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ABSTRACT

Wildland fire spread is one of the most challenging problems faced by reserved or
unreserved vegetation in many developed and developing nations, because it can lead to
serious environmental hazards in claiming lives, properties, animals and some other
valuable treasures. This thesis establishes an approximate analytical solution that is
capable of analysing fire spread in a real-time coupled atmospheric wildland fire, in
determining the effect of temperature, oxygen concentration, volume fraction of dry
organic substance, volume fraction of moisture and volume fraction of coke. The
analytical solution is obtained via direct integration and eigenfunction expansion
technique, which depicts the influence of the parameters involved in the system. The
effect of change in parameters values such as Frank-Kamenetskii number, Radiation
number, Peclet energy number, Peclet mass number, Activation energy number and
Equilibrium wind velocity are presented graphically and discussed. The results obtained
show that Frank-Kamenetskii number reduces the temperature. Radiation number and
Peclet energy number reduces the temperature, oxygen concentration and volume
fraction of coke while they enhances volume fractions of dry organic substance and
moisture. Activation energy number reduces the temperature and volume fraction of
coke while it enhances volume fractions of dry organic substance and moisture. Also,
Peclet mass number and Equilibrium wind velocity both enhance oxygen concentration.
The inference drawn from this is that an increase in Radiation number will remove heat
from the burning scene. Similarly, reducing wind velocity will limit the oxygen contact
with fuel. With continuous supply of heat, the ignition of additional fuel will continue as
long as there is enough oxygen present. Thus, it is obvious that these three elements
(heat, fuel and oxygen) must be present before combustion can occur. Varying anyone
of the elements will vary the intensity or otherwise of the fire. Armed with this
knowledge, the fire fighters are better equipped to manage fire.
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CHAPTER ONE
1.0 INTRODUCTION
1.1  Background to the Study

The term _wildfire® which also means wildland fire, rural fire or forest fire refers to an
unplanned, unwanted or uncontrolled fire in an area of combustible vegetation occurring
most likely in rural areas (Scott and Glasspool, 2006).

Forest fire ignition could be as a result of; human action (intentional) in clearing of land,
extreme/intensive drought, in rare cases thunderstorm (lightning) and hunters burning bush
in search of wild animals. For both human, extreme/intensive drought and lightning-caused
fires, there is a geographical gradient of fire ignition, mainly due to variations in climate
and fuel composition but also to population density for instance. The timing of fires
depends on their causes. In populated areas, the timing of human-caused fires is closely
linked to human activities and peaks in the afternoon whereas, in remote areas, the timing
of lightning-caused fires is more linked to weather conditions and the season, with most
such fires occurring in summer. Better tools for modelling forest fire behaviour are
important for managing fire suppression, planning controlled burns to reduce the fuels, as
well as to help assess fire danger (Anne et al., 2012).

Basically, there four types of fire models which are; surface fire, crown fire, spotting fire
and ground fire. Surface fire models deals with the fire that burns the vegetation closed to
the surface, such as brush, small trees, or herbaceous plants. Crown fire models are
somewhat complementary to surface fire models and studied how the fire spreads over the
canopy of trees in a given forest. Spotting fire models provides the equations to analyse

those new fire caused by incandescent pieces of the main fire transported out of the main



fire perimeter. Finally, ground fire models focused their attention on those physical

processes that occur in the substrate of the soil when a fire takes place (Carlos, 2014)

The greatest aim of any analysing system is to enable an end user to carry out useful and
meaningful analysis. A useful analysis is one that helps the user achieve a particular aim.
The field of wildland fire behaviour, aims primarily to stop the spread of the fire or to at
least reduce its impact on life and property. The earliest efforts at wildland fire behaviour
analysis concentrated on analysing the likely danger posed by a particular fire or set of
conditions prior to the outbreak of a fire. These fire danger systems were used to assess the
level of preparedness of suppression resources or to aid in the identification of the onset of
bad fire weather for the purpose of calling total bans on intentionally lit fire (Perminov,
2018).

The forest fire are very complicated phenomena. At present, fire services can forecast the
danger rating of or the specific weather elements relating to forest fire. There is need to
understand and analyse forest fire initiation, behaviour and spread (Perminov, 2018).

It seems more promising to use methods of mathematical modeling that will allow taking
into account the dynamics of this process in space and time.

1.2  Statement of the Research Problem

In global context, fire outbreak is becoming alarming due to intractable practice. Analysis
of vegetation fire spread has been a challenge to researchers and managers for several
decades, but in spite of the various models and fire behaviour forecasting systems that have
been developed over the years as described by Sullivan (2009a, 2009b, 2009c), there is not
yet a commonly accepted fire behaviour simulator that can be applied in operational

conditions for large and complex fire. This is due to the complexity of the physical and



chemical processes that are involved in large-scale fire requiring a large number of input
parameters that are not easy to obtain and physical models that are not yet fully developed.
Physical models have been formulated mathematically and implemented in numerical codes
like Grishin (1994), Albini (1996), Linn et al. (2002), Se"ro-Guillaume and Margerit (2002)
and Mell et al. (2007). Nevertheless, practical applications of these models are not yet
possible owing to large computational requirements and uncertainty regarding the
description of key physical processes. Based on these scenarios, there is need for this study
to broaden and sharpen the scope of what is already known about fire spread analysis and
coupled atmospheric-wildland fire.

1.3  Significance of the Study

Wildland fire is one of the most complicated problems discovered worldwide and they
cause a lot of havoc to biodiversity as well as local ecology. Fire spread is difficult to
fight/combat in nature, yet it cannot be done away with, but can only be controlled,
suppressed or managed. However, in a recent time, fire spread model gained more attention
in order to enhance suppression rate. It is therefore important for us to widen our
knowledge on wildland fire spread. Based on this, we present a mathematical model to
analyse fire spread process, thus making the research significant.

14 Scope and Limitation

The thesis focuses on the mathematical model for analysing fire spread in a real-time
coupled atmospheric-wildland fire. It is limited to approximate analytical simulation of the
governing model equations.

1.5 Aim and Objectives

The aim of this research work is to establish an analytical solution that is capable of

analysing fire spread in real-time coupled atmospheric-wildland fire.
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The objectives of this study are to:
i.  Formulate mathematical equations governing forest fire propagation.
ii.  Obtain the analytical solution of the model using direct integration and
eigenfunction expansion technique

iii.  Provide the graphical representation of the solutions obtained.
1.6  Definition of Terms
Active crown fire: This occurs when the surface fire and crown fire are linked. Surface
intensity is sufficient to ignite tree crowns, and fire spread and intensity in the tree crowns
encourages surface fire spread and intensity.
Combustion: Is a flame speed which is the measured rate of expansion of the flame front
in a combustible reaction.
Crown fire: This is a forest fire that spreads from treetop to treetop at great speed ahead of
the ground fire.
Emissions: Is the production and discharge of gaseous substance into the atmosphere. Fire:

Is a chemical reaction involving the bonding of oxygen with carbon or other fuel, with the

production of heat and the presence of flame. Firebrand: Is a piece of burning wood.

Fire prediction: Is a way of forecasting the outbreak of fire.

Fire spread: Is the rate at which fire is propagated through radiation, convection and
conduction.

