217151 1047360 654.516 

AGP13-346(Soyabeans) 217108 1047394 912.732 

AGP14-347(Soyabeans) 217126 1047422 632.108 

AGP15-348(Soyabeans) 217207 1047362 1167.972 

AGP16-349(Soyabeans) 217232 1047388 1025.263 

AGP17-350(Cassava) 217205 1047394 1161.671 

AGP18-351(Maize) 217201 1047360 1167.972 

AGP19-352(Groundnut) 217174 1047385 807.647 

AGP20-353(Soyabeans) 217249 1047348 630.323 

AGP21-354(Groundnut) 217271 1047337 1045.863 

AGP22-355(Maize) 217275 1047336 1045.863 
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Figure 4.8 shows the graphical representation of the sampled crops and their greenness 

values. 
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Figure 4.8: Sampled crop greenness chart 

 

Table 4.4 shows some positive correlation with that of table 4.1 which signifies some positive 

strong correlation between the NDVI and Greenness maps of the study area. Meanwhile, 

some deviated away in their relationship. To assess the correlation between these vegetation 

indices, statistical regression analysis was performed using SPSS. Table 4.5-4.7 shows the 

summary of the analysis which was performed at 95% confidence interval. Table 4.5 shows 

the correlation and significant table for the parameters under analysis. A Pearson correlation 

output shown on this table signifies that the NDVI and GREENNESS indices values of the 

sampled crop is 57.7% positively correlated (0.577). This correlation reveals that there is a 

robust correlation between the two indices. 
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Table 4.5 Correlations  
  GREENNESS NDVI 

Pearson Correlation GREENNESS 1.000 .577 

 NDVI .577 1.000 

Sig. (1-tailed) GREENNESS . .002 

 NDVI .002 . 

N GREENNESS 24 24 

 NDVI 24 24 

    
 
 
The regression model summary is shown in table 4.6. The ‘R’ signifies multiple correlation 

value which in other words expresses the absolute correlation between the bivariate under 

analysis. The R-square is useful because it denotes the coefficient of determination of 

relationship between the variables. 

 
Table 4.6: Model Summary   
Mode R R Adjusted Std. Error Change Statistics    

L  Square R Square of the R F Change df1 df2 Sig. F 

    Estimate Square    Change 

     Change     

1 .577a .332 .302 420.01484 .332 10.956 1 22 .003 

a. Predictors: (Constant), NDVI       

          
 

 

Table 4.7 is the Analysis of Variance (ANOVA) analysis of the variables. It is not very useful 

to this purpose tells whether the regression equation is explaining significance in the 

relationship of the two variables. The table with the sig. value equal to 0.003 (less than 0.05, 

the p-value) signifies that there is significant difference in the distribution of values of the 

NDVI and the greenness indices which is obvious from their results. 
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Table 4.7: ANOVAb   
Model  Sum of df Mean Square F Sig. 

  Squares     

1 Regression 1932862.702 1 1932862.702 10.956 .003a 

 Residual 3881074.262 22 176412.466   

 Total 5813936.964 23    
 
a. Predictors: (Constant), NDVI 

 
b. Dependent Variable: GREENNESS  

 
 
Figure 4.9 shows the scatter plot of the relationship between NDVI and Greenness values of 

the sampled crops in the study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9: Scatter plot of the crop’s vegetation indices. 
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4.3.2 Brightness map 

 

Brightness of the tasseled cap indices (TCI) measures how bright-dark a given surface is. It 

does not necessarily measure the chlorophyll level of vegetation unlike the greenness index 

and its correspondence – NDVI but a measure of the brightness (texture reflectance) of all of 

the land covers in the study area. Figure 4.10 shows the brightness map produced from the 

