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ABSTRACT 
 

There is a standard of 99.999% (five ‗nines‘) availability for telecommunication hardware 
and software. This is to guarantee the high level of service required by the Mobile Network 
Operator (MNO) for service delivery. MNOs in Nigeria and most sub-Saharan Africa 
countries are, however, not being able to meet up with the expected base station availability 
mainly due to high restoration time after the outage. In this thesis, the historical Base 
Transceiver Station (BTS) Availability reports of a thousand data points each for four 
MNOs were used. The MNOs (MNO W, MNO X, MNO Y and MNO Z in Minna) data 

were acquired from 1
st

 of January 2018 to 26
th

 September 2020. The first 73% of the data 

was partitioned into the Training period and the remaining 27% was set for Validation. The 
data is in the form of Time Series (TS) and was modelled using Autoregressive Integrated 
Moving Average (ARIMA) prediction. Correlation plots of the data were done and the 
ARIMA (p,d,q) parameters were got with the aid of the Autocorrelation Function (ACF) 
and the Partial Autocorrelation Function (PACF). The ARIMA-Based models for the 
MNOs are ARIMA (0,1,3), ARIMA (1,0,1), ARIMA (2,0,4) and ARIMA (0,1,1) for MNO 
W, MNO X, MNO Y and MNO Z, respectively. The predictive models were used to predict 

BTS Availability for the MNOs from 27
th

 September 2020 to 20
th

 December 2020. The 

performance of the models was evaluated with data in the validation period for Mean 
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The MAEs for the 
respective MNOs are: 1.3959, 0.6602, 1.5666 and 0.6177; while their MAPE are: 0.0150, 
0.0068, 0.0176 and 0. 0063. The long short-term (LSTM) model was used for comparison 
with the ARIMA model for the same MNOs and their MAE and MAPE are 2.8397, 0.8894, 
2.8223, and 1.1245; 0.0322, 0.0092, 0.0349 and 0.0118 for MNO W, MNO X, MNO Y and 
MNO Z respectively. From the results, it is observed that the LSTM models have higher 
MAE values than the ARIMA models by 51%, 26%, 44% and 45% for MNO W, MNO X, 
MNO Y and MNO Z respectively. Similarly, for MAPE, the LSTM models have 53%, 
26%, 50% and 47% higher values than the ARIMA models for the respective MNOs. These 
indicate that the ARIMA models have performed better than the LSTM models in all the 
MNOs. The values of the MAE and MAPE for the predictive models are very low which 
implies that the predicted Availability data is close to the actual values and can be used for 
proper planning and decision-making. MNOs can proactively schedule Predictive 
Maintenance (PdM) with the PdM algorithm developed in this work. Using the 95% 
availability threshold of this algorithm, MNO W and MNO Y have no savings in 
maintenance count, while MNO X and MNO Z have savings of 33 and 32 respectively. 
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CHAPTER ONE 
 

1.0 INTRODUCTION 
 

1.1 Overview 

 

The massive influx of cellular mobile technology has made virtually all aspects of human 

activities dependent on the use of telecommunications services. For instance, in Nigeria, 

according to the Nigerian Communication Commission (NCC), the number of active lines 

in the Global System for Mobile Communications (GSM) rose from 148,774,015 in April 

2017 to 198,961,361 in July 2020. A few decades ago, the delivery of telecommunications 

services like voice calls, SMS and the internet were just emerging and users of the services 

were not too keen about the extent of the availability of the service. Today, the narrative 

has changed tremendously; high network availability is usually requested from the Mobile 

Network Operators (MNO). 

 
Subscribers are anticipating a significant degree of service, from which availability is viewed as 

the major evaluation of quality (Mahdi et al., 2018). Availability measurement might be 

utilised as a contribution to attract customers, but perhaps more importantly, the operators may 

profit from its use in evaluating the overall quality of the network (Thulin, 2004). 

 
This research is on the Prediction of Base Station Availability for Telecommunication 

Operators in Minna. This work can be of use to the MNO in the planning process to focus on 

the aspects of the Network Elements (NE) maintenance. The areas in the NE that are prone to 

failure could be provided with redundancy. The major MNOs in Nigeria are 9mobile or EMTS 

(formerly known as Etisalat), Globacom Mobile, Airtel Nigeria and MTN Nigeria. 
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1.1.1 The Base Transceiver Station (BTS) and the Mobile Cellular Network 

 

The BTS is the cell phone's admission point to the network (Qing, 2017). It is accountable 

for carrying out radio communications between the network and the mobile phone. It 

executes speech encoding, encryption, multiplexing (Time Division Multiplexing), and 

modulation/demodulation of the radio signals. 

 
The U-mobile (Um) interface is a sort of radio interface liable for the communication 

between the mobile station and the BTS. It makes available the link joining the Mobile 

Station (MS) and the GSM system. Its physical linking is accomplished through the radio 

waves. The Um interface is the main interface amongst all the interfaces in the GSM 

framework. 

 
A BTS is supervised by a Base Station Controller (BSC) using the Base Station Control 

Function (BCF). The BCF is designed as a discrete unit or even combined in a Transceiver 

(TRX) in compact base stations. The BCF offers an Operations and Maintenance (O&M) 

connection to the Network Management System (NMS) and accomplishes the operational 

conditions of each Transmit/Receive (TRX), as well as software management and alarm 

gathering (Qing, 2017). The basic structure and roles of the BTS remain the same 

irrespective of the wireless technologies. 

 
According to Mahdi et al. (2018), a mobile cellular network is described as a communication 

infrastructure comprising Network Elements (NEs) that allow Mobile Stations or User 

Equipment (UE) to access network services through radio channels. Mobile cellular networks 

usually span large geographical service area which is subdivided into smaller service areas 

known as cells. Each cell has a fixed access point called a BTS (NodeB for 3G, eNodeB for 
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4G and gNodeB for 5G) which resides within the cell for wireless communication with UE. 

 

Figure 1.1 shows a typical communications network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1 A Typical Telecommunication Network. Source: (Qing, 2017) 
 

 

For illustrative purposes, the author has shown from fieldwork, some of the equipment that 

make up the telecommunications network as depicted in plates I to III in Appendix B. 

 

1.1.2 Brief History and Evolution of Mobile Telecommunication in Nigeria 

 

In the year, 2001, Global System for Mobile Communication (GSM) was rolled out in 

Nigeria with the deployment of the second-generation technology (2G). It came with both 

voice and SMS services and the data rate was 9.6kbps. The 3G was first launched in Japan 

using the Wide Code Division Multiple Access (WCDMA) technology in 2001 (Meraj and 

Kumar, 2015). 3G was deployed in Nigeria much later. In 2008, 4G was launched with the 
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Long-Term Evolution (LTE) technology and it has a data rate of 150Mbps. Figure 1.2 

illustrates the evolution of mobile technology from 2G in 1980 to 4G in 2008. 

 
As the technology evolved, the data rate increased as well. There was an improvement of 

the data transmission rate of 117.2Kbps of the General Packet Radio Service (GPRS) to 

384Kbps of the Enhanced Data rates for GSM Evolution (EDGE). With further evolution as 

depicted in Figure 1.2, a transmission data rate of 2Mbps of the Universal Mobile 

Telecommunication System (UMTS) was obtained in 3G technology. The 4G LTE has a 

data transmission rate of 150Mbps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.2 Evolution of Mobile Network Technology. Source: (Qing, 2017) 
 

 

1.2 Statement of the Research Problem 

 

Telecommunication hardware (HW) and software(SW) are specifically intended to support 

the Availability requirement of five or six ‗nines‘ (Hilt, 2019; Netes, 2018; Akinsanmi and 

Adebusuyi, 2016; Thulin, 2004). Five or six ‗nines‘ mean 99.999% or 99.9999% 

respectively. Availability of 99.999% for instance corresponds to an outage duration of 5 
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minutes, 15 seconds in a year. MNOs in Nigeria and most Sub-Saharan Africa countries are 

struggling to attain BTS Availability of two ‗nines‘ (99.0%). This is very far from 

expectations. There is a need for MNOs to be equipped with the means to proactively 

schedule predictive maintenance (PdM) or planned preventive maintenance (PPM) on NEs 

and BTS. This will mitigate or appreciably reduce outage probability and improve BTS 

availability. 

 

1.3 Aim and Objectives of the Study 

 

This research aims at predicting the availability of Base Stations for Telecommunication 

Networks in Minna. 

 
To achieve the aim stated above, the following are the objectives: 

 

I. To acquire and process the Base Station Availability data of four MNOs: MNO W, 

MNO X, MNO Y and MNO Z in Minna from 1
st

 January 2018 to 26
th

 September 

2020. 

 

II. To use the Data in Objective I to develop Autoregressive Integrated Moving 

Average-Based (ARIMA-Based) Predictive Models of Base Station Availability for 

the stated MNOs. 

 
III. To evaluate the performance of the Models using MAE and MAPE, and to compare 

with the Long Short-Term Memory (LSTM) Model. 

 

1.4 Scope of the Study 

 

This study is limited to focus on BTS Availability for telecommunications network operators in 

Minna. The population of Availability data (measured in percentage) for the research is a 

thousand each for four MNOs named as MNO W, MNO X, MNO Y and MNO Z in Minna 
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metropolis spanning the period from 1
st

 January 2018 – 26
th

 September 2020. The work 

discusses Availability as a Time Series (TS) data and as such, Time Series Analysis (TSA) 

shall be discussed. Also, in the study, the concepts of the following: Availability, BTS, 

predictive models like the Autoregressive Integrated Moving Average (ARIMA) and the 

LSTM are discussed. Factors affecting BTS Availability are also highlighted in this study. 