Flame: A stream of burning vapour or gas, emitting light and heat.

Mass fire: Is a fire resulting from many simultaneous ignitions that generates a high level

of energy output.



Modeling: Is the generation of a physical, conceptual or mathematical representation of a

real phenomenon that is difficult to observe directly.

Peatbog fire: This is also known as underground or root fire, and it is a wildland fire
caused by the burning of tree roots. This type of fire can burn for a great length of time,

until its fuel is totally consumed or exhausted.

Running crown fire: Is the crown fire that covers the entire forest from the soil surface to
the top of the tree crowns or passes through the trees and the underbrush, herbage and moss
layer.

Solid fuel: Refers to various forms of solid material that can be burnt to release energy,
providing heat and light through the process of combustion.

Surface fire: Is a forest fire that burns only the surface litter and undergrowth.
Suppression: Is an act of stoppage or reduction of fire spread.

Wildland fire: Is an unwanted or unplanned fire in an area of combustible vegetation.
Wind: Is the movement of atmospheric air usually caused by convection or differences in

air pressure.



CHAPTER TWO
2.0 LITERATURE REVIEW
2.1  Forest Fire
A great deal of work has been done on the theoretical problem of how forest fire spread
(Perminov, 2005). Forest fire models have been developed since 1940 to the present, but a
lot of chemical and thermodynamic questions related to fire behaviour are still to be
resolved. Forest fire are divided into underground (peatbog) fire, surface fire, active crown
fire, running crown fire (also called independent crown fire), and mass fire (Grishin, 2002).
The forest fire are a common occurrence in most parts of the world and they cause a lot of
damage to biodiversity as well as to the local ecology. Wildland fire impact the lives of
millions of people and cause major damage every year worldwide, yet they are a natural
part of the cycle of nature. Better tools for modelling wildland fire behaviour are important
for managing fire suppression, planning controlled burns to reduce the fuels, as well as to
help assess fire danger. Fire models range from tools based on fire spread rate formulas,
such as BehavePlus (Rothermel, 1972; Andrews, 2007). There have been several studies
conducted on wildland fire to clarify and understand the consequences and then plans made
to manage these vegetation fire.
Weber (1991) concentrated on physical wildland fire modelling and proposed a system by
which models were described as physical, empirical or statistical, depending on whether
they account for different modes of heat transfer, make no distinction between different
heat transfer modes, or involve no physics at all. Pastor et al. (2003) proposed descriptions
of theoretical, Empirical and semi-empirical, again depending on whether the model was
based on purely physical understanding, of a statistical nature with no physical

understanding, or a combination of both.



Clark et al. (1996a, b) concluded that, wildland fire is a complicated multiscale process,
from the flame reaction zone on milimeter scale to the synoptic weather scale of hundreds
of kilometers. Since direct numerical simulation of wildland fire is computationally
intractable and detailed data are not available anyway, compromises in the choice of
processes to be modelled, approximations, and parameterisation are essential. Fortunately, a
practically important range of wildland fire behavior can be captured by the coupling of a
mesoscale weather model with a simple 2-D fire spread model.

Clark et al. (1996a, b, 2004) found that weather has a major influence on wildland fire
behavior; in particular, wind plays a dominant role in the fire spread. Conversely, fire
influences the atmosphere through the heat and vapor fluxes from burning hydrocarbons
and evaporation of fuel moisture. Fire heat output has a major effect on the atmosphere; the
buoyancy created by the heat from the fire can cause tornadic strength winds, and the air
motion and moisture from the fire can affect the atmosphere also away from the fire. It is
well known that a large fire —creates its own weatherl. The correct wildland fire shape and
progress result from the two-way interaction between the fire and the atmosphere.

Grishin (1997) divided models into two classes, deterministic or stochastic-statistical.
However, these schemes are rather limited given the combination of possible approaches
and, given that describing a model as semi-empirical or semi-physical is a _glass half-full
or half-empty subjective issue, a more comprehensive and complete convection was
required. Clark et al. (2004) noted that the horizontal wind right above the fireline may
even be zero, and proposed to take the wind from a specified distance behind the fireline.
Also, the strong heat flux from fire disturbs the logarithmic wind profile and the rate of
spread as a function of wind at a specific altitude may not be a good approximation; rather,

the fire spread may depend more strongly on the complete wind profile.
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Mandel et al. (2009) combines the Weather Research and Forecasting Model (WRF) with
the Air Refueling Wing (ARW) dynamical core Skamarock et al. (2008), with a semi-
empirical fire spread model. It is intended to be faster than real time in order to deliver a
good result of prediction and analysis.

2.2 Crown Fire

Crown fire is initiated by convective and radiative heat transfer from surface fire. However,
convection is the main heat transfer mechanism. Crown fire are more difficult to control
than surface fire. One of the first accepted methods for analysing crown fire was given by
Rothermal (1991) and this semi-empirical model allows the collection of robust data
regarding forest fire rates of spread as a function of fuel bulk and moisture, wind velocity
and the terrain slope. However, these models use data for particular cases and do not give
results for general fire conditions. Also, crown fire initiation and hazards have been studied
and modelled in detail (Albini, 1985). Conditions for the start and spread of crown fire
were studied by Van Wagner (1977). The discussion of the problems of modelling forest
fire was provided by a group of co-workers at Tomsk University (Grishin, 1997).

The main results of these studies were presented by Grishin (1997) in his monograph. A
mathematical model of forest fire obtained in this work is based on an analysis of known
and original experimental data (Konev, 1977), and using concepts and methods from
reactive media mechanics. The physical two-phase models used in (Morvan et al., 2004)
may be considered as a development and extension of the formulation proposed by Grishin
(1997) and continuation of numerical modelling of wildfire initiation (Grishin and
Perminov, 1998).

Currently, experimental research on the distribution of grass-roots and crown forest fire has

been continued by Cruz et al. (2002). However, the investigation of crown fire initiation
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has been limited mainly to cases without taking into account the interaction of crown forest
fire with boundary layer of atmosphere. At present, a large amount of studies are focused
on the firebrand generation and transport (Song et al., 2017) at the same time there are
many researches related to spread of forest fire because it is an important parameter used in
the evaluation of hazards for fire safety applications. In the work of (Golner et al., 2017)
the problem of flame spread was revisited, with a particular emphasis on the effect of flow
and geometry on concurrent flame spread over solid fuels. Despite the diversity of studies
related to forest fire, there is currently no data on the dependence of the amount of
combustion products emissions on forest characteristics and meteorological data. Typically,

measurement data are used to estimate the volume of discarded combustion products, in

particular, carbon oxides. As a rule, the calculations of Carbon dioxide (CO, ) release were

based on the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the
Agriculture, Forestry and Other Land Use (AFOLU) sector. For example, Geographic

Information System (GIS) was applied as a key tool for implementing the spatial inventory
of (COZ ) emissions and removals (Miphokasap, 2017). At the same time, Mickler et al.