TCI. The brightness values in the study area range from 30961.23 – 37483.25. These values 

only signify the level of brightness and are relative to one another. Just like the NDVI and 

greenness maps, the brightness map is rated in a direct proportion (Udaranga, 2017). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10: Brightness map of the study area 
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The deep-blue region of the study area signifies the brightest land covers in the study area 

and these are found mostly in the southern region of the study area. The region noted earlier 

for green vegetation (northern region) is here mapped, majorly, according to the TCI as the 

dullest land covers. This implies that the brightness index of the TCI has weak correlation 

with that of the NDVI or greenness and this is in synchrony with Udaranga et al. (2017) 

study. This hypothesis is statistically evaluated using the correlation statistical test to assess 

the relationship between the NDVI and brightness. Figure 4.11 shows the graphical 

representation of the sample crops brightness which was produced by making use of the 

extracted unique TCI values of each of the crops. It reveals that sample crops AGP3-336 

(Yam) and AGP5-338 (Rice) has the highest brightness values (36,205.42 and 36,407.10 

respectively). 

 
 

 
  

 

 

 

 

 

 

 

 

 

Crop samples 
Figure 4.11: Crop sample brightness chart 
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To assess the relationship and the applicability of the TCI brightness index for crop health 

estimation, the hypothesis that brightness index has weak correlation with the NDVI is 

statistically evaluated. Table 4.8 shows the correlation and significant table for the 

parameters under analysis. A Pearson correlation output shown on this table signifies that the 

NDVI and BRIGHTNESS indices values of the sampled crop are 17.5% negatively 

correlated (-0.175). This correlation reveals that there is a very weak correlation between the 

two indices. 

 
Table 4.8: Correlations 

  BRIGHTNES NDVI 

  S  

Pearson Correlation BRIGHTNESS 1.000 -.175 

    

 NDVI -.175 1.000 

Sig. (1-tailed) BRIGHTNESS   . .207 

    

 NDVI .207  

N BRIGHTNESS 24 24 

    

 NDVI 24 24 
 
 
The regression model summary is shown in table 4.9. The ‘R’ signifies multiple correlation 

value which in other words expresses the absolute correlation between the bivariate under 

analysis. The R square is useful because it denotes the coefficient of determination of 

relationship between the variables. Also, with the R2 parameter, it is obvious that the 

brightness index is only a measure of the surface reflectance and does not relate to vegetation 

indices such as NDVI. This is to accept the hypothesis earlier stated and which is in total 

agreement to the study of Udaranga et al. (2017). 
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Table 4.9: Model Summary  
Mod R R Adjusted Std. Error Change Statistics    

El  Square R Square of the R F d df Sig. F 

    Estimate Square Chang f 2 Change 

     Change e 1   

1 .175a .030 -.014 748.15721 .030 .692 1 2 .414 

        2  

a. Predictors: (Constant), NDVI       

          
 
 
The analysis of Variance (ANOVA) analysis of the variables. It is not very useful to this 

purpose tells whether the regression equation is explaining significance in the relationship of 

the two variables. The table with the sig. value equal to 0.414 (greater than 0.05, the p-value). 

Figure 4.12 shows the scatter plot of the relationship between NDVI and Brightness values 

of the sampled crops in the study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.12: Scatter plot with best-fit line of sample crops NDVI and BRIGHTNESS 
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4.3.3 Wetness map 

 

This is usually regarded as the third band of the TCI. This does not necessarily measure the 

greenness or healthiness of crops but provides information on the moisture content of soils 

and vegetation and its values are strongly influenced by the SWIR (Short wavelength 

Infrared) channels (bands). This map produced as the third component of the TCI is useful 

for evaluating the soil moisture effect on the variability in the healthiness of crops across the 

study. Figure 4.13 shows the wetness map of the study area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.13: Wetness map of the study area 
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The wetness index values across the study area ranges from -6,463.70 to -1307.09. It can be 

clearly seen that the distribution of the soil moisture is directly proportional with the NDVI 

distribution. The northern region in figure 4.12 is seen to have the most moisturized soil 

which of course fosters crops growth. And this is also in agreement with the greenness and 

NDVI maps produced earlier that indicates that larger part of the northern region and some 

spots in the south region of the study area have the healthiest vegetation. The land cover map 

in figure 4.1 cab be referred back to in this effect; the northern region is largely surrounded 

by the larger portion of the water bodies present in the study area, the non-vegetative areas 

include sandy and clay soil and are here seen in figure 4.12 to have very little moisture. 