 

1.5 Justification for the Study 

 

MNOs use BS Availability for attracting customers. It is used as a measure of quality 

(Mahdi et al. 2018; Thulin, 2004). Hilt et al. (2016) studied the Availability prediction of 

telecommunication application servers on cloud. The result showed that legacy 

telecommunication availability could be attained on cloud-based core networks. This work 

could have been enhanced if real time TS data was used. Both Hilt et al. (2016) and Mahdi 

et al. (2018) used Reliability Block Diagram (RBD) method. Mahdi et al. (2018) focussed 

on Availability measurement and the work lacks predictive ability. Fan et al. (2016) 

improved the base station Availability by improving the maintenance of the back-up battery 

group. This research however did not take a complete view of other factors that could 

impair BS Availability. MNOs in Minna and most Sub-Saharan Africa do not provide the 

required standard of Availability of 99.999% (5 minutes, 15 seconds of downtime within a 

year) to their subscribers. In the light of the drawbacks and merits of the previous research, 

this work leveraged on the amenability of the ARIMA model on TS data to design a 

predictive model for PdM. This predictive model will be utilised by the policy makers of 

the MNO to schedule PPM and PdM for a proactive maintenance. This improves the Base 

Station Availability and reduces operation expenses. 
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1.6 Thesis Outline 

 

This thesis consists of five chapters as follows: Chapter one is the Introduction. Chapter Two 

gives the Literature Review and introduces various theoretical background. Chapter Three is 

the Research Methodology. Chapter Four presents the Results and Discussions. Chapter Five 

contains the Conclusion, Recommendation and Contributions of the Research to Knowledge. 
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CHAPTER TWO 
 

2.0 LITERATURE REVIEW 
 

2.1 Overview of Literature review 

 

Previous research work on base station availability has centred on optimum resource 

utilization, power-saving and improved radio network planning and maintenance. It can be 

categorised based on the technique used, measurement, prediction and application areas. 

 

Thulin (2004) considered the Network Availability (NA) of Synchronous Digital Hierarchy 

(SDH) link in their company, Song Network AB. A background investigation of NA was 

done and subsequently, a method for the measurement of NA was designed for use in their 

SDH network. Availability parameters were got from ITU-T Standard G.826 and a log file 

from the network surveillance system was stored in a database. A parser program was 

employed to acquire, investigate and present the data in the database and create NA reports. 

The study, however, did not consider the prediction of NA for the network. 

 

Netes (2018) worked on the End-to-End Availability of Cloud Services. Service Availability 

was explained and quantitative estimation of end-to-end availability of cloud services was 

carried out for distinctive conditions bearing in mind all components of the service structure. It 

shows that realising high availability needs redundancy for such components as network 

connections and data centres. General reflection was detailed for the cloud service ―Desktop as 

a Service‖ (DaaS). End-to-End availability for a single Data centre and two Data centres were 

each calculated; the use of only one data centre is not desirable keeping in mind to ensure 

survivability, that is, the ability to continue to function during and after a natural or man-made 

disorder. All these led to the idea of redundancy for data centres with geographical separation 

of their locations (geo-redundancy). However, this will involve an additional cost. 
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Netes (2018) and Hilt et al. (2016) researched availability relating to cloud services. The 

latter, focussed on ‗cloud-based Mobile Switching and Telecommunication Application 

Servers (MSS and TAS). The paper demonstrates the possible redundancy principles and a 

simulation method to forecast availability for mobile communication NEs on the cloud. 

Nokia AS on ‗Telco-cloud‘ is offered, which combines several redundancy principles such 

as full protection (2N), standby and load sharing. The study showed that the general 

availability of telecommunication networks depends on NE, interconnection and NW level 

redundancy methods. Simulated results predict that ‗Telco-grade‘ availability can be 

attained on cloud-based core network elements. It was also shown that full protection and 

load sharing are more efficient than other methods of redundancy especially with increasing 

number of parallel nodes or units. 

 
Fan et al. (2016) looked at boosting service availability of base stations by consideration of 

profiling of power backup to sustain both the base stations and the backhaul infrastructure 

used for the aggregation of the BSs in the network. The paper conducted a systematic 

analysis on a real-world dataset collected from the battery groups installed on the base 

stations of China Mobile Limited company and proposed an event-driven battery profiling 

approach that precisely extracts the features causing the degradation of the battery group. 

Dataset was collated and analysed by cloud computing platform with Hadoop 1.2.1 and 

Hive 1.2.1. Based on the data analysis, an event-driven battery profiling approach that can 

be used to schedule preventive maintenance and replacement of battery was obtained, to 

reduce power outages and guarantee the high service availability for the cellular networks 

which is usually the main target of MNOs. Although their work showed an 18.09% increase 

in service availability, the consideration is only limited to the battery group. 
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The Network Function Virtualization (NFV) initiative aimed at allowing network operators 

to deploy a set of services in a reliable, secure and fast way has been considered as it is a 

milestone towards the deployment of Telco-cloud Di Mauro et al. (2017) and Hilt (2019). 

Considering that one of the main benefits of an NFV infrastructure is its high availability, 

Hilt (2019) focused on the analysis of the Virtualized Infrastructure Manager (VIM), a core 

element that is implemented through the OpenStack platform and is aimed at managing the 

whole NFV architecture. The system availability was evaluated on the VIM by performing 

both a steady-state and transient analysis of Stochastic Reward Nets (SRNs) to obtain the 

best system configuration with the ―five nines‖ availability requirement. 

 
Ibrahimovic and Bajgoric (2016) presented a modified Bayesian Belief Network model for 

predicting information system availability. The work adapted the model built by (Franke et 

al., 2012). The model made use of parameters by using the probability elicitation process. 

The model validation was performed using the Monte-Carlo simulation. Work by other 

authors that used Bayesian Network is presented by (Beuzen et al., 2018; Franke et al., 

2012; Usman et al., 2017). 

 
Nencioni et al. (2017) investigated the Availability of Software Defined Networking, SDN. The 

impact of the deployment of SDN controllers indicated that using a three or four-homed 

controller would not improve the availability performance. According to the report, using a 

two-homed SDN controller gave an availability value that is comparable to that of the legacy 

network. One SDN controller is not sufficient to assure an acceptable availability. Since 

network operators‘ target is to make sure that availability does not decrease as compared to the 

traditional network, the two SDN controllers would be the best choice. 
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Säe and Lempiäinen (2016) considered saving energy to be used by eNodeB sites in a 

critical disaster scenario. A portion of the entire site is intended to be provided with backup 

coverage during a period of a temporary electricity power cut. A kind of sleep mode 

concept in cellular networks is the main approach utilized in the paper for the functionality 

of eNodeB sites operating only with backup power (that is, during a disturbance scenario). 

Commercially available radio network planning software called Integrated Communication 

System (ICS) Designer was used in the implementation of simulation on a link-level basis. 

Though a significant availability was achieved during the backup period, the study however 

does not include algorithms in how to select the usable eNodeB sites. 

 
Bikcora et al. (2016) investigated day-ahead probabilistic forecasting of the charging rate 

and the availability of plug-in electric vehicles at a charging station. Two forecast scenarios 

were used in the paper. Since the availability forecasting was considered as a binomial 

problem, forecasting was done to address the availability as such, while the charging rate 

was forecasted using an ordered logistic model having categorized the feasible range of 

values. The result of their findings indicated that the predictive model was essential for the 

optimum performance of the charging station at some charging points, whereas, it was not 

so at some others. The study may not be applicable at some other locations as it was 

localized in Netherland. Other places with different environmental factors may experience 

different outcomes. 

 
Garrido et al. (2016) presented a context-aware architecture that provides an adaptable and 

reusable avenue for the availability of cloud-based mobile services using an election 

algorithm. A service replication scheme together with a self-configuration method was 
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adopted for the activation/hibernation of the replicas of the service depending on user 

context information from the mobile system. 

 
In the research, ‗Survivability Analysis of GSM Network Systems‘, Mahdi et al. (2018) 

posit that Availability is the major measure of quality. This is in agreement with the claim 

of (Thulin, 2004) that MNOs use availability statistics in assessing the overall quality of the 

network. Mahdi et al. (2018) used Reliability Block Diagram (RBD) to model the system 

and their work showed that the components with lower Availability have higher Mean 

Time To Repair (MTTR) while the ones with higher Availability have lower MTTR which 

agrees with the theoretical definition of Availability. MTTR is the average time taken to 

repair a repairable componet or system after its failure. 

 
Mahdy et al. (2020) used a set of datasets for Statistical, Machine Learning and Deep 

Learning models in the prediction of traffic load on Base Stations. In their work, they 

clustered base stations that possess similar load behaviour before using clustered data for 

the predictive model. The results showed that the Root Mean Square Error (RMSE) for the 

clustered scenario performed better than in the un-clustered scenario. Table 2.1 gives a 

summary of the reviewed literature for this research. 
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Table 2.1 Summary of Reviewed Literature 
 

S/ Author(s) Title Category Strength Weakness 

N      
      

1 Dicholkar Cost-Effective Adaptive Availability Adaptive modulation was used to achieve Sensitivity to 

 and Modulation for Microwave improvement desired availability at a low cost. measurement error and 
 Dongree Link Availability Improvement   delay. 
    

 (2018) in Plain, Hilly Terrain, Water    

  Bodies    
 

2 Netes End-to-End Availability of Availability 

 (2018) Cloud Services. in Cloud 

   computing 

3 Thulin Measuring Availability in Availability 

 (2004) Telecommunications Measurement 

  Networks.  