(2017) developed a method and approach to estimate above ground and below ground
carbon emissions from a 2008 peatland wildfire by analyzing vegetation carbon losses from
field surveys of biomass consumption which in turn, comes from the fire and soil carbon
losses. In another approach, free-burning experimental fire were conducted in a wind tunnel
to explore the role of ignition type and thus fire spread mode on the resulting emissions
profile from combustion of fine Eucalyptus litter fuels (Surawski et al, 2015). However,
these calculations can be used in estimating combustion product emissions for specific

regions and in specific non-changing meteorological conditions. It seems more promising



to use methods of mathematical modelling that will allow taking into account the dynamics
of this process in space and time.

2.3  Fire Spread Simulations

The ultimate aim of any fire spread simulation development is to produce a product that is
practical, easy to implement and provide timely information on the progress of fire spread
for wildland fire authorities. With the advent of cheap personal computing and the
increased use of geographic information systems, the late 1980s and early 1990s saw a
flourishing of methods to analyse and predict the spread of fire across the landscape (Beer,
1990). As the generally accepted methods of analysing the behaviour of wildland fire at
that time were (and still are) one-dimensional models derived from empirical studies
(Sullivan, 2007a), it was necessary to develop a method of converting the single dimension
forward spread model into one that could spread the entire perimeter in two dimensions
across a landscape. This involves two distinct processes: firstly, representing the fire in a
manner suitable for simulation, and secondly, propagating that perimeter in a manner
suitable for the perimeter‘s representation. Two approaches for the representation of the fire
have been implemented in a number of softwares. The first treats the fire as a group of
mainly contiguous independent cell that grows in number, described in the literature as a
raster implementation. The second treats the fire perimeter as a closed curve of linked
points, described in the literature as a vector implementation.

Mandel et al. (2008) analyzed a wildland fire model with data assimilation and used an
ensemble —Kalmanl filter techniques with regularization to assimilate temperatures
measured at selected points into running wildland fire simulations. It was recorded that, the

assimilation technique is able to modify the simulations to track the measurements
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correctly even if the assimilations were started with an erroneous ignition location that is
quite far away from the correct one.

Lopes et al. (2017) addresses the problem of how wind should be taken into account in fire
spread simulations, on the study of the effect of two-way coupling on the calculation of
forest fire spread: model development. Their study was based on the software system Fire
Station, which incorporates a surface fire spread model and a solver for the fluid flow
(Navier—Stokes) equations. It was noted that, a two-way coupling method for fire behaviour
prediction, where the buoyancy effects caused by the fire heat release are fully simulated.
They concluded and described the underlying models for wind field and fire spread
calculation.

2.4  Coupled Atmosphere-Wildland Fire Model

Barovik and Taranchuk (2010) used finite difference approximation method to study the
mathematical modeling of running crown forest fires and observed that at any fixed
equilibrium wind velocity, there is some critical moisture content value W > W* at which
fire propagation stops due to the big losses of thermal energy on Combustible Forest
Material (CFM) heating and drying. In practice, when fighting or localizing the combustion
by spraying water, the conditions for fire extinction by moisture content parameter are
artificially created. The obtained results of computations show that to create fire extinction

conditions it is enough to increase the moisture content. Their model equations are

o 9P

ot =g (pLT), 0t =g (42T ), (21)
o o

ot =d,3 (gl @3,¢,c2,T), ot =0, (22)
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are the dependences describing the speed of CFM pyrolysis, drying, coke burning and
chemical reactions in gas phase.

With initial and boundary conditions:
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Mandel et al. (2018) studied Coupled atmosphere-wildland fire modelling with WRF-Fire.

—_

They described the coupled atmosphere-fire model WRF-Fire, as they did not support
canopy fire, although canopy fire collocated with ground fire is contained in Coupled
Atmospheric Wildland Fire Environment (CAWFE). In a coupled model, however, the
feedback on the fire is from the wind that is influenced by the fire.

Perminov (2018) worked on mathematical modeling of wildland fires initiation and spread

using a coupled atmospheric-forest fire setting. The method of finite volume is used to
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obtain discrete analogies. The boundary-value problem is solved numerically using the
method of splitting according to physical processes. He estimated the amount of carbon
dioxide and carbon monoxide emissions at crown forest fire spread.

Furthermore, the mathematical model gives an opportunity to describe the different
conditions of crown forest fire spread taking into account different weather conditions, and
state of forest combustible materials, which allows applying the given model for analysing
and preventing fire. The results of calculation of the rate of crown forest fire are agreed

with the laws of physics and experimental data (Grishin, 1997). Their model equations are

P2 (j)=Qj=1,3i,3; (2.13)
X
pdl———+—( PV )/0 d '|V| £9i—Qvi; (2.14)
dt ox,  OX, i
T 0
PCy ot m _a (pCpVJT)+Q5R5—aV(T TS)-I-kg(CUR 4oT ) (2'15)
p%Ca _ 0 (L5 )+ Reg— Qe =1, 2, 3; (2.16)
dt oX;
o (cou) . . .
' l‘_ka |—koR+4ksoT +4kqoT*  =0; (2.17)
i\ J)
k=kg +Ks;
4
4 2.18
37,60 — gy Ry Ry — ks (cU p—40T,* o 0 (T-T, ): (218)
i-1 ot
p I =Rp 002 =R p 00%=gr- MR, p 000, (2.19)
ot ot ot 1 M, 3ot

1
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4 4 _
;ca: 1,Pe = pRT ;I(i/li’g =(0,0,-9). (2.20)

Such that
o )
(—E1)
R:kpwe\ K7 |
1 11 1
=) |
R2 :kaZO'sgoze\sRT ) ) ‘|
(&) % (2.21)
Ry =k3 po SJC]_e\ RT ) |
0.25 (-Eg) |
R =kM fem ) oM [
5 5 2 | |
(M) My J|

With the initial values for volume of fractions of condensed phases that is determined using

the expressions:

ap p
Yo d0ov) o wd e (2.22)

e =

p p p

1 2 3

Where

d is the bulk density for surface layer, v, is the coefficient of ashes of forest fuel, W is the
forest moisture content.

2.5  Summary of Review and Gap to Fill

In reviewing the above literatures, we observed that, several works have been carried out on
wildland fire. Some authors worked on fire spread model without considering coupled
atmospheric fire. Others concentrated on coupled atmospheric-wildland fire and ignored
fire spread analysis that incorporates diffusion. In forest fire spread, diffusion is rarely
negligible, and it is advisable to take it into account in analysis fire spread when fire
outbreak takes place. Most authors simulated their models numerically. In view of the

above, the present study is aimed at establishing an analytical solution capable of analysing

15



the volume fractions of dry organic substance, moisture, coke, oxygen concentration and
temperature, by incorporating diffusion term in the process of fire spread in a real-time
coupled atmospheric-wildland fire. This will be achieved via direct integration and

eigenfunction expansion technique.
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CHAPTER THREE
3.0 MATERIALS AND METHODS
3.1 Model Formulation
Following Perminov (2018), a wildfire model is formulated based on balance equations for
energy and fuel, where the fuel loss due to burning corresponds to the fuel reaction rate. In
formulating our model, the following assumptions were made;
i.  the forest during a forest fire is considered as a multi-scale, multi-physics problem.
ii.  the environment is considered to be a five-phase porous medium, consisting of dry
organic substance (matter), water in liquid state (moisture), solid pyrolysis product
(coke), ash and gas phase.
lii.  the gas phase is assumed to consist of oxygen only.
iv.  pressure is considered constant.
v. wind velocity in the forest canopy is assumed constant.
vi.  ash is neglected.
vii.  thermal equilibrium between the gas and solid phase is considered.
Based on the above assumptions, the equations governing forest fires propagation is given
as:

Volume fraction of dry organic substance

op _
s =—koe "7,
Eq
- L. (31)
ot
Volume fraction of moisture
op )
m=—koTze rt | (3.2)
ot 2 m

1 EBEp

17



Volume fraction of coke

E
1 E3

pvaﬂza kpq)e—E —LkSp ¢)C e_R_T. (33)

C
ot clss M13agcox

Mass concentration of oxygen

(oC ac \ of oo Y« (C . ) ]
—_— — P o | — - )
|\ ot +V 6x)‘ axkl g T 6x)| ﬁpgAh X X |‘
{ (34)
£ ! E£ (M \ = |
(]-_‘ZC)kll)sWsCoxe_RT ~KopuT 2 «JmcmeRT Cessoro] 1+ _Cbux\“’c“oxe a |
M/ J
Energy balance equation
( v gD\aT aT o oM «
C 1- i i | — 4+ C V—=—| T—|——T T |
}Lm mr(m9) 20T e pa ConVg = —1 Ty — (T, ) 65
L —E £ |
4KroT* K2 pn 0T .one rr +K3S50q 03k Co€rr . |

J

The initial and boundary conditions are formulated as:

(PS(XlO):¢SOl¢m(x10):¢)m01¢)C(X10):¢C01COX(X10):COXO ,Cox(o,t):CO)(] )
e
Cox (L, 1) =Cor, T (x,0)=To, T(0,t)=T,,, T(L,t)=T.. (e

J
Where
¢ 5 is the volume fraction of dry organic substance
¢ m Is the volume fraction of moisture
¢ ¢ is the volume fraction of coke
Cox IS the concentration of oxygen

T is the temperature (in Kelvin)

x is a coordinate in the system of coordinates connected with the centre of an initial fire

(distance)

s the time

18



T, is the unperturbed ambient temperature

k
|

ko r pre- exponential factors of chemical reactions

|

E, r activation energy of chemical reactions

Es |

C is the concentration
R is the universal gas constant
S, IS the specific surface of the condensed product of pyrolysis (coke)

v is the equilibrium wind velocity vector

U is the reference velocity
At is the turbulent thermal conductivity

Cox- IS the unperturbed density of concentration of oxygen

Pi,i=(s,m c)isthei ™

phase density, that is

psis the density of dry organic substance

pm IS the density of moisture

pc is the density of coke

p g is the density of gas phase (a mix of gases)

Ah is the crown height

M . is the molecular mass of carbon

M; is the mass of combustible forest material (CFM)

C pg IS the thermal capacity of a gas phase

19



% } heat effects of processes of evaporation of

burning qu
Dy is the diffusion coefficient

o is the coefficient of heat exchange between the atmosphere and a forest canopy
a ¢ Is the coke number of combustible forest material (CFM)

o is the Stefan-BoltzMann constant

K g is the Integrated absorptance

Cp,i=(s,mc)isthei M phase of thermal capacity

s is the dry organic substance

m IS the moisture

c is the coke

ox is the oxygen (0;)

We make additional assumption that ¢, ,p, are constant and equal for all species.

Although these assumptions could be relaxed in the future, they considerably simplify the

S+ m+C
equation. Again, we assume 2 piC yigi = g Cpg -
i=1

3.2 Non — dimensionalisation

Here we non-dimensionalise the equation (3.1)- (3.6) using the following dimensionless

variables.
C
X Ut v 0, o 0, o~ Cox |
X'=— U= —, Vi=—,y1= —, Vp=—", Y3=—, ¢=— - |
L L U Eq’)so i ? 2, o ot (37)
__RTo g E(T—l’o)1 o g ||
E RT, Es Es J



So, equation (3.7) becomes

x=x'L, ¢ =@y, ¢ =y ,p =gy CHC-C  p+C |
T=To(l+€8), t=—, v=v'U, E;=fE3, E; =rEs. |
U J
Now we have,
o0p =@ oy, o0p =@ oy, dp=poy, C =[C —C Tlog )
s o 1 m mo 2 c co 3 ox L ox | !
& & & B0
L_ RT RT | ( )
0T=eTy00, ot= ot', OXx=LOX', €errt =€. g@ues, ErT =€, QLo P39
£ B 0 |
ERT =g oe Licd. |
J
Then equation (3.1) becomes
-fE3 fo
Upg 0 RT,
M = —k]_@so I//]_e el+ed | (310)
Lot’
that is,
~fE
3 ﬂ
oy1 =—kiLye" o e (3.11)
ot’ U
dropping prime, we have
fo
o =—ayer,. (3.12)
ot '
Where,
- fE3
k1 LGRT0
—— 3.13
U (3.13)
Equation (3.2) becomes
-rE3
U@ moly, - = AT l:_m
Lot’ :_k2¢7moT02(1"‘€0)26 o W2 14e0 (3-14)
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that is,

1 1 s i
al//zz—szoz(]ﬁE@);LE RTol//Zel+Eg , (3_15)
ot' U

dropping prime, we have

a 1 ro
WV _ by (1+ 649) 2 pled (3.16)

ot

Where,
1 B

k T ELe RTO

b o — . (3.17)

U

Equation (3.3) becomes

—fE3 f6’ 1
—Upc¢008‘//3 _akpl¢e ol//e 1+en9_ |
LIt (3.18)
Meks pp fC —Cc Tgac Ty |
M)
that is,
—fES fo ]
Wy =aKpo eTove 1er — I
at' U P cPeo L (3_19)
M c kgsapg L (COXO B boxoC )IV k-/ox —| — lin |
M 1U g AR
. J
dropping prime, we obtain
fo 0
0 — )
ﬂzﬂv/leheﬂ —7(¢+0| )l//391+ea- (320)
ot
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Where,

i
e ac Kl /JSQDSO Le o, ||
Upg |
c co
£ |
Mk SSo-/)g Lrr |
V= MU p (k’oxu — Coxw )e ° r
1 c
C
g= o |
C
X - Cox |

J

Equation (3.4) becomes

|(UL|_C —C ]8¢ UV[|_C —C—|8¢\| 5 |(pDFc —CM—|8¢\|
0Xo [ + 0Xg 0X., — gT 0Xg ‘ —
2l Lot o | Tox| Lox |
\ ) \ c )
( (g+ o
| LC -C |
a _ _ _1- _ " o by
C 04 Ah (L |OS CUX,J |¢ +C oxr,C o (l « c )1ksg ¢ (Coxc C OXep )|‘( i \
| | e RT oo |
o pl+ed
) i J
—k pT 12 1+66 f(Dl//C -C ! ¢+ OXeo eR'{':j e1+eg \
2 m 0_ ( )_ mo 2 (ox0 oxw“| T —C )|
K 0Xg 0Xep
C |
Com ) e WM
|G| [T
-k3Ssp %lﬂ‘ox ox. | : P+ \I\l/l < - L |¢cou/3 (boxo “Cox, )| k OfE ‘t} |
| e 77 e o | ||( = ) |
‘ | %o g1seco |
\ ) I | |
\ \ ) )