4.4 Agricultural-Based Crop Health Estimation 

 

4.4.1 Laboratory tissue test result 

 

Table 4.11 shows the N-P-K (Nitrogen-Phosphorus-Potassium) content of each of the 

sampled crops estimated from series of laboratory test carried out. This is another lion part 

of this study which is geared towards assessing the applicability of remote sensing techniques 

for evaluating crop health. Explanation about tissue test has been largely done in chapter 

three of this report. 
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Table 4.10: Tissue test result   
 S/NO Sample Description Eastings Northings N% P% K+% 

   (m) (m)    

 1 AGP1-334(Maize) 217321 1047389 0.184 0.06 0.5 

 2 AGP1-334(Groundniut) 217321 1047389 0.181 0.06 0.65 

 3 AGP2-335(Maize) 217360 1047446 0.148 0.08 0.6 

 4 AGP2-335(Groundnut) 217360 1047446 0.146 0.02 0.9 

 5 AGP3-336(Yam) 217352 1047528 0.154 0.03 0.95 

 6 AGP4-337(Yam) 217265 1047452 0.14 0.03 0.7 

 7 AGP5-338(Rice) 217352 1047565 0.17 0.07 0.4 

 8 AGP6-339(Rice) 217171 1047618 0.158 0.08 0.3 

 9 AGP8-341(Rice) 217145 1047675 0.192 0.07 0.65 

 10 AGP9-342(Rice) 217243 1047529 0.129 0.02 0.5 

 11 AGP10-343(Yam) 217174 1047476 0.149 0.05 0.6 

 12 AGP11-344(Yam) 217171 1047494 0.187 0.08 0.55 

 13 AGP12-345(Cassava) 217151 1047360 0.175 0.02 0.45 

 14 AGP13-346(Soyabeans) 217108 1047394 0.218 0.11 0.6 

 15 AGP14-347(Soyabeans) 217126 1047422 0.123 0.03 0.7 

 16 AGP15-348(Soyabeans) 217207 1047362 0.138 0.05 0.6 

 17 AGP16-349(Soyabeans) 217232 1047388 0.177 0.03 0.6 

 18 AGP17-350(Cassava) 217205 1047394 0.18 0.05 0.75 

 19 AGP18-351(Maize) 217201 1047360 0.156 0.03 0.75 

 20 AGP19-352(Groundnut) 217174 1047385 0.172 0.03 0.7 

 21 AGP20-353(Soyabeans) 217249 1047348 0.166 0.04 0.45 

 22 AGP21-354(Groundnut) 217271 1047337 0.211 0.02 0.55 

 23 AGP22-355(Maize) 217275 1047336 0.196 0.06 0.6 

 26 AGP11-344(Maize) 217171 1047494 0.133 0.04 0.5 
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4.5 Statistical Analysis for Objectives (2) and (3) 

 

4.5.1 PCA implemented results 

 

In section 3.7.2.1 the PCA model was developed and an example of its implementation was 

done. Table 4.12 contains the transformed NPK contents of the sampled crops to its 

equivalent NDVI using equation (3.5). 

 
Table 4.11: PCA obtained NDVI from NPK and remote sensing NDVI 
 

 S/NO Sample Description N% P% K+% PCA obtained Remote 

      NDVI 

sensing 

NDVI 

        

 1 AGP1-334(Maize) 0.184 0.06 0.5 0.201 0.263 

 2 

AGP1-334 

(Groundniut) 0.181 0.06 0.65 0.254 0.263 

 3 AGP2-335(Maize) 0.148 0.08 0.6 0.243 0.573 

 4 

AGP2-335 

(Groundnut) 0.146 0.02 0.9 0.224 0.573 

 5 AGP3-336 (Yam) 0.154 0.03 0.95 0.268 0.363 

 6 AGP4-337(Yam) 0.14 0.03 0.7 0.201 0.471 

 7 AGP5-338 (Rice) 0.17 0.07 0.4 0.237 0.185 

 8 AGP6-339 (Rice) 0.158 0.08 0.3 0.232 0.271 

 9 AGP8-341(Rice) 0.192 0.07 0.65 0.307 0.300 

 10 AGP9-342 (Rice) 0.129 0.02 0.5 0.162 0.268 
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Table 4.11: PCA obtained NDVI from NPK and remote sensing NDVI (CONTINUED) 