4 Hilt et al. Availability Prediction of Availability 

 (2016) Telecommunication Prediction in 

  Application Servers Deployed cloud 

  on Cloud computing 

5 Fan et al. Boosting Service Availability Availability 

 (2016) for Base Stations of Cellular improvement 
  Networks by Event-driven through PdM 
   

Battery Profiling. 
on batteries  

 

Gave a quantitative estimation of the end-

to-end availability of cloud services 
 

 

Developed a Method for measuring 
 

Network Availability. 

 

Simulated outcomes predict that ‗Telco-
grade‘ availability can be attained on 
cloud-based core network elements. 

 

 

An improvement in service availability 
for cellular networks  

 

High cost of redundancy 

for higher availability. 
 

 

Lacks predictive ability. 
 
 

 

Technical complexity 
 

issues 
 
 

 

The model may not 

adapt in other locations. 
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6 Nencioni Impact of SDN Controller Availability Using a two-homed SDN controller gave High technical 

 et al. Deployment on Network Improvement an availability value that is comparable to complexity. 
 (2017) Availability in SDN that of legacy networks.  
   

7 Di Mauro Availability Evaluation of the Availability Their results showed that the Availability The work did not give a 

 et al. Virtualized Infrastructure in NFV value for the redundancy level of 4 gave vital performance metric 
 (2017) Manager in Network Function  a value of 5 ‗‘nines‘ which is better than like response delay 
 

Virtualization Environments 
 

for the redundancy levels of 3 and 2. which would have been    

     used to assess the SDN 

     Controller. 

8 Säe and Maintaining Mobile Network Application Significant availability was achieved No algorithms for the 

 Lempiäine Coverage Availability in to during the backup period. selection of the usable 
 n (2016) Disturbance Scenario Availability  eNodeB sites 
   

9 Ibrahimov Modelling Information System Availability Offered a modified Bayesian Belief The hypothesis built into 

 ic and Availability by Using Bayesian Prediction Network model for predicting this model is the 
 Bajgoric, Belief Network Approach using BN information system availability. independence of the 
 

(2016) 
  

variables that enabled the     

application of the Leaky 

Noisy-OR approach.  
 

 

10   Bikcora et Prediction of Availability and Availability 

al. (2016) Charging Rate at Charging Prediction for 
 Stations for Electric Vehicles. PdM 
  

 

 
 

Findings indicated that the predictive The study may not be 

model was essential for the optimum applicable at some other 

performance of the charging station at location as it was 

 localized, other places 

 with different 
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    some charging points, whereas, it was not environmental factors 

    so at some others. may experience a 

     different outcome. 

11 Bakar and Autoregressive Integrated Technique The error analysis between forecasting Cryptocurrency 

 Rosbi Moving Average (ARIMA) Utilized value and actual data was performed and exchanges are often very 
 (2017) Model for Forecasting  the MAPE of the forecasting is 5.36%. volatile. Full Reliance on 
  Cryptocurrency Exchange Rate   the model may fail. 

  in High Volatility    

  Environment: A New Insight    

  of Bitcoin Transaction    

12 Özs Monitoring unstable slopes in Technique Prediction results from the ARIMA The assumption of 

 (2020) an open-pit lignite mine using Utilized method were compared with results from mathematical modelling 
  ARIMA.  regression methods and were shown to be may not agree with real- 
    more successful. life situations, this is 

     affected by various 

     factors such as floods 

     and landslides. 

13 Mahdy et A Clustering-Driven Approach Technique Results showed that the RMSE for the A very limited dataset 

 al. (2020) to Predict the Traffic Load of Utilized clustered scenario performed better than was used in the work. 
  Mobile Networks for the  in the un-clustered scenario.   

Analysis of Base Stations 

Deployment.  
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14 Mahdi et Survivability Analysis of GSM Availability 

 al. (2018) Network Systems. Measurement 

15 Beuzen et Bayesian Networks in Coastal Application 

 al. (2018) Engineering: Distinguishing  

  Descriptive and Predictive  

  Applications  

16 Carvalho A systematic literature review  

 et al. of machine learning methods  

 (2019) applied to predictive  

  maintenance  

17 Gandomi Valuation of artificial neural Technique/A 

 and Roke network and genetic pplication 

 (2015) programming as predictive  

  tools  

18 Mahmood Predictive and Preventive Technique/A 

 and Maintenance using IoT and Big pplication 

 Munir, Data in the Telecom Sector  

 (2020)   

 

 

Components with lower Availability have 
higher MTTR while the ones with higher 

Availability have lower MTTR.  
 

Results show that two BNs: one with 

high predictive skill and one with an 

optimized descriptive skill could be 

developed from the given dataset 
 

A systematic literature review of ML 

methods applied to PdM 
 
 

 

A case study in punching shear prediction 

of RC slabs is modelled using a hybrid 
ANN and GP. The result shows the 

relevance of parametric studies in model 
acceptance criteria 

 

The paper gave a qualitative approach in 
enabling PdM for RAN  

 

 

Lacks predictive ability 
 
 

 

There is a challenge of 

selecting an appropriate 

input to include in the 

model 
 

Work does not have a 
 

quantitative finding 
 
 

 

Technical complexity 
 
 
 
 
 

 

The framework does not 

have a quantitative 

evaluation. 
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2.2 Theoretical background 

 

To understand more clearly the reviewed work in this research, this section discusses the 

theoretical principles of some relevant terms in the researched papers. 

 
2.2.1 Availability Parameters in ITU-T Standard G.826 

 

The International Telecommunication Union (ITU) defined a set of standards providing 

procedures, objectives and limits for links in Synchronous Digital Hierarchy (SDH) 

Networks. The standard relating to performance evaluation and measurements of 

Availability is G.826 (ITU-T G.826, 2002; Akinsanmi and Adebusuyi, 2016; Säe and 

Lempiäinen, 2016; Thulin, 2004). The Unavailable Seconds (UAS) which is indicative of 

downtime is deduced from the G.826 standard as shown in figure 2.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1 Determination of UAS. (Source: ITU-T G.826 Standard.) 
 

 

A period of unavailable time begins at the onset of ten consecutive SES events (these ten 

seconds is part of the unavailable time). A new period of available time commences at the 

onset of ten consecutive non-SES events. These ten seconds is part of the available time. 

= 
(                −       ) ∗ 100  

(2.1) 

   

 

Akinsanmi & Adebuyi (2016) 

 

Where A is the Availability. 
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a. Definition of Availability 

 

Availability is defined by the International Standard Organisation (ISO) as the capability of 

a useful unit to be in a state to accomplish a vital role under specified circumstances at a 

given instant of time or over a given time interval, assuming that the required external 

resources are provided (ITU-T E.802, 2007; ISO/IEC, 2015). 

 

Service Availability is defined in some ITU-T Recommendations, like (X.140) as the ratio 

 

of the total time during which acceptable or tolerable service is, or could be, provided to the 

 

total observation period. According to E.860, it is the percentage of time during which the 

 

contracted service is functioning at the respective service access points. In this case, the 

 

access point is the BTS. 

 

Unavailability, 

= 1 − (2.2) 

 
 
 

 

Down Time (DT), 

=(1−  )∗ (2.3) 

 
 
 
 

b. BTS Availability 

 

In line with the definition of service availability, BTS Availability is the percentage of time 

duration during which the intended service expectation is achieved. It is presented in nines. 

That is five or six nines (99.999, 99.9999 respectively) according to standard. However, 

these values are hardly met in practice by MNOs. 
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c. Availability Targets in Telecommunication Networks 

 

Availability values are usually presented in terms of nines. For many telecommunication 

networks and equipment, BTS inclusive, there is a strict standard of five or six nines. 

Telecommunications HW (and SW) is specially designed to support these very strict 

requirements (Hilt, 2019). Table 2.2 illustrates availability values. 

 
Table 2.2 Availability and Corresponding Downtime 

Availability Downtime per year 

99.9999% 32s 
99.999% 5min 15s 

99.99% 52min 32s 

99.9% 8hr 46min 

99% 3days 15hr 40min  
Source: (Hilt et al. 2016; Netes 2018; Akinsanmi and Adebusuyi 2016; Thulin 2004) 

 

 

The values in Table 2.2 are computed from equation 2.3. 

 

d. Availability and Redundancy 

 

If a system is made up of useful units in series, the failure of any of the functional units 

leads to a total system failure (Netes 2018; Thulin 2004). A series system does not have 

redundancy. It is represented in Figure 2.2a. 

 
 

A1 

 
A2 

 

 

(a)  
 
 

A1 

 
 
 

 
A2 

 

 

(b) 

 

Figure 2.2 Availability of Systems (a) Series (b) parallel 
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The Availability (A) for the system in Figure 2.2 (a) is: 

=1∗2 (2.4) 

 

Generally, the availability for a system in series can be computed as: 

A = ∏  =1 (2.5) 

For all = 1,2,3, … , . 

 

Where Ai is the Availability of the ith element and n is the number of elements that make 

up the system. The overall Availability (A) for this kind of system is less than the least 

Availability of an individual element of the system. 