(3.21)
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that is,

'c -C P e
pgU o o l(op  04) g( o ( 0¢) ]
_,‘|'V’_ |: -2 oxoiboxm | IJT |~ |
L\ ot ox') L ox'\ o) \
( )-fEs . fo |
a ( Coxw \\ RT01+69_ |
Cant o %, ) c 1ssof 0Xo %o )| C -CJ 1 |
P9 N 0Xo % J ‘
1 1 C B3 re |
—kpT 7 14€0)z oy C -C lgp+ o ¥ o Tp— b (3.23)
2 mo mo 2 (oxu 0Xop )\ C - C |
L %o %, ) |
( M, +C ) |
M . ™| ( C V=& ol
kSp g_CIC -C I|¢+C_C_C_I(ol// Cc -C |¢+C_§wc_le”o eleco |
‘ 3 o ° M 1 L 0Xo ko J| ox ox | co 3 ( 0%o %o )|K ox ox ) |‘

\ ) J

So, it implies that,

(1-ac Ikipspso L RTo \ )
—fE3 .
| e | |
op o 0 (D og) al | pU | |
Ve =wl T—— -/ ¢—I ( C T i 1
| o+ er ly g1rco
- c -¢c |+ | |
y § o o ) ) |
1 -5 (+ed)r [ \
2 - RTo - rg |
- | g+ et — s, (3.24)
p Ul C -C| |
9 ( 0% % )
£ I [\ |
kS p —=[C -C TLp e ( (Ziyc N |
R VA O | Mo I ( “ox \ g |
|l ———— 1 | gt ————— Iy teo]
| pU | c-clll” c,—cl .
| | | |
} \ ) |
)
dropping prime, we have
op o of o\ — E o]
— AV =% | = Bip—Boy1(p+a)er™= B3 (1+c 0)2 ya(p+q)e’™
o x o\ ox) ' (325)

0|

J—ﬂm ($+p )4+ )eres |
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Where,

D
D=_'=_1
LU e
al
h=c—
0 Py AhU
(1-a )k polL —fE3
P = c 1 s so ERT,
P

=]

ﬂ = kzlom-ur ;gﬂmoLeRT
PV

_E3

ks p Mcfc ¢ TLp o™

_ 30 am L oo - co
4 = 1

PgU
Miyc
P="C-C_ (029
o ]

T
We assume that the differences in temperature within the flow are such that % can be

expressed as a linear combination of the temperature; we expand ~ * in Taylor series about

T, as follows:

T =T 44T (T-To )+ 6T % (T-To )* +.. (3.27)
i . . (T-T)

and neglecting higher order terms beyond the first degree in o~ we have

T =374 +41%T (3.28)

Te=-3T"% +47,%(1+<0) (3.29)

T*=-3T% +4T, 447, “c0 (3.30)
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T4 =T (1+4e0). (331)

Equation (3.5) becomes

(oT  oT) of o7\ «a 1 =)
Pgpgl T AV | =" |—_(T_Too )_ 4KRGT4 ~KopmqoT “pne ™ |
: ot ox)  al  OX ) Ah] (3.32)
=) N
+k 35509 U3¢ Cox € rr |
that is,
(UeTod Uv'eTod) o A1e€Tad) « )]l
P ; : - T o — (To (1+ € 6)-T,
ol Tt o, oo e an (o))
e |
L 1 —_ e (3.33)
_4KRG (T 4O (1+ 4e 9) )_k2pm qZ \(TLO (1+€6)2 |>mge RTQ w2€1+reo |}
|
( C \ —Es 9| |
+kS gp C -C |+ —— o |Gy olies,
3 f ng, w( oxg Xy )| Cc -C T ' 3 ’ |
K 0Xo OX%) J
It implies that,
pCUeT  86,, 00, 0 | Ae€Tdb | a mmeml
g pg o — - — 0
L ot ') Lx'U Lox' ) Ah |
( N 2| (334

1
_4KRG (T 40 (1+ de 9) )_kzpm qz‘ TL_O (1+€0)2 lpme o w2€lieco -

( C \ﬂ 9|

+kSpgqeC -C |+ — = | Ty gires |
3 o g3co( Oxg X )| C -C | 3

\ v e J
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that is,

00, ,06_0of 4 00\ el [, T-T | ]
‘EF Yx T cuaxIﬁ;%ClJAh} eT | i
e |
k |( " iﬂ L ||
4KroL (T 30(1 +469)) ZﬂmQZ\T o (1+ €0):2 b(pmoe . 61:9'
) - [
Palmel PaCpgeToU | |
. k3Sepgapo L (Coxo - Coxe )( " o) —_Ef%ewi |
P C eTU lc -C | |
9| Py 0 N o w ) |
J
dropping prime, we have
00 80 o 00) O
— tV—=—] 1—|—a1(¢9+}/1) Ra(1+4e9) 61//2(1+eﬁ)2e1+65|

ot OX ox\ OX)
;
6l

J+511//s(¢+q)e:6. |
Where,

A 1 )
L S |

LpgCpgU Pl
al |

STU |
pCUAh!

R, =4K (RjLT |

ol

ayL=

PqC pg €U |

1 —rE3 |

_ kzp q'2I' EL(DmOeRTo |
pq C pg €ToU |

k3 Sffpg U3¢0 L (COXO 0o ) RT, |
Py C pg eTOU |




(3.35)

(3.36)

(3.37)



Equation (3.6) becomes

¢s(x,0)=¢50‘//1(x':O)z(ﬂsow|
i.e >|
w1 (X',O)Zl J

dropping prime, we have
v1 (x0)=1.

(Dm(X,0)=(0mol//2(X',0)=(|0m01

ie r ;

Vo (X',O)Zl J

dropping prime, we have
v (x,0)=1.

€0c(x’0):(ﬂco‘//3 (X':O):l%ow
ie r :
l//3(X',0)=1 J

dropping prime, we have

w3 (x0)=1.

Cox (X 0 ) = (COXO ~Cou ) (X , 0)+ Cor. =Coxs |
i.e
L -U

0 o0

0Xo OXo0

dropping prime, we have

¢ (x,0) =1

—
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(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(343)

(3.44)

(3.45)



Cox (0, t ) = ( Coxo — Coxws )¢(01 t ’)‘*' Cox» = Coxw |

i.e L
b |
o — Cox |
0Xg 0Xp J
dropping prime, we have
$(0,t)=0.
]
, |
Cox (Lv t ) = ( Coxo — Cox« )¢ (1, t )+ Coxe = Coxx |
i.e }|,
v |
o — Cox |
0Xg 0X J

dropping prime, we have

¢(1,t)=0.
T(x,0)=T, (1+e 6(x,0) =T,
i.e }l
0(x,0)=0 ,

J
dropping prime, we obtain
0(x,0)=0.

|

|
-(uwr.,u— )=T. | |
e }| :

2 _Too_T _
H(O't)_ ETO_ 1 ‘|
0 J
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(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(351)

(3.52)



dropping prime, we obtain

A0, t)=o1. (3.53)
|
TLt)=Toe(+e (L, t))=Tx |
ie V) (3.54)
T,-To |
0(Lt)="eT =oa |
o J

dropping prime, we have
0(L,t)=o1. (3.55)

Therefore, the dimensionless equations and the initial and boundary conditions are:

y %J
W— ay el >’| (356)
|
yi (x,0)=1 |
oy 1 r_ﬂ
2 . |
ot =—by 2(1"'69)2 €1+eo f ' (3'57)
Vo (X, 0 )Z 1 J
5 1o o)
V3 _ — _ ey
W_ﬂl//le l+ed 7(¢+q )W3e T|, (3.58)
vs (x,0)=1 :
op o ol og) T
—tV—=—] " — |—p1d-Poy1 (¢+q )el+e9 |
ot ox ox \U ox) ||
1 10 0
5 (1r€0)2v2 ()6 e fays (40 )(9+0 e st (359)
|
|

() ()

)
$x0 =1, ¢ 0t =0, ¢ 1t =0
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06 00 o 00) .