To represent the relationship between the crop health status evaluated using the remote 

sensing approach (from the obtained NDVI results using GIS) and that of the agricultural-

based approach (from NPK transformed to NDVI using PCA), figure 4.14 shows the 

relationship between the estimated crop health. 

 

 

 

 

 

 

 

 

 

 

11 AGP10-343(Yam) 0.149 0.05 0.6 0.201 0.154 

12 AGP11-344(Yam) 0.187 0.08 0.55 0.238 0.153 

13 AGP12-345(Cassava) 0.175 0.02 0.45 0.148 0.435 

14 AGP13-346(Soyabeans) 0.218 0.11 0.6 0.281 0.131 

15 AGP14-347(Soyabeans) 0.123 0.03 0.7 0.188 0.269 

16 AGP15-348(Soyabeans) 0.138 0.05 0.6 0.196 0.43 

17 AGP16-349(Soyabeans) 0.177 0.03 0.6 0.174 0.089 

18 AGP17-350(Cassava) 0.18 0.05 0.75 0.248 0.508 

19 AGP18-351(Maize) 0.156 0.03 0.75 0.216 0.43 

20 AGP19-352(Groundnut) 0.172 0.03 0.7 0.204 0.200 

21 AGP20-353(Soyabeans) 0.166 0.04 0.45 0.166 0.191 

22 AGP21-354(Groundnut) 0.211 0.02 0.55 0.171 0.103 

23 AGP22-355(Maize) 0.196 0.06 0.6 0.222 0.103 

26 AGP11-344(Maize) 0.133 0.04 0.5 0.168 0.153 
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Figure 4.14: Agricultural and Remote Sensing estimated NDVI 

 

Figure 4.14 clearly shows that there are notable degrees of differences between the two 

techniques under consideration. Meanwhile to clearly investigate the relationship, a paired t-

test analysis is performed using SPSS. This tool has been used to clearly see the deviations 

in the estimated crops health by the two techniques. Table 4.13 – 4.15 shows the output of 

the t-test analysis performed to investigate the differences between the two techniques 

Table 4.12: Paired Samples Statistics 

    Std. Error  

 Mean N Std. Deviation Mean  

Pair 1  AGRIC_BASED_NDVI .2146 
 

24 .04053 .00827  

RS_BASED_NDVI .3158 24 .15557 .03175  

 

Table 4.13: Paired Samples Correlations 

 N Correlation Sig. 

Pair 1  AGRIC_BASED_NDVI 

& RS_BASED_NDVI 

24 016. . 939 

   
Table 4.14 shows the correlations between the two techniques at 95% level of confidence. 

The‘sig.’ column reveals that there is a significant difference between the two techniques. 
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Also, specifically, ‘correlation’ column of table 4.14 shows that there is a weak positive 

similarity (0.016) between the two techniques implying 1.6% similarity. 

Table 4.14: Paired Samples Test 

  Paired Differences 

t df Sig. (2-tailed) 

  

Mean 

Std. 

Deviat

ion 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

  Lower Upper 

Pair 1 AGRIC_BAS

ED_NDVI - 

RS_BASED_

NDVI 

-.10125 .16011 .03268 -.16886 -.03364 -3.098 23 .005 

 

For the purpose of investigating the responsiveness of the techniques to the crop species, 

Pearson correlation test between the NDVI outputs of each crop species as estimated by the 

two techniques were performed. 

i. Cassava 

Figure 4.15 shows the graphical representation of the NDVI outputs both from remote 

sensing and agricultural-based approach. 