 
The overall availability of a system that has its elements in series reduces and is even less 

than that of the least element. The provision of redundancy increases Availability (Ahmed 

et al. 2017; Hilt et al. 2016; Krajnović 2017; Netes 2018; Nagy et al., 2016). The 

Availability for a system having redundancy as in Figure 2.2b is more guaranteed since the 

system will remain available so long as either of the element is available, and the system 

only fails when all the elements fail. The Availability is computed as: 

=1+2−1∗2 (2.6) 

  

A=1−∏(1−  ) (2.7) 

  =1  
 

2.2.2 Factors that Affect BTS Availability 

 

The Mean Time Between Failure (MTBF) of the components and subsystems of the BTS and 

NEs in the network affect the overall Availability. A high MTBF and low MTTR improve 

Availability. It is pertinent to note that the MTTR in case of an outage is a major barrier to 

Availability. According to ‗the Availability Digest‘, the focus has been on the improvement 
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in system MTBF which has boosted the Reliability and Availability of both hardware and 

software used in the systems. However, systems do not have infinite MTBF. Failures do occur 

due to application software bugs or even as a result of operator error. This implies that further 

improvement on MTBF is not likely going to yield a better Availability. The Availability 

barrier becomes the MTTR. The system may fail but it should be fixed fast. When the duration 

of time for fixing or restoration is so fast (that is, MTTR tending to zero), users may not be 

aware of the failure. So, it is much beneficial to consider ways of reducing MTTR to 

break/reduce the barrier to Availability. Some of the factors that affect BTS Availability 

include failure or degradation in components (BTS and NE components), software, microwave 

link, transmission cable, infrastructure, accessibility and force majeure. 

2.2.3 Predictive Analytics 

 

Predictive analytics have been used in diverse fields such as Statistics, Marketing, Natural 

Sciences and Engineering (Mahmood and Munir 2020; Almeida 2002; Beuzen et al. 2018; 

Bikcora et al. 2016; Carvalho et al. 2019; Chodorek 2005; Fan et al. 2016; Gandomi and 

Roke 2015; Boulos and Niraula 2016; Odom, 1990; Ercsey-Ravasz et al., 2013). Prediction 

is useful in the improvement of operations. Companies and other establishments like MNOs 

use it for adequate planning and management of resources for an optimal realization of set 

goals. For this work, the emphasis is on BTS Availability. 

 
Predictive modelling is a process of using known data and statistics of a variable to forecast 

or predict the future outcome of the variable with data models (Daren and Paul, 2019). The 

Predictive Modelling tool used in this work is based on ARIMA (Autoregressive Integrated 

Moving Average). The Long Short-Term Memory (LSTM) algorithm, a type of Recurrent 

Neural Network (RNN) was used for prediction and performance comparison. 
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Other predictive modelling tools in the researched papers are the ANN (Artificial Neural 

Networks), Python, R, Apache Hadoop, Windchill and Bayesian Networks. 

 
a. The ARIMA Model 

 

This is a very popular linear model that is very amenable to modelling with Time Series 

(TS) data. ARIMA model is very flexible and could be used on different TS. It has good 

statistical properties and can be used for exponential smoothing models Zhang (2003). A 

limitation of the ARIMA model is the assumption that the predicted value of a variable is a 

linear function of the previous value of the variable. This model is discussed in more detail 

in chapter three of this work. 

 
b. The LSTM 

 

LSTM is a type of RNN and was first presented by Sepp Hochreiter and Juergen 

Schmidhuber as a means of resolving the vanishing gradient trouble in training some 

networks (Hochreiter and Schmidhuber 1997). This issue is because of an enormous input 

being constrained into a little input space. When this happens, there is a loss of memory. 

Most traditional RNNs are faced with this problem of vanishing gradient as the input 

become large. 

 
An RNN takes input information each in turn and keeps up with data from past inputs, it 

takes data from past input in making new calculations. LSTMs can choose similitudes in 

successions of information like TS data. LSTMs are utilized for prediction or forecast 

Laptev et al. (2017). LSTMs utilize the condition of the last neuron from the last time value 

as a format to make an output. 

 
A significant element of the LSTM is a memory cell known as a memory block which can 

safeguard its state throughout an extensive period. According to (Greff et al. 2017), 
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an LSTM cell contains gates that control the stream of information into and out of the cell. 
 

 

LSTM has the following gates: Forget gate, Input and Output gates as shown in Figure 2.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.3 Long Short-Term Memory Block. Source: Greff et al. (2017). 
 

 

2.2.4 Time Series Analysis 

 

A time series is a set of time-ordered observations of a process where the intervals between 

observations remain fixed as in daily, weekly, monthly or yearly intervals over a period (Daren 

& Paul, 2019; Jebb et al., 2015). A good example is the daily BTS Availability report of a 

Mobile Network Operator taken for several months or the weekly report for a few years or the 

monthly report for several years. According to Jebb et al. (2015), the length of time series do 

vary, but should at least be more than twenty observations long. Some models do require more 

than fifty observations. It is generally required that more data that capture the 
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phenomena of interest is used for optimum model accuracy. The most important reason for 

carrying out TS analysis is for forecasting or predicting future values of the series. 

 
a. Components of a Time Series 

 

The change in the pattern of a time series is characterized by four components which are: 

trend, seasonality, cyclical and irregularity (Shmueli and Lichtendahl, 2016)(Jebb et al., 

2015). 

 

i. The trend shows the increase or decrease in the series over a long period. An 

example is the population growth over the years. 

 
ii. Seasonality indicates a regular pattern of fluctuation in the TS. It is a short-term 

variation occurring as an impact of the seasonal effect. An instance is the effect of 

fog and stormy rainfall on network availability during the harmattan and rainy 

season respectively. 

 
iii. The cyclical component in TS is conceptually like the seasonality component. It is a 

pattern of fluctuations that repeat at irregular periods. The patterns are not caused by 

any fixed period. 

 
iv. The irregularity (Random) component in TS refers to variations that occur at 

unpredictable factors and do not have a particular repetitive pattern. This component 

represents the noise and can be termed as the error component in most statistical 

 
models. 

 

b. Decomposition of Time Series 

 

For the TS depicted in Figure 2.4, the trend and cyclical components are treated as the same. 

 

The additive decomposition of the TS is represented in equation 2.8. 
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=  +  + (2.8) 
 

 

The multiplicative decomposition is given as: 

=  ∗  ∗ (2.9) 

 

 

Where Tt, St and Et are the trend, cyclical and the random components respectively. 

Equation 2.8 is used when trend, cyclical and seasonal components are constant throughout 

the series, while equation 2.10 is used otherwise (Jebb et al. 2015). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.4 Time Series Decomposed into its Trend, Seasonal, and Irregular Components. 

 

Source: Jebb et al. (2015) 
 

 

c. Stationarity for a Time Series and Transformation of Non-Stationary Series 

 

It is a necessity that for predictive purposes, the time series should be stationary. A stationary 

TS has a constant mean and variance or autocorrelation in the TS data. When the series is 

stationary, any section of the data can be used in the model irrespective of when the variable 

was observed (Jebb et al. 2015). A stationary series is very good for prediction and as such, a 

non-stationary series must be transformed to a stationary one before modelling. 
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For ARIMA and some other forecasting models, a non-stationary series can be transformed 

into a stationary series by a process called differencing (Hyndman and Athanasopoulos 

2014). Differencing removes the trend in the series. For custom ARIMA models, the time 

series to be modelled are made stationary by transforming a non-stationary series into a 

stationary one by a ‗difference‘ transformation. 

 

2.3 Research Gap 

 

Hilt et al. (2016) predicted that the legacy telecommunications Availability can be obtained 

in the cloud scenario. The work would have been more authentic if real field TS 

Availability data was used. Like Hilt et al. (2016), Mahdi et al. (2018) used RBD approach 

in the analysis of NA without prediction of the Availability. Fan et al. (2016) focussed on 

the improvement of Base Station Availability by considering the optimum maintenance of 

the Base Station backup battery groups. This work does not have a wholistic view of Base 

Station Availability. MNOs in Minna and most Sub-Saharan Africa have a challenge of 

attaining a Base Station Availability value of 99.999%, to improve the Base Station 

Availability, the TS data of the MNOs must be used for predictive modelling. These 

predictive models will enable the policy makers of the MNOs to proactively Schedule 

Maintenance. The ARIMA model is very suitable for TS modelling and has been 

successfully used by (Bakar and Rosbi, 2017; Özs, H., 2020). 
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 CHAPTER THREE 

3.0 RESEARCH METHODOLOGY 

3.1 Data Acquisition and Processing 

 

The technical department of the various Mobile Network Operators: MNO W, MNO X, MNO 

Y and MNO Z were approached to acquire the base station daily availability data. This data is 

used in developing a predictive model that will assist in the proactive planning of preventive 

maintenance in a bid to reduce BTS downtime and subsequent improvement of BTS 

Availability. Consequently, the historic BTS availability report from 1
st

 January 2018 to 26
th

 

September 2020 was used as the data processed and used for building the predictive model. The 

report for each base station was retrieved from the Network Operation Centre (NOC) archive. 

Table 3.1 shows the Base Station site count for the MNOs in Minna. 

 
Table 3.1 Base Station Site Count for the MNOs under Consideration 

MNO W MNO X MNO Y MNO Z 

29 43 38 65  
Source. Author‘s Field Work 

 

3.1.1 Data Source 

 

The availability report was retrieved from the Network Operation Centre‘s (NOC‘s) archive 

and from the cloud surveillance application (Mateline) which contains the Radio Access 

Network (RAN) report. The daily BTS Availability is the percentage uptime within a day 

which is obtainable from equation 2.1. For this research, a daily BTS Availability for a period 

of one thousand days was taken from1
st

 January 2018 – 26
th

 September 2020. From the BTS 

Availability data, other useful technical information is an idea of the corresponding 

Unavailability (U) and Downtime (DT) as in equations 2.3 and 2.4 respectively. Information 

about the Uptime can also be gotten from the report. Both Uptime and Downtime are 
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measured in a unit of time. Figure 3.1 illustrates the network of base stations for one of the 

Mobile Network Operators (MNO X). Plates IV to VI in Appendix B indicate OptiX for 

terminating optic fibre; the tower and the radio rack respectively. 
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Figure 3.1 Schematic of Base Stations and their Serving Network Elements for MNO X. 