T
E;+V5;:5;k@E&J—m(9+ﬂ)—&Kl+4E9)—@@(hf@)zewgl
r51W3(¢+Q)eZi L (3.60)
|

6(x,0)=0, 6(0,t)=01, 6(Lt)=0n J

3.3 Analytical Solution

1978 , ¢’
Inthe limit of e—>0,let D, =Constant, 4; =constant  and following Ayeni ( )
can be approximated as:

(), ()
e’~1+e-26 3.61
and let,
p=av, f=av, f=av, d=av, o L. =av, a=av]

2 1 3 2 4 3 4 5 6 F (3l62)
b=av, y=agv, f=agV, |
. J
and similarly let,
W1=l//10+Vl//11+---‘1
Wo=ya0tVyor+t ---l\
s =WY30+ Vs + r (363)
O=¢do+ Vg + ... {
0=00+V& +.. )
Using (3.61), (3.62) and (3.63) in (3.56)—(3.60) we obtain the following equations
oy Oy
g S W ) 1) 3.64
o +Vv ot =—avwy +vy 1+fe-2 6+vo, ( )
Qv Ova (20 21)( (o )z ( ( (o 1)) 3.65
TtV o =—avy +vy l+e 6+vo “l+re -2 0+vé , ( ' )
oy
! A T I( D) ()
ot +V ot =-avy +vp \1+2€6 +v6+..)1+re-2 6 +vo 3.66
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(7 L7 S o B S I SR ) (3.67)

o e )2 )
oy Oy
> =)0 o )
ot tV oot =avuy vy 1+f e-2 4 +v@ -} (3.68)

o (G 1) )€ awl ( o )
av ¢g+veg +q v +vyl+e—-2 6+ve

o¢ op (op o9\ (&g 02 )

|

—— VT v — v — | 7Yy 7+V =7 |—ﬁ1(¢o+V¢1)|

ot ot OX ox ) L OX OX) |
. |

by G GGG D) | (3.69)

(1 Y1 ) N

[ 1 "ol I 20 2 o )" ) b

v LU 2)2 ) | \

l\ (1+1(e-2)(0,+v8,)) }| |

(V(/O Iy 31)((0 1) )((0 1)+q)\ |

Vp+vg + Pj+vy

—aV[((¢0+v¢1)+q)(1+r(e—2)(<90+V91)) | )

8 | | 1

00, 00 (00 00\ (&6 &0

— V4V — +V— = =V | - ((90+V91 >+ n ) \HF (3.70)
ot ol  axx) Lox  ax) )l
1 1(1+ roe-2. {
R 1+4e 0 +V6  —avy +Vy (1 €6\, = vo | ( ) |
NN 2 )2 N+ ) )
+agV (!//30+VW31 )((¢0+V¢1 )+q )(1+ (8—2)(90+V91 ))
vV
Collecting the like powers of  in equations (3.64), (3.67), (3.68), (3.69) and (3.70) we have
V0
Ya-o | (
371
Y0 (X,O):U
oy
20 ]
at =0 1}, (3.72
wao(x0) :U
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OW30 ]

ot =0 U

|
V/so(X,O)ﬂJ
9 0% g,

ot 1 OX 1o

]

|
r

o (50) =1, b (0.)=0, g (1,1)=0)

a0, 026

8t 1 0y2

]

=1 ' —(4Ret+ta )0 -(R+ay )|
a 1 o al 1 ¢

0,(x,0)=0 6,(0t)=01, 8o (L, t)=01. |

Similarly we have;

1
Vo

0 |
%:_aﬁl//w(l-kf(e_z)go )H

yi1 (x,0)=0 J
oy, (H 1 )
7=—a7l/lzo|\ EG fo ‘)(1"'"(9_2)90
vor (x,0)=0
Oy i
ot =agy 1o (1+f(e—2)90)—as(¢o+(1)l//30(
pa (x,0)=0
¢ 0= o¢
ot =Dy x 2= P — . —ay10 (do+0)
(1 )

a1 +—€0u10 (4 +q)1+r(e=2)6,)
v 2 )

d(x,0)=0, ¢ (0,t)=0, ¢ (L1)=0

]
)|

g
|
J

(1+f(e-2)6,)

—azy
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+

(

€E— 40U

)O?H.

J

]

I

|
20(do+p)(do+a)1+(e-2)6 )rv

|

|

J

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)



00 &0 0, (1 ) |
—‘:ll_ax 7—(a+4Rye) B ———agy 20| l+§e 0o +J (1+r(e-2)6,)l
ot O \ I

vasway (h+0)(1+(e-2)4 ), L (3.80)
6(x.0)=0, 4(0.t)=0, 6 (1t)=0. i
J

Solving equations (3.71), (3.72) and (3.73) via direct integration and applying the initial

conditions we obtain respectively;

yio (x,1)=1, (3.81)
wao (x,t)=1, (3.82)
w0 (x,1)=1. (3.83)

We solve equations (3.74) and (3.75) using eigenfunction expansion technique. Now, we

consider the problem (Myint-U and Debanth, 1987) and compare with equation (3.74)

ou o,u
=k7 +au+ ]

Fx, t)otad . (3.84)

u(x,0)=f(x), uQ u(L,t):0J|
t)=0,

we assume

u(x,t):zwun(t)sinl_—n”x.

(3.85)
n=1
Where,
( (nr)? : ( (nr)? :
t ek — [t -7) \‘ ak |=— \‘\t
un(t)zojek uy Fn(r)dr+bne\ I (3'86)
Fo(t) =21 F (x,t )sin22 xx, (3.87)
L, L
2 . N1
by ==t f (x )sin—Z xdx. (3.88)
L

0
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From equation (3.74), we have

U=¢, f(x)=1L=1 k=D1, a=-f, F(x,t)=0. (3.89)
Thus,

by =2 Il sinnzxdx. (3.90)
by :__nzﬁ[cos nzx 1% dx, (3.91)
o L (2 @52
Also, since F (x, t ) =0 we have that,

Fo(t)=0. (3.93)
Using (3.92 )and (3.93 )in (3.86)we obtain;

don (1) =—n2 P r|_1 - (-1)" WJ et (3.94)
where;

cp = (ﬁl +D; (nz ) ) (3.95)
Using (3.94) in (3.85) it becomes

do (X, 1 )::1 2. Ae Crsinnzx, (3.96)
where;

A:Z L(l— (-1’ ﬂ | (3.97)
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then,

% = D nzAe lcos nxx. (3.98)
n=1

Now, to solve (3.75), we need to  transform the boundary conditions from non-

,u(X,t)

homogeneous problem to homogeneous one. In doing this, we first find a function

which satisfies the boundary conditions. We note that;

u(xt)=a (s (1)-a(t)). (3.99)
Equation (3.99) does the trick of transformation. We then, make the change of variables as
follows;

B (x,t)=H(x,t)+u(x, (3.100)

t ). From equation (3.75) we

have (3.101)

a(t)=oc1t®, p(t)=ot®, L=1.