  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Comparison of the output for cassavaAGP17-350(Cassava) 
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Figure 4.15 shows that there is just 48.8% similarity between the outputs of cassava sample 

crop health estimate. 

ii. Groundnut 
 
Figure 4.16 shows the graphical representation of the NDVI outputs both from remote 

sensing and agricultural-based approach. 

Table 4.16 shows the statistical Pearson correlation analysis performed. 

 

Figure 4.16: Comparison of the output for groundnut 

Table 4.15: Correlations between RS and AGRIC approach forgroundnut health status 

estimation 

   NDVI_AGRI  

  C NDVI_RS 

NDVI_AGRIC Pearson Correlation 1 .502 

 Sig. (2-tailed)  .498 

 N 4 4 

    

NDVI_RS Pearson Correlation .502 1 

 Sig. (2-tailed) .498  

 N 4 4 
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Table 4.16 shows that there is a moderate positive linear relationship between the 

agricultural-based and remote sensing approach of estimating maize health status. This  

implies that there is a 50-50 (50.2%) chance of obtaining agriculturally based approach result 

when using remote sensing approach for crop health estimation. 

iii. Maize 
 
Figure 4.17 shows the graphical representation of the NDVI outputs both from remote 

sensing and agricultural-based approach for estimating sampled maize health status. Table  

 
4.17 shows the statistical Pearson correlation analysis performed. 
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Figure 4.17: Comparison of the output for maize 
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Table 4.16: Correlations between RS and AGRIC approach for maize health status estimation 

 

 

 

 

 Table 4.17 shows that there is a moderate positive linear relationship between the 

agricultural-based and remote sensing approach of estimating maize health status. This 

implies that on a 63.8% reliability, remote sensing approach can be used to replace the long 

process agricultural-based technique of estimating maize health. 

iv. Rice 
 
Figure 4.18 shows the graphical representation of the NDVI outputs both from remote 

sensing and agricultural-based approach for estimating sampled rice health status. Table 4.18 

shows the statistical Pearson correlation analysis performed. 
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Figure 4.18: Comparison of the output for Rice 

 

 

 

 

 NDVI_AGRIC NDVI_RS 

NDVI_AGRI

C 

Pearson Correlation 1 .638 

Sig. (2-tailed)  .247 

N 5 5 

NDVI_RS Pearson Correlation .638 1 

Sig. (2-tailed) .247  

N 5 5 
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Table 4.17: Correlations between RS and AGRIC approach for Rice health status estimation 

 NDVI_AGRIC NDVI_RS 

NDVI_AGRIC Pearson Correlation 1 .239 

Sig. (2-tailed)  .761 

N 4 4 

NDVI_RS Pearson Correlation .239 1 

Sig. (2-tailed) .761  

N 4 4 

 

Table 4.18 depicts that the linear relationship between agricultural-based and remote sensing 

approach of estimating rice health status is very weak. This implies that there is a very low 

probability (23.9%) of getting agricultural-based approach result when using remote sensing 

approach. 

 
v. Soya beans 

Figure 4.19 shows the graphical representation of the NDVI outputs both from remote 

sensing and agricultural-based approach for estimating sampled soya beans health status. 

Table 4.19 shows the statistical Pearson correlation analysis performed. 

 

 



92 

 

 
Figure 4.19: Comparison of the output for Soya beans 

 
Table 4.19 shows that there is a very weak and negative linear relationship between the 

agricultural-based and remote sensing approach of estimating soyabeans health status. This 

implies that the remote sensing approach totally contradicts and will give a contradictory 

result to whatsoever the laboratory output gives. 

Table 4.18: Correlations between RS and AGRIC approach for soya beans health status  

Estimation 
 

  NDVI_AGRI  

  C NDVI_RS 

    

NDVI_AGRIC Pearson Correlation 1 -.171 

 Sig. (2-tailed)  .783 

 N 5 5 

    

NDVI_RS Pearson Correlation -.171 1 

 Sig. (2-tailed) .783  

 N 5 5 
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vi. Yam 
 
Figure 4.20 shows the graphical representation of the NDVI outputs both from remote 

sensing and agricultural-based approach for estimating sampled yam health status. Table 4.20 

shows the statistical Pearson correlation analysis performed. 