The Base Stations are backhauled through the SDH network elements to the backbone and 

the BSC. 

 

 

28 



3.2 Data Preparation 

 

This section discusses the preparation of the raw data got from the field. The Availability 

report was gotten for each Base Station and the mean daily Availability for each MNO was 

computed. 

 = 1 
∑ (   ) (3.1) 

 

  
   =1 

  
     

 

 

Where N is the number of base stations, Ai is the ith Availability for each base station for 
= 1,2,3, … , 

 

3.2.1 Expectation-Maximization (EM) 

 

For a good model to be developed, one of the most crucial requirements is data devoid of 

errors. Errors occur in the form of missing data and outliers. Outliers are data records that 

do not fit well in the given set of data and are excluded from the list. Missing data are 

estimated by taking the arithmetic mean or median of the neighbouring data points. When 

the volume of data is much, it becomes very difficult to manually check for missing data 

values and outliers. In this case, it becomes necessary to implement an automated process 

for data validation. The Data Preparation add-on module in the IBM SPSS Statistical tool 

allows the identification of unusual cases and invalid cases, variables, and data values in the 

active dataset, and prepares data by a process of finding maximum likelihood estimation for 

modelling. 

 

3.3 Modelling Using the TS Data 

 

This thesis work is aimed at predicting the Availability of a Base Station for Mobile Network 

Operators (MNO) in Minna. In the preceding sections and subsections of this chapter, it was 

shown how the BTS Availability data of the four MNOs were acquired from their base 
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stations. Each MNO number of base station sites is indicated in Table 3.1. The data is 

observed to have the nature of Time Series (TS) data. The data was prepared so that it will 

be adequate for producing a good predictive model. Figure 3.2 is the flowchart for the 

ARIMA-Based model. 
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Figure 3.2 Flowchart of the ARIMA-Based Predictive Model 

 

3.3.1 The ARIMA Model 

 

The ARIMA model is very suitable for Time Series analytics. It is considered in more 

detail here. The BTS Availability At is a sequence of the form; 

=    1,    2,    3,    4, … , (3.2) 
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The Autoregressive (AR) (p) Integrated (I) (d) Moving Average (MA) (q) is a hybrid of 

models that exploits the functions of the Regressive, the differencing factor (Integrating) 

and the Moving Average in the models. The p, d and q are their respective orders. 

 
For the Autoregressive (AR) model, the output variable is linearly dependent on the previous 

values and a set of stochastic terms. The AR component of the Base Station Availability having 

an order (p) is generally written as AR (p) and is mathematically defined as: 

=  1    −1 +  2    −2 +⋯+     −   +ℇ (3.3) 

 

Equation 3.3 can be written as: 

=∑     −  +ℇ (3.4) 

  =1  

Where ,…, are the model‘s parameters and ℇ is the random error. Similarly, the output 

 

variable ( ) for the MA depends linearly on the present value and past values of stochastic 

terms. For MA of order (q) written as MA(q), ( ) is defined as: 

=  + 1ℇ  −1 + 2ℇ  −2 + ⋯ +  ℇ  −   + ℇ 
(3.5) 

  

=  +∑  ℇ  −  +ℇ (3.6) 

  =1  
 

Where is the mean of the series, ,…, q are the parameters for the MA model, ℇ and ℇ  −   are the white noise errors. 

 

From equations 3.4 and 3.6 give equation 3.7. 

 
   

=  + ∑     −   + ℇ + ∑  ℇ  −   (3.7) 

  =1   =1  
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Equation 3.7 defines the ARMA (p, q) model. 

 

ℇt is assumed to be an independent identically distributed (iid) variable obtained from a 

normal distribution whose mean is zero. In statistics and probability theory, a group of 

variables is iid if each random variable has the same probability distribution as the others 

and are all mutually independent. 
ℇ ≈   (0,  2). Mean is zero,   2 is the variance. 

 

From equation 3.7, 

 
   

= ∑
     −   + ℇ + ∑  ℇ

  −   (3.8) 

  =1   =1  

 

According to Bakar and Rosbi (2017) and Özs (2020), a backshift or lag operator L operates on 

an element in a time series to give the previous element. Using the lag operator L, 

=    −1 (3.9) 

 
 
 
 

Generally, for the lag operator with any arbitrary power, i, 

= 

  −   
(3.10) 

  

 
 

 

Re-arranging and applying the lag operator on equation 3.8, 

 
   

−∑=ℇ+∑  ℇ (3.11) 

  =1   =1  

 
 

 

   

(1−∑   ) 

 
=(1+∑   )ℇ 

 
(3.12) 

   

  =1    =1   

 

Equation 3.12 represents the ARMA model with the lag operator. 
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For an ARIMA model, the differencing operation is paramount as pointed out earlier in this 

write-up. The reason is not far-fetched; the differencing operation helps in removing the 

trend component and is considered subsequently. 

 
The differencing operator is defined in Özs (2020) as: 

=   −    −1⇒    = (1 −   )   . So,  

=(1−  ) 

 
(3.13) 

  

 
If the polynomial of equation 3.9 has a solution of a single root (1 −   ), then, applying equation 3.13 on equation 3.12 gives: 

 
   

(1−∑   )(1−  ) 

 
=(1+∑   )ℇ 

 
(3.14) 

   

  =1    =1   

 

Equation 3.14 represents the ARIMA (p, d, q) model where p, d and q are the respective 

orders for the AR, Integrating (differencing) and the MA models which are the parameters 

to be determined and used for the model. 

 
3.3.2 The IBM SPSS Statistics Tool (SPSS) 

 

The IBM SPSS Statistics version 23 is used in creating the predictive model in this thesis. 

IBM SPSS Statistics is just one of the world‘s major and most effective statistical software 

companies. The software package was originally known as SPSS (Statistical Package for 

the Social Sciences) and was created in the 1960s by three Stanford graduates (Daren & 

Paul 2019). With the vast usage of the software package by researchers in the field of 

sciences and Engineering, SPSS was renamed ―Statistical Product and Service Solutions.‖ 

The package was bought by IBM in 1990 and was named IBM SPSS Statistics. The 

package shall simply be termed SPSS in this work. 
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3.3.3 Creating Time Series Data using SPSS 

 

As stated earlier in this chapter, the network availability data for the MNOs were processed 

and stored in Microsoft Excel. The data was imported into the data and variable editor of 

the Time Series Modeller of the SPSS and the periodicity of the data was set on weekly 

periodicity. 

 
3.3.4 Fitting an Appropriate ARIMA Model 

 

For an ARIMA model, the parameters p, d and q need to be determined. The standard way 

to do this is to make a correlation plot of the Time Series data to ascertain the stationarity of 

the data, and the Autocorrelation Function (ACF) and the Partial Autocorrelation Function 

(PACF) examined in terms of lags. 

 

3.3.5 Model Training, Validation and Testing 
 

 

In this predictive model and in most models where data is used, the concept of data partitioning 

is very important. The data is normally partitioned into the training and the validation periods. 

The training period is the period from the beginning of observation of the data up to about 60 – 

75% of the entire period; while the validation period is the remaining period after the end of the 

training period up to the end of the entire observation period which may be 25 – 40% of the 

entire period of observation) (Shmueli & Lichtendahl, 2016). 

 

To forecast the future data, for instance, the future BTS Availability for MNOs, the BTS 

Availability data is partitioned into three periods: the Training, Validation and Future periods. 

However, there is no data for the future at the initial instance but it is intended to be forecasted. 

The available data is thus partitioned into the Training and Validation periods. The model is 

fitted to the data in the Training period and the model forecasts data into the 
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Validation period, and assumed that there is no data for the Validation period. Two sets of 

data in the Validation period are the actual data, (At) and the forecasted data (Ft) using only 

the Training data. The essence of this is to ascertain how well the model can predict the 

data which it did not see. In essence, the performance of the model is measured or assessed 

in the Validation period. 

 

The data of both the Training and Validation periods are recombined and the model is rerun 

on the entire data (Training plus Validation data) to give the intended forecast. This gives 

the model greater credibility as more data is utilised; also, the validation data has the most 

recent data which is often the most useful data in forecasting future data. The model is then 

ready to be used for forecasting. 

 

3.3.6 The LSTM Model 

 

The Software (SW) used for this model is the Python programming language which has 

some important libraries such as Keras, NumPy, Pandas and matplotlib. 

 
i. The Keras library is used for creating good networks. 

 
ii. The Numpy library is used for numerical analysis. 

 
iii. The Pandas library is used for the robust structuring of data and feature extraction. 

 
iv. Matplotlib is for graphical plotting. 

 

As seen in the Flowchart of Figure 3.3, the libraries are imported after which the training 

dataset is imported. The data is processed to make it suitable for use. The data is re- shaped 

to be used by the Numpy library. The LSTM model is created and the test dataset is 

imported to test the LSTM model. The matplotlib library is finally used to plot the graph. 
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Figure 3.3 Flowchart of the LSTM Model. 
 

The MAE and MAPE are used to evaluate the performance of the LSTM model using 

 

equations 3.15 and 3.16, respectively. 
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3.3.7 Performance Metrics 
 

 

The reason for evaluating the performance of a predictive model is to determine how well 

the model performs when it is eventually deployed. The relevant performance metrics of 

the model are the Mean Absolute Error or deviation (MAE) and the Mean Absolute 

Percentage Error (MAPE) shown in equations 3.15 and 3.16 for assessing the prediction 

accuracy of the model. 

 
a. Mean Absolute Error 

 

The MAE is the ratio of the summation of the difference between the observed value (At) 

and the forecasted value (Ft) to the total number of observations (n). 