Then,
Using (3.101) in (3.99) we obtain (3.102)
0 0

X,t)=oc1t " +x(oc1-01 U,

n(x,t)=o1 (e1-01) (3.103)

u(x,t)zalto.

That is, differentiating (3.100) with respect to t we have

00 oH  ou (3.104)
° = 4+

ot ot ot

=0, =0, ,=0. (3.105)
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OU =0

We then substitute 5t from (3.105) into (3.104) and it becomes
9% H 3.106

at:at. ( )

az,u_o

Similarly, differentiating (3.100) withrespect to x twice and substitutt Hx2  from
(3.105) we obtain

06 oH ou OoH 3.107
= =+ = y

OX oX Ox OX ( )

0.0 &H

xl=ox (3.108)

We then transform the term — (4Rq € +a 1)90 in (3.75) using (3.100), which implies that;

C(4Ractar )0y =- (4Ry e+a JH(x )+ (x, 1)), |

(
~(4Rye+a )0y =— (4Ry e+a H(x,t)-01(4Rye +a1 )| (3.109)
J

Next, we transform the boundary conditions

6o(x,0)=H(x,0)+u(x,0)=0,
H(x0)+0.0° =0, L (3.110)
so, H((x0)=-0 I

J
0,(0,t)=H(O0,t)+x(0,t) =01,
H(O t)+o1=01, ||% (3.111)
so, H(0,t)=0. J

Oo(Lt)=H(Lt)rut)=0 ,1|
H (1, t )4(- 0')1 = o1, b (3.112)

J

soH 1,t =0. |

Hence, using (3.106), (3.108), (3.109) with the boundary conditions (3.110), (3.111) and

(3.112) in (3.75) we obtain,
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oH o’ H ]

i /1187_ (4Rae+ar H- (o1 (4R, € +an )+ (Ra+aa 71 ))}\_
H(x,0)=-01, H(0,t)=0, H(1,t)=0 J
So,

oH  &°H |

Faa S |

H(x,0)=-c1, H(0,t)=0, H(11t) =0
where

b1=(4Ra€+OC1) 1
by = (01 (4Ra €+ )+ ( Ra+an ))ﬁ '
J

That is,

Comparing (3.114) with (3.84)—(88) we have the following;

UZH’ k://L]_,CX:—bl,F(X,t):—bZ’ f(X)Z—Gl,

L=1.

b, =20 Il sin nzxdx ,
0

2 o
br = 7 [cosnzx]’,

2 o, | |

b= 7 [(-)"-1]
Also,

Fn (t)=-2b, Il sin nzxdx ,

0

2 b
Fn(t)="n 72-2 [cos nzzx]lo ,

b
Fn (t)=—2n e |_|_( -1)" —1—|J-
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(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)



Using (3.119) and (3.122) in (3.86) we have,

&’- n -"[t—b+)n7[ t-r - b +4 nrant
Ho (1) =zl (0=t e (A N dre g (VA7)
0
’V n —I_CZt t
2by | (1) “1le c —ct
Hn(t)z nz J;e ZTdT+bne 2
where;
Co = (b1+/11 (nﬂ')z ),
I
H t — 2b2L(—1) _]_Je—czt |' ech'|t i be—czt .
n( n7ZC2 L JO n
So,
[
Hoto= 20 ) pe
”( ) NzCo n
that is,
[
H t = 2b2 (—1) -1 |—l_e_czt—|+ be_c;.
n( n72'C2 |_ J n

Using (3.128) in (3.85) we obtain,

H(x,t)= Z(A1+(bn—A1 Ye ¢! )sin nzx,
n=1

where

o]
A=20p| (1) -1,
! N7zCo

Therefore, using (3.103) and (3.129) in (3.100) we have,

39

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)



0o (x,t)=01+ Z(A1+(bn—A1 Ye ¢! )sin nzx,
n=1
that is;

%= anz(A1+ (by— Ay Je % )cos nzx.
n=1

Using (3.81) and (3.131) in (3.76) we obtain,

oy ( ( » M)
11=—a5|kl+f(e—2)|K01+Z(Al-l—(bn—Al)e_czt)sinn;rx| B
8t n=1
So, integrating (3.133), we have
( S S R\
l//ll(x,t):—a 6|\t+f(e —2)||O'lt+Z |At—|(n—1| ‘\e’cz'\sinn;rxl‘l+g(x),
|1 C
\ N N I )

that is, applying the initial condition, we obtain

( [ o (b=AM )

Vi (X,O)=—ae‘\f(e—2)\ o2 "C : |Isinn7rx|+?(x):0,
\ .U )) )
It implies that;
g(x)=-asf(e-2)2 - c = sinnzx,
n:lk 2 )

g (x )=-Ag 2, Apsinnzx.
n=1

Where,
o 2R
’ v C J

A3 :a6f(e—2) J

Using (3.137) in (3.134) we obtain,
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(3.131)

(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)



. ( (o e
v (xt)=—A  Asinnzx—alt+fe-2) ot+ | At— {2l le <t kinnax I, (3.139)
11 3y 2 6l 1 51| | | I
- \ L\l U ) ) J)
similarly, using (3.82) and (3.131) in (3.77) we have,
% ([ 1( . ot N
Zl:—a7|1+—6| 01+Z(A1+(bn—A1)e Z)Sinnﬂ'XH.'
( ( . —cat g '
| 1+r(e-2) o1+ 2(Ar+(ba-Ar)e )sinnﬂx | ‘|
- ))]
That is,
( (o Voo
| 1+r(e-2) o1+ Z(A1+(bn—A1)e ) )sinnﬁx |+ |
| \ n=1 y, |
| 1 ( © —ct \ |
| — e|o-1+Z(A1+(bn—A1)e 2)sinn;sz+ |
12 n1 |
(A7 ——y . B (3.141)
ot 7|| | 0'21 +201 Z(Al + ( bn — A1 )e % )sinnzx I
1 n=1
lo€e(re-  2) o et 2 |
| | 422 (A + (by-Ay)e ™ ) sin® nzx N
I N n=1 n=1 /I
\ )
that is,
( A ) V)
!1+r(e—2)| O'1+Z(A1+(bn—A1)eiczt)Sinnﬂ'X |+ | |
n=1 ) | |
I 1 . ) I I
- o A by —Ag)e % )sinnzx |+
; ||2 S kbt (A eonc v |
Va1 __,, ( . \ L (a2
ot | 1 | F1+201) X(A1+ (b — Ar Je 2 )sin nzx || |
Zcr(e-2)] e ’ |
| 2 ( )| 0 © 2 -t 2 —ZCzt) .2 | | |
| |sS(n vam, —A)e 4 (ba-a)e SN gy |||
|| \ netnt ]‘I ||
\ )]

41



Integrating (3.142), it implies that,

A R IR T l
lt+r(e-2) ot+ | At- 2721 gt sinnzx |+ [l
| SR S Y J| ) |
’ 1 ( ] ( (b_A\ —ct\ 3 \ ||
|_€10'1t+ |A1t—|—|e z‘lsmnﬁx !+ ||
| 12 o U C ) J |H|
Wa(x.t)=-a7| (2 (00( (b—A\ —ct\_ \ \” (3-143)
| o t+20 1I ZuAtI ‘ |e 2 }smn;rxl | || [,
| 1 ( )|| wal U C ) J I|||
~e(r(e -2) 2 |
| © © ( 2 2A -ct (bn‘Al) —2ct\_ 2 | |
| [+22] A t———(n- Al)e 2 ———e¢ . Isin nzx| |
| | n=1n=1 | Cy 2C2 | | |
\ N N ) Jl
| ||
\ | )|
+01 (X)J
that is, applying the initial condition, we obtain,
( [ J[b=-A) Y1 (L b-A) ) )
| —r(e—2)| 2= : \sin nzx |l—= €l > —— \Sinnzrx | ‘
| ha A\ G ) 12 Wil ¢ ) | |
| ' | (3.144)
| ( (ow ) )
‘//21(X,0)——a7| ( )G|| ;('b—A\ - | OOZEICZ (bn—Ar) |I - I +01 (x)=0
-e(r(e-2 1] —— SINnzx+ , SINZ NrX
‘| ( ) n:l\ CZ ) ) | ‘n:ln:l“+ (bﬂ_Al) || ‘|‘ ‘|
\ | \ \ \ [
N \ \ . 4cy) )) )
This implies that,
( » = ” ) (3.145)
| A4 Z/-\z sinnzx+ As Z/-\z sinnzXx+ Ag ZAz sinnzx |
\
01 (x)=-a7 n=1 n=1 n=1 |

o0 o0
| + 22 (A1 A + Ay B )sin 2nrx.

k n=1n=1 )
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¢=r(e-2) )
|
1 |
A5 = 5 (= |
(
As =¢ (r (e—2))<7|1 |
B — bn - A]_ |
4 J
So, we have that,
( . A
01 (X ) =—ar| Ag+As+As+ 2 Brsinnzx | X A;sinnzx.
n=1 )n:l
Where,
B1 =(A; +B).
g ([ . V7
1(X) =—a7| A7+ 2 Bysinnzx [X Azsinnzx.
n=1 )n:l
Where,

A; =(A4 + A5 + AG).
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(3.146)

(3.147)

(3.148)

(3.149)

(3.150)



Therefore, using (3.149) in (3.143) we have,

(e Al )
|t+r(e 2)| at + |At | n-— Il g« |\Slnn7rX|JT
| I TS B .
|1 (« ((b=A ) ) M
|7€|Uﬁ+ IAﬂ—| |e zbmnnxlﬁ
| 2 UL G ) )
| V]
Va (X ’t):_a7 ‘| \(6 2t+26 \(OO (\At (b A\ - \sinnzrx\\
1 1 3
1 . )I| s Y )
~e(r(e-2) A
2 | 0000( . 2A -ct (bn_ ) —th\_
| | + [A t———(®b- A) 2 - e 2 Isin
| \ Y 1 Cn 1 2¢|
I \n:lnzlk 2 2 )
N
(. ye!
—a7| A7+ X Bysinnzx XAz sinnzx.
k n=1 )n=1J
Using (3.81), (3.83), (3.96) and (3.131) in (3.78) we have,
ov [ )
A _ag) Lit(e-2) 01+Z(A1+(bn—A1)e z)sinn/rx ||
ot N n=1 ) )
r
o Yoae U SINNZXEQ I 1s (e-2y ot d(as  (Dn-Ag)e "
Kn:l }K K n=1
that is,
oy ( [ . ot A
31:ag|1+f(e—2)| Ur+ZXA1+(bn—A1F 2)sinn;rx| |
8’[ k K n=1
i} v AAE S 4 \
| +(e=2)02  peeisinnzXx+ (e—2 Y e |
| n=1 n=tn-1 { A (by —Al )e )

) [

|I (1+(e-2)ay Jg+ (e- ZQZ(A1+ (by-Ag e )sin nzx
K n=1

nzXx

]

Al

Ysinnzx ||

)]
|
|
|

3
‘nzx |y

|
|
[
)]

(3.151)

(3.152)

(3.153)
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That is, integrating (3.153) we have,

( e )
v, (x,t)=a9|\(1+f(e—2 )ai)t+f(e—2) |‘A}_|( n—A1 \6—521‘ sin e x |
oL ) ) )
( (AA )
| 0 |_e 1+
| é -t 0 © | Cl
_ai —(1+(e—2)o-1 )Ecle sinnzx— (e Z)ZEA(bn‘Al)ef(cﬁcz \
I ° { (Cl +C )
o [ (b-A \I
o+ (14 (e-2)a Jat+ (e-2)g 2 At- o €% kinnzx
K n=1 2 ]
+J2 (X) .
It implies that,
( . ) ]
l//31 (x,t)=ag | Agt+Ag Z(Alt—Aze’czt )sin n;rxJ |
\ n=1 ||
( 0 A 0 —c+C t \\
[ ®10 X G e S'sinnax+ Ay 22(Bre ' + Biels o) )sin? nzx |||
+a|8 n=1 1! n=1n=1 |"
|| —Apt-Ap Z(Alt -A g )sin nzXx |||‘
\ n=1 ) |
+92 (x). I
J
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(3.154)

(3.155)



Where,

Ag = (1+f(e-2)ar )
\
Ag=f (e-2) ||
Ap = (1+ (e-2)oy ) ,
All = ( e— 2) |
b= fala! 1| (3.156)
2 Cl |
3= A (bn -A ) |
C1+Co ||
A12 = (1+ (e — 2)01 )Q|
A13 = ( e — 2)q J|
That is, applying the initial condition we obtain,
- ) ]
Va (x,0)=-ag | A > Apsinnzx | |
n=1 2 |
+d8| Hmz —sinnzx+ A zz (Bz+83 )Sin n;rx+A13 ZAZ sin nzrx} (3.157)
\ n=1 Cl n=ln=1 ||
+g2(x)=0. ’
)
It implies that, 1
g2 (x)=agAg 2, Ay sinnzx |
" L (3158)
( 0 A © o 2 Ee) \ |
“%l A0 sinnzx + Ay XY (% )sin nex+Ass S Agsinnmx ||
n-t C1 n=ln=1 n=1 } J
Where,
Bs Z(Bz+Bg). (3.159)
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We then, substitute (3.158) in (3.155) and obtain,

( . )

!//31 (X ,t)=ag | Agt+Ag Z(Alt—Azeiczt )sin n;rxJ
\

n=1

|
-c+c t \ |
| "0 2 —e lsinnzx+Ay 22 (Bre ' +Bse s 2’ )sin? nzx | |
n=1Cq n=1n=1
+dg |
|

| | (3.160)
o |
| —Apt-As Z(Alt