 
Figure 4.20: Comparison of the output for yam 

Table 4.20 shows that there is a very weak and positive linear relationship between the 

agricultural-based and remote sensing approach of estimating yam health status. This implies 

that the remote sensing approach cannot replace the agricultural-based approach for yam 

health estimation due to weak correlation existing between them (0.021; 2.1%). 

Table 4.19: Correlations between RS and AGRIC approach for yam health status estimation 
 

  NDVI_AGRI  

  C NDVI_RS 

   

NDVI_AGRI Pearson Correlation 1 .021 

C Sig. (2-tailed)  .979 

 N 4 4 

    

NDVI_RS Pearson Correlation .021 1 

 Sig. (2-tailed) .979  

 N 4 4 
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CHAPTER FIVE 
 
5.0  SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Summary 

 

This study aimed at assessing the applicability of satellite remote sensing based technique in 

evaluating and estimating crop health as an alternative to the classical and conventional 

method, which is not only time consuming but also involves exclusive biological laboratory 

tests. 

 
Vegetation and soil indices are the widely employed techniques and approaches for 

estimating crop health. Normalized Difference Vegetation Index, Soil-Adjusted Vegetation 

Index (SAVI), and so on is an example of the generally and widely employed indices in 

remote sensing. Tasseled Cap Indices is used in order to achieve the aim of this study, several 

data were collected which fall into two categories: primary and secondary data. The primary 

data obtained for the purpose of this study is basically GPS position of the study area’s 

boundary, the position of fetched sample crops. This was acquired by making use of a hand-

held GPS receiver obtained from the department of surveying and geo-informatics, Federal 

University of Technology, Minna. Remote sensing largely depends on satellite-acquired 

information about the earth scene and phenomenon. 

 
There are several remotely-sensed images applicable for estimating vegetation properties. 

The images are function of the satellite acquiring them and the launch parameters of the 

satellites determine the properties of the images. Sentinel-2A images and Landsat 8 images 

were acquired for use in this study. These images were preprocessed using ArcGIS software 

in order to remove effects of atmospheric conditions on the reflectance properties of the 

image channels. The images were processed to produce several representations of vegetation 
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indices, soil indices and tasseled cap indices. Correlation, regression and analysis of variance 

(ANOVA) statistical tools were employed to assess the agreement of these vegetation and 

soil indices and their correlation with that of the tasseled cap indices, as explained in 

subsection 3.4 

 
On the other hand, the agricultural-based approach of crop health estimation was also 

performed. In doing this, six crop species (yam, cassava, rice, maize, soya bean and 

groundnut) were fetched as samples from the field (numbering up to twenty-four) for the 

purpose of carrying out laboratory test to investigate the crop health at the time of collection. 

Tissue test is one of the agricultural terms used for laboratory test performed on crops to 

assess their health status. This test estimates the NPK (nitrogen, phosphorus and potassium) 

content of the crop at the time of collection from the field and just like fertilizer that fosters 

crop growth through the nutrient passed from the soil, this parameter can be used to analyze 

and evaluate the crop health status. This test was performed on the sampled crops and their 

NPK contents at the time of collection (August) synonymous to the date of acquisition of 

satellite images used in this study. This parameter was transformed to a single value using 

PCA model propounded by this study and in term with their relationship with the vegetation 

status. To finally achieve the aim of this study, statistical analysis was performed to evaluate 

the relationship between the outputs from the remote sensing approach and the agricultural 

approach of crop health estimation. Sensitivity of remote sensing approach of estimating crop 

health status to crop species was also assessed by conducting relative analysis on the 

techniques under study based on each sampled crops species. 

 

It is worth to note that this study identified series of challenges which one way or the other 

limited the results and hence become a knowledge gap which can be further investigated. 
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Majorly, the limitation in this study is the failure to make use of more than one-month data. 