 ∑ |   −  |  
= 

  =1   

(3.15)  

 

 

    

 

b. Mean Absolute Percentage Error 

 

The mean absolute percentage error is a measure of the error as a percentage of actual value. 

 

It is the average of the absolute errors divided by the actual observed values. 

 
∑  =1 | 

−   
|  

   

= 

   
(3.16) 

   

 

 

3.4 PdM Scheduling Algorithm 

 

Maintenance impact which is quantified as the change in component availability leading to 

system availability is key to optimum maintenance scheduling (Rahdar et al., 2020). The 

main reasons for PdM are to avoid unnecessary maintenance tasks for the reduction of 

operational cost and to improve system availability. 

 
Fixed interval PM is often adopted by maintenance/facility managers. To improve 

availability, they shorten the intervals to increase the PM count. Though, this may improve 
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the availability but at increased operating expenditure (OPEX). On the other hand, 

increasing the interval length to reduce the frequency of PM count will improve OPEX at 

the expense of system availability. 

 
In this work, the predictive models of Base Station Availability can be used for the PdM 

schedule as seen in the algorithm of Figure 3.4. Diagnostic tests are conducted on various 

sub-systems and systems such as the Radio Frequency Units (RFU), transmission (TX) 

equipment, Base Station Subsystem (BSS) equipment and power equipment. After the 

diagnostic tests and alarm analysis that are made possible by modules in the equipment, the 

right decision for scheduling maintenance is triggered using the predictive tool. 
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Figure 3.4 PdM Scheduling Algorithm 
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CHAPTER FOUR 
 

4.0 RESULTS AND DISCUSSION 

 

4.1 Plot of BTS Availability for MNO W, X, Y and Z 

 

The TS data for the four MNOs were taken from 1
st

 January 2018 to 26
th

 September 2020 

making a thousand data points. The TS plots for the four MNOs are shown in groups of 200 

days as shown in Figures 4.1 (a) to (e). The observed availability of the MNOs is seen to 

dip in the availability values. For instance, in Figure 4.1 (a), MNO W had an Availability of 

86% on the 7
th

 of April 2018. MNO Y had similar dips from 11
th

 to 15
th

 April 2018, MNO 

X dipped in availability value in the middle of January 2018 having an Availability of 90%. 

In Figure 4.1 (e), MNO Y was observed to have a very poor availability of around 65% in 

July 2020. These dips in availability values are often caused by factors like weather, 

equipment failures and inadequate maintenance of passive facilities. These flash periods are 

crucial for further analysis for proper planning of maintenance (Predictive, Preventive). 
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(b) 
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(c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d) 
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(e) 

 

Figure 4.1 (a – e) Plots of Base Station Availability in Groups of 200 Days for MNO 
 

 

For a threshold of 95%, Figure 4.2 shows the percentage number of days having availability 

values above 95% for the 4 MNOs considering groups of 50days over 1000 days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2 Percentage of Base Station Availability Over 95% Considering Groups of 50 
Days Over the 1000 days. 
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Similarly, Figure 4.3 shows the percentage of days in which the MNOs have availability 

values above the 98% threshold. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3 Percentage of Base Station Availability Over 98% Considering Groups of 50 
Days Over the 1000 days 

 

The ARIMA p, d and q parameters were obtained by using autocorrelation and partial 

autocorrelation plots are for the systematic determination of the model‘s parameters. Using 

SPSS, the plots for the MNOs were taken and illustrated subsequently. Figures 4.4 (a) and 

(b) are the autocorrelation and partial autocorrelation plots respectively for MNO W. 
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Figure 4.4 (a) Autocorrelation Plot for BTS Availability for MNO W  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.4 (b) Partial Autocorrelation Plot for BTS Availability for MNO W 

 

From Figure 4.4(a), it is observed that the Autocorrelation Function (ACF) is strongly 

autocorrelated across all the lags (from lag 1 to lag 16 have significant ACF) and this is a 

characteristic of non-stationary data. For predictive modelling, the data must be stationary, 

so, the non-stationary data is transformed to a stationary one by a first-order differencing, 
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which means that the value of ‗d‘ in the ARIMA model will be equal to 1. The process 

gives a differenced TS plot for the Availability of MNO W as in Figure 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5 Plot of the transformed TS for MNO W with a First Order Differencing. 

 

The plot shows a variation around a constant mean (around 0.0) and the variance around the 

mean is within a reasonable bound which is expected for stationary data. The ACF and PACF 

plots done on this transformed TS gave the outcomes depicted in Figures 4.6 (a) and (b). The 

earlier (starting from lag 1 to lag 16) significant lags in the ACF and PACF plots indicate the 

value for the ARIMA parameters q and p respectively. A close examination of Figures 4.6 

 
(a) and (b) show that q is equal to three while p is equal to zero. This is to say that the 

ARIMA (p, d, q) parameters for MNO W are (0,1,3). 

 
ARIMA (p, d, q)MNO W = (0,1,3). 
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Figure 4.6 (a)  ACF Plot for the Transformed TS Data for MNO W.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.6 (b) PACF Plot for the Transformed TS Data for MNO W. 
 

 

A similar procedure gave the ARIMA parameters for the other MNOs and the parameters 

are presented in Table 4.1. 
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4.2 Creating the Predictive Models for the MNOs 

 

The ARIMA model parameters for each of the MNOs were used in the creation of the 

predictive model for the BTS availability for the MNOs. The parameters are arranged in 

Table 4.1. 

 
Table 4.1 Model Parameters for the MNOs 

MNO ARIMA MODEL 

W ARIMA (0,1,3) 
X ARIMA (1,0,1) 

Y ARIMA (2,0,4) 

Z ARIMA (0,1,1) 

Source: Author‘s Field Work.  
 

 

The BTS availability data as a TS data was taken for a period of 143 weeks (from 1
st

 

January 2018 – 26
th

 September 2020) which is from week 1 to week 143; while the model, 

is to forecast the availability data up to week 155. The plots of the BTS availability for 

MNO using the ARIMA models are presented in Figures 4.11, 4.12, 4.13 and 4.14. 

 

The observed Availability data spanned from 1
st

 January 2018 to 26
th

 September 2020 

corresponding to 1000 data points. The result of the prediction from 27
th

 September 2020 

to 20
th

 December 2020 is displayed in Table 4.2. 
 

From the prediction, MNO would have a working tool for proactive rather than reactive 

planning for scheduling operations such as PPM and PdM on BTS and even network nodes 

for the improvement of Availability. Since the prediction will beam more light on the 

general health status of Base Station and other NEs, appropriate decision-making processes 

that enhance efficiency are made possible and nodes with repetitive failures could be 

furnished with redundancies. 

 
Figures 4.7 to 4.10 are the plots of the ARIMA prediction during the validation period. 
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Figure 4.7 Plot of predicted availability for MNO W (Validation period)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.8 Plot of predicted availability for MNO X (Validation period) 
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Figure 4.9 Plot of predicted availability for MNO Y (Validation period)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 Plot of predicted availability for MNO Z (Validation period) 
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Table 4.2 Predicted BTS Availability for MNO (ARIMA)   

 
Date MNO W MNO X MNO Y 

MNO 
Date MNO W MNO X MNO Y 

MNO 
 

Z Z          

 27-Sep-20 98.34 99.13 97.26 98.81 09-Nov-20 98.29 98.91 97.63 98.82 

 28-Sep-20 98.25 99.12 97.18 98.81 10-Nov-20 98.28 98.91 97.63 98.82 

 29-Sep-20 98.31 99.10 97.32 98.81 11-Nov-20 98.28 98.91 97.63 98.82 

 30-Sep-20 98.31 99.09 97.53 98.81 12-Nov-20 98.28 98.91 97.63 98.82 

 01-Oct-20 98.30 99.08 97.65 98.81 13-Nov-20 98.28 98.91 97.63 98.82 

 02-Oct-20 98.30 99.07 97.62 98.81 14-Nov-20 98.28 98.91 97.63 98.82 

 03-Oct-20 98.30 99.06 97.63 98.81 15-Nov-20 98.28 98.90 97.63 98.82 

 04-Oct-20 98.30 99.05 97.63 98.81 16-Nov-20 98.28 98.90 97.63 98.82 

 05-Oct-20 98.30 99.04 97.63 98.81 17-Nov-20 98.28 98.90 97.63 98.82 

 06-Oct-20 98.30 99.03 97.63 98.81 18-Nov-20 98.28 98.90 97.63 98.82 

 07-Oct-20 98.30 99.02 97.63 98.81 19-Nov-20 98.28 98.90 97.63 98.82 

 08-Oct-20 98.30 99.01 97.63 98.81 20-Nov-20 98.28 98.90 97.63 98.82 

 09-Oct-20 98.30 99.00 97.63 98.81 21-Nov-20 98.28 98.90 97.63 98.82 

 10-Oct-20 98.30 99.00 97.63 98.81 22-Nov-20 98.28 98.90 97.63 98.82 

 11-Oct-20 98.30 98.99 97.63 98.81 23-Nov-20 98.28 98.90 97.63 98.82 

 12-Oct-20 98.30 98.98 97.63 98.81 24-Nov-20 98.28 98.90 97.63 98.82 

 13-Oct-20 98.30 98.98 97.63 98.81 25-Nov-20 98.28 98.90 97.63 98.82 

 14-Oct-20 98.30 98.97 97.63 98.81 26-Nov-20 98.28 98.90 97.63 98.82 

 15-Oct-20 98.30 98.97 97.63 98.81 27-Nov-20 98.28 98.90 97.63 98.82 

 16-Oct-20 98.30 98.96 97.63 98.81 28-Nov-20 98.28 98.90 97.63 98.82 

 17-Oct-20 98.30 98.96 97.63 98.81 29-Nov-20 98.28 98.90 97.63 98.82 

 18-Oct-20 98.30 98.96 97.63 98.81 30-Nov-20 98.27 98.90 97.63 98.82 

 19-Oct-20 98.30 98.95 97.63 98.81 01-Dec-20 98.27 98.90 97.63 98.82 

 20-Oct-20 98.30 98.95 97.63 98.81 02-Dec-20 98.27 98.90 97.63 98.82 

 21-Oct-20 98.29 98.94 97.63 98.81 03-Dec-20 98.27 98.90 97.63 98.82 

 22-Oct-20 98.29 98.94 97.63 98.81 04-Dec-20 98.27 98.90 97.63 98.82 

 23-Oct-20 98.29 98.94 97.63 98.82 05-Dec-20 98.27 98.90 97.63 98.82 

 24-Oct-20 98.29 98.94 97.63 98.82 06-Dec-20 98.27 98.90 97.63 98.83 

 25-Oct-20 98.29 98.93 97.63 98.82 07-Dec-20 98.27 98.90 97.63 98.83 

 26-Oct-20 98.29 98.93 97.63 98.82 08-Dec-20 98.27 98.90 97.63 98.83 

 27-Oct-20 98.29 98.93 97.63 98.82 09-Dec-20 98.27 98.90 97.63 98.83 

 28-Oct-20 98.29 98.93 97.63 98.82 10-Dec-20 98.27 98.90 97.63 98.83 

 29-Oct-20 98.29 98.92 97.63 98.82 11-Dec-20 98.27 98.90 97.63 98.83 

 30-Oct-20 98.29 98.92 97.63 98.82 12-Dec-20 98.27 98.90 97.63 98.83 

 31-Oct-20 98.29 98.92 97.63 98.82 13-Dec-20 98.27 98.90 97.63 98.83 

 01-Nov-20 98.29 98.92 97.63 98.82 14-Dec-20 98.27 98.90 97.63 98.83 

 02-Nov-20 98.29 98.92 97.63 98.82 15-Dec-20 98.27 98.90 97.63 98.83 

 03-Nov-20 98.29 98.92 97.63 98.82 16-Dec-20 98.27 98.90 97.63 98.83 

 04-Nov-20 98.29 98.91 97.63 98.82 17-Dec-20 98.27 98.90 97.63 98.83 
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05-Nov-20 98.29 98.91 97.63 98.82 18-Dec-20 98.27 98.90 97.63 98.83 

06-Nov-20 98.29 98.91 97.63 98.82 19-Dec-20 98.27 98.90 97.63 98.83 

07-Nov-20 98.29 98.91 97.63 98.82 20-Dec-20 98.26 98.90 97.63 98.83 

08-Nov-20 98.29 98.91 97.63 98.82        
Source: Author's Field Work. 

 

Figures 4.11, 4.12, 4.13 and 4.14 show the predicted BTS availability graph for MNO W, MNO 

X, MNO Y and MNO Z, respectively. The BTS Availability data were analysed using their 

ACF and PACF plots. MNO W and MNO Z were observed not to be stationary, a requirement 

for TSA is that the data should be stationary. After the process of differencing, the p, d, q 

values for the ARIMA models were got. MNO X and MNO Y did not require the process of 

differencing and their ARIMA model parameters were obtained. The ARIMA models for all the 

MNOs are: (0,1,3), (1,0,1), (2,0,4) and (0,1,1) for MNO W, MNO X, MNO Y and MNO Z, 

respectively as contained in Table 4.1. The parameters were used for their respective data and 

the predictive models were used for prediction and the performance of the models were 

evaluated. The MAE and MAPE results are shown in Table 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 Predicted BTS Availability for MNO W Using ARIMA (0,1,3) Model. 
 

 

52 



Also, the ARIMA (1,0,1) model was used for the prediction of BTS Availability for MNO 

X and is shown in Figure 4.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Predicted BTS Availability for MNO X Using ARIMA (1,0,1) Model. 

Similarly, the predicted BTS availability are presented in figures 4.12 and 4.13 using 

ARIMA (2,0,4) and ARIMA (0,1,1) respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.13 Predicted BTS Availability for MNO Y Using ARIMA (2,0,4) Model 
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Figure 4.14 Predicted BTS Availability for MNO Z Using ARIMA (0,1,1) Model. 
 

 

4.3 Results of the LSTM Models  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 
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(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
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(d) 

 

Figure 4.15    LSTM Predicted BTS Availability for (a) MNO W, (b) MNO 
X, (c) MNO Yand (d) MNO Z 

 

4.4 Prediction Accuracy 

 

The data used in the ARIMA model was shared into the training (from 1
st

 January 2018 – 

31
st

 December 2019) data which is about 73% and validation (1
st

 January 2020 – 26
th

 

September 2020) represented about 27% of the entire data. The performance metrics (MAE 

and MAPE) were used to evaluate data in the validation period. Table 4.3 shows the MAE 

and MAPE for the ARIMA models. 

 

The performance metrics from Table 4.3 indicates that the predictive model for MNO Z has 

the best accuracy, followed by that of MNO X, MNO W and MNO Y in the order in terms 

of both MAE and MAPE. 
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Table 4.3 Performance Metrics for the ARIMA Models 

MNO MAE MAPE 

MNO W 1.40 0.015 

MNO X 0.66 0.0068 

MNO Y 1.57 0.018 

MNO Z 0.62 0.0063  
Source: Authors Field Work  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.16 MAE against MNO 
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Figure 4.17 MAPE against MNO  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.18 Performance Chart for the MNO. 
 

Table 4.4 Performance Metrics Comparison for the Models (MAE)  
MNO ARIMA LSTM 

MNO W 1.40 2.84 
MNO X 0.66 0.89 

MNO Y 1.57 2.82 

MNO Z 0.62 1.12 
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Table 4.5 Performance Metrics Comparison for the Model (MAPE) 

MNO ARIMA LSTM 

MNO W 0.015 0.032 

MNO X 0.0068 0.0092 

MNO Y 0.0176 0.035 

MNO Z 0.0063 0.012 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.19 MAE Comparison for ARIMA and LSTM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.20 MAPE Comparison for ARIMA and LSTM. 
 

From the results, it is observed that the LSTM models have higher MAE values than the 

 

ARIMA models by 51%, 26%, 44% and 45% for MNO W, MNO X, MNO Y and MNO Z 

 

respectively. Similarly, for MAPE, the LSTM models have 53%, 26%, 50% and 47% higher 

 

values than the ARIMA models for the respective MNOs. 
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4.5 Result of Scheduling Algorithm 

 

The result of the PdM scheduling algorithm is contained in Table 4.6. The maintenance 

counts for the MNOs based on the ARIMA prediction were estimated using the thresholds 

of 95% and 90%. 
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Table 4.6 Scheduling Algorithm for the MNOs Using Thresholds 
 MNO W MNO X MNO Y MNO Z 
         

 Maintenance Number of Maintenance Number of Maintenance Number of Maintenance Number of saved 
 count based on saved count based on saved count based on saved count based on maintenances 

 predicted maintenances predicted maintenances predicted maintenances predicted  

 availability < 95  availability < 95  availability < 95  availability < 95  

 34 0 0 33 36 0 1 32 

 Maintenance Number of Maintenance Number of Maintenance Number of Maintenance Number of saved 

 count based on saved count based on saved count based on saved count based on maintenances 

 predicted maintenances predicted maintenances predicted maintenances predicted  

 availability < 90  availability < 90  availability < 90  availability < 90  

 8 25 0 33 6 27 0 33 
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Based on the algorithm that determines when maintenance should be carried out at the Base 

Station based on predicted low availabilities, the number of maintenances was calculated 

for each MNO using two results; 95% and 90% availabilities as thresholds for doing 

maintenance. 

 
These were compared with a fixed maintenance schedule of once-monthly which results in 

33 maintenances within the period under investigation. 

 

MNO X and MNO Z have higher counts of Base Station availability for both thresholds. 

MNO Y has the least number of Availability counts of high Availability above the 

thresholds. The MNOs in order of ranking based on Base Station Availability in descending 

order are MNO Z, MNO X, MNO W and MNO Y. 

 

Based on the Predictive models, MNO Z has the best accuracy, followed by MNO X, and 

MNO W. MNO Y is the worst in accuracy. 
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CHAPTER FIVE 
 

 

5.0 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

There is a great dependence on communication services in modern times and the demand 

for very high Availability is now taking an important concern as users of the services must 

get their devices connected irrespective of the status of the channels. This quest for very 

high Availability is even expected to increase with the envisaged full deployment of 5G 

technology. Of what use is it going to be anyway if, after a well-deployed technology, 

service is not available when it is needed most? Applications like the IoT, telemedicine, 

Forex and Cryptocurrency trading will demand very high BTS availability and MNOs 

would do much to retain their subscribers otherwise, they will lose out. 

 

Conscious efforts have been put by telecommunications vendors to improve the reliability 

and the MTBF of components and equipment. Such components and devices have strict 

Availabilities of five or six ‗nines.‘ This has not yielded the desired BTS Availability for 

the MNOs in Minna as studied in this research due to the major Availability barrier, 

namely: MTTR. Even if the system fails, it should be restored fast, such that the period of 

the outage becomes minimal. Therefore, it is necessary to come up with a means of 

reducing MTTR to boost Availability. 