Remote sensing just like any other surveying technique needs residual and continuous 

observation. Also, the tissue test conducted only gave an output of the macro nutrients of 

crops and ignored the micronutrients, further study can be made to contain this category of 

crop nutrients. This will help ascertain to the highest degree, the crop health from the 

laboratory. 

5.2 Conclusion 
 
This study aimed at assessing the applicability of remote sensing techniques for crop health 

estimation in order to determine its relative advantage to the use of agricultural-based 

technique, as discussed by (Adesugba and Mavrotas 2016). NDVI map produced using 

sentinel-2 image revealed that the vegetation in the area has NDVI values ranging from 

0.062-0.631. The map shows that most of the cereal crops (including maize and groundnut) 

and some tuber crops are relatively the healthiest crops because of their spatial location on 

the NDVI map with indices value ranging from 0.468-0.573. AGP16-349, identity for soya 

bean crop displays the least healthy sample crop collected from the study area. From the 

NDVI map produced the northern region of the study area and some spots in the southern 

region reveal the healthiest vegetation in the study area. 

 
The greenness map, an aspect of the TCI maps produced in the study area was evaluated to 

validate the NDVI results obtained in the study. A Pearson correlation statistical test was 

performed to investigate the correctness of the NDVI. The NDVI and GREENNESS indices 

values of the sampled crop is 57.7% positively correlated (0.577). This supports the 

postulation of (Cristiano et al., 2016). This correlation reveals that there is a strong 

correlation between the two indices. Also, the brightness map which is known to be a 
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measurement of how bright-dark a surface was produced and it revealed that the brightness 

values of the study area ranges from 30961.23 – 37483.25. These values only signify the 

level of brightness and are relative to one another. Correlation test carried out on the 

brightness of the sample crops and their NDVI values shows that there is a weak and negative 

correlation between the indices (-0.175) which implies that brightness is not a measure of 

crop health. Also, the wetness index of TCI which is a measure of soil moisture was 

implemented. The map produced was used to investigate the effect of the soil on the crop 

health across the study area. The NDVI map and the wetness map shows that there is a perfect 

correlation between wetness and NDVI. 

 
The NPK results of the sample crops converted using PCA model developed by this study. 

The model transformed the NPK outputs of each sampled crops from the laboratory to an 

equivalent of the NDVI (having values ranging between 0 and 1, since it is just vegetation). 

Paired t-test statistical analysis was conducted to assess the relationship (similarity) between 

the PCA induced NDVI and the Remote Sensing output NDVI for the crop samples. The 

result of the statistical analysis shows that there is generally a very weak correlation (0.16) 

between the two techniques under study implying that if considered generally for crop health 

estimation, there is just 1.6% (approximately negligible) chances that the result from the 

remote sensing technique will give an equivalence to that of the laboratory result in 

agriculture. Hence, further remote sensing approach shows that 48.8%, 50.2%, 63.8% 

similarity with that of laboratory test result for cassava, groundnut and maize health 

estimation respectively which is fairly acceptable. When employed in estimating rice health 

status, the study found out that the remote sensing technique yielded 23.9% similar to that of 

laboratory which is quite unreliable. 
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Finally, from the findings so far, it can be said that remote sensing approach cannot be relied 

on for crop health estimation, especially in a mixed far, this is as a result of low poor 

correlation that existed between NDVI and lab test result obtained. 

5.3 Recommendations 
 
Based on the discovery and limitations of this study, the following are strongly 

recommended: 

i. The Northern region of the study area is seen to be the healthiest; hence, farmer 

should concentrate on cultivating this portion for higher productivity. 

 
ii. Further study should be conducted to investigate the reliability of the Tasseled Cap 

Indices multiplicative constants for sentinel-2 image covering Nigeria as there is none 

available before now. 

 
iii. In furtherance and validation of results from this study, estimations of crop health 

should be carried out across the cultivation seasons if possible on a monthly basis to 

map the change in vegetation content with time. 
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