 

In this research, the historic BTS Availability data for a thousand data points were used for 

designing ARIMA-based predictive models for four MNOs in Minna from 1st January 2018 to 

26
th

 September 2020. 73% of the data was used for model training, the remaining 27% was 

used for model validation and a prediction was made by the model from 27
th

 September 
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2020 to 20
th

 December 2020. The model parameters (p,d,q) used after a careful ACF and 

PACF analysis are: ARIMA (0,1,3), ARIMA (1,0,1), ARIMA (2,0,4) and ARIMA (0,1,1) for 

MNO W, MNO X, MNO Y and MNO Z respectively. The performance metrics used for the 

models are the MAE and MAPE. The MAE and MAPE for MNO W, MNO X, MNO Y and 

MNO Z are 1.40 and 0.015; 0.66 and 0.0068; 1.57 and 0.018; and 0.62 and 0.0063 respectively. 

Based on the results of the performance metrics, the ranking of the MNOs in terms of 

descending order of model performance are MNO Z, MNO X, MNO W and MNO Y, 

respectively. It is pertinent to note that low values of MAE and MAPE across all the MNOs 

indicate that the prediction values are close to the actual values and are therefore valid for good 

planning and decision making for proper PdM and PPM geared towards a substantial reduction 

of MTTR, which invariably improves the BTS Availability of the MNOs. 

 
The LSTM models were compared with the ARIMA models. Their MAE and MAPE are: 

2.84, 0.89, 2.82, and 1.12; 0.032, 0.0092, 0.035 and 0.012 for MNO W, MNO X, MNO Y 

and MNO Z respectively. From the results, it is observed that the ARIMA models 

performed better than the LSTM models in all the MNOs. 

 

5.2 Recommendations 

 

It would be recommended that MNOs should pay more attention to perceived interruptions 

and their causes by careful study of the trends in the BTS Availability to dedicate their 

resources to units and areas that show lower Availability. This helps in curtailing hidden 

future failures and reduces operational costs. 

 

In this work, the concept for availability focused on the MNOs. It is recommended that the 

concept could be investigated from the customer or subscribers‘ perspective. 
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5.3 Contributions to Knowledge 

 

This work has contributed to knowledge by developing: 

 

i. ARIMA-based predictive models of Base Station Availability for MNOs in Minna. 

 

ii. PdM scheduling algorithm for proactive rather than reactive planning of BTS and 

network nodes maintenance for the improvement of availability and OPEX. 

 
iii. Provision of Base Station Availability data for MNOs in Minna. 

 

 

. 
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APPENDIX A 
 

 

SPSS CODE FOR THE ARIMA – BASED MODEL 
 

The following new variables are being created: 

 

Name Label 

 

WEEK_ WEEK, not periodic 

 

DAY_ DAY, period 7 

 

DATE_ Date.  Format:  "WWWW DDD" 

 

* Sequence Charts. 

 

TSPLOT VARIABLES=MNOW MNOX MNOY 

MNOZ /ID=DATE 

 
/NOLOG. 

 
 
 
 

ACF VARIABLES=MNOW 

 

/NOLOG 

 

/MXAUTO 16 

 

/SERROR=IND 

 

/PACF. 
 
 
 
 

* Sequence Charts. 

 

TSPLOT VARIABLES=MNOW 

 

/ID=DATE 

 

/NOLOG 

 

/DIFF=1  
70 



/FORMAT NOFILL NOREFERENCE. 

 

ACF VARIABLES=MNOW 

 

/NOLOG 

 

/DIFF=1 

 

/MXAUTO 16 

 

/SERROR=IND 

 

/PACF. 
 
 

 

PREDICT THRU END. 

 

* Time Series Modeler. 

 
TSMODEL 

 

/MODELSUMMARY PRINT=[MODELFIT RESIDACF RESIDPACF] 

/MODELSTATISTICS DISPLAY=YES MODELFIT=[ SRSQUARE] 

/MODELDETAILS PRINT=[ PARAMETERS RESIDACF RESIDPACF] PLOT=[ 

 
RESIDACF RESIDPACF] 

 

/SERIESPLOT OBSERVED FORECAST FORECASTCI 

/OUTPUTFILTER DISPLAY=ALLMODELS 

 
/SAVE PREDICTED(Predicted) 

 
/AUXILIARY CILEVEL=95 MAXACFLAGS=24 

 
/MISSING USERMISSING=EXCLUDE 

 

/MODEL DEPENDENT=MNOW INDEPENDENT=DATE 

PREFIX='Model' 
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/ARIMA AR=[0] DIFF=1 MA=[3,2,1] ARSEASONAL=[0] DIFFSEASONAL=0 

MASEASONAL=[0] 

 
TRANSFORM=NONE CONSTANT=YES 

 

/AUTOOUTLIER DETECT=OFF. 
 

 

ACF VARIABLES=MNOX 

 

/NOLOG 

 

/MXAUTO 16 

 

/SERROR=IND 

 

/PACF. 
 

 

PREDICT THRU END. 

 

* Time Series Modeler. 

 
TSMODEL 

 

/MODELSUMMARY PRINT=[MODELFIT RESIDACF RESIDPACF] 

/MODELSTATISTICS DISPLAY=YES MODELFIT=[ SRSQUARE] 

/MODELDETAILS PRINT=[ PARAMETERS RESIDACF RESIDPACF FORECASTS] 

 
PLOT=[ RESIDACF RESIDPACF] 

 

/SERIESPLOT OBSERVED FORECAST FORECASTCI 

/OUTPUTFILTER DISPLAY=ALLMODELS 

 
/SAVE PREDICTED(Predicted) 

 
/AUXILIARY CILEVEL=95 MAXACFLAGS=24 

 

/MISSING USERMISSING=EXCLUDE 

 

/MODEL DEPENDENT=MNOX INDEPENDENT=DATE 
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PREFIX='Model' 

 

/ARIMA AR=[1] DIFF=0 MA=[1] ARSEASONAL=[0] DIFFSEASONAL=0 

MASEASONAL=[0] 

 
TRANSFORM=NONE CONSTANT=YES 

 

/AUTOOUTLIER DETECT=OFF. 
 

 

ACF VARIABLES=MNOY 

 

/NOLOG 

 

/MXAUTO 16 

 

/SERROR=IND 

 

/PACF. 
 

 

PREDICT THRU END. 

 

* Time Series Modeler. 

 
TSMODEL 

 

/MODELSUMMARY PRINT=[MODELFIT RESIDACF RESIDPACF] 

/MODELSTATISTICS DISPLAY=YES MODELFIT=[ SRSQUARE] 

/MODELDETAILS PRINT=[ PARAMETERS RESIDACF RESIDPACF FORECASTS] 

 
PLOT=[ RESIDACF RESIDPACF] 

 

/SERIESPLOT OBSERVED FORECAST FORECASTCI 

/OUTPUTFILTER DISPLAY=ALLMODELS 

 
/SAVE PREDICTED(Predicted) 

 

/AUXILIARY CILEVEL=95 MAXACFLAGS=24 

 

/MISSING USERMISSING=EXCLUDE 
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/MODEL DEPENDENT=MNOY 

INDEPENDENT=DATE PREFIX='Model' 

 
/ARIMA AR=[2,1] DIFF=0 MA=[4,3,2,1] ARSEASONAL=[0] DIFFSEASONAL=0 

MASEASONAL=[0] 

 
TRANSFORM=NONE CONSTANT=YES 

 

/AUTOOUTLIER DETECT=OFF. 
 

 

ACF VARIABLES=MNOZ 

 

/NOLOG 

 

/MXAUTO 16 

 

/SERROR=IND 

 

/PACF. 
 

 

* Sequence Charts. 

 

TSPLOT VARIABLES=MNOZ 

 

/ID=DATE 

 

/NOLOG 

 

/DIFF=1 

 

/FORMAT NOFILL NOREFERENCE. 
 

 

ACF VARIABLES=MNOZ 

 

/NOLOG 

 

/DIFF=1 

 

/MXAUTO 16 
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/SERROR=IND 

 

/PACF. 

 

PREDICT THRU END. 

 

* Time Series Modeler. 

 
TSMODEL 

 

/MODELSUMMARY PRINT=[MODELFIT RESIDACF RESIDPACF] 

/MODELSTATISTICS DISPLAY=YES MODELFIT=[ SRSQUARE] 

/MODELDETAILS PRINT=[ PARAMETERS RESIDACF RESIDPACF FORECASTS] 

 
PLOT=[ RESIDACF RESIDPACF] 

 

/SERIESPLOT OBSERVED FORECAST FORECASTCI 

/OUTPUTFILTER DISPLAY=ALLMODELS 

 
/SAVE PREDICTED(Predicted) 

 
/AUXILIARY CILEVEL=95 MAXACFLAGS=24 

 
/MISSING USERMISSING=EXCLUDE 

 

/MODEL DEPENDENT=MNOZ INDEPENDENT=DATE 

PREFIX='Model' 

 
/ARIMA AR=[0] DIFF=1 MA=[1] ARSEASONAL=[0] DIFFSEASONAL=0 

MASEASONAL=[0] 

 
TRANSFORM=NONE CONSTANT=YES 

/AUTOOUTLIER DETECT=OFF. 

 

MEANS TABLES=MAE MAPE BY MNO 

/CELLS=MEAN COUNT STDDEV. 
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APPENDIX B 
 

 

PLATES  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate I (a) BTS3900 (An Open Indoor BTS, Vendor: Huawei)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Plate I (b) BTS3900 (Closed Indoor BTS, Vendor: Huawei)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Plate II BSC6900 (Vendor: Huawei) 
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Plate III UMG8900 (Universal Media Gateway, Vendor: Huawei)  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Plate IV OptiX900 (Fibre Termination Equipment, Vendor: Huawei)  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Plate V Tower (For Mounting RF, Microwave Antennas and Terminating Cables)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate VI A Rack of Microwave Radio Indoor Units for NEs. 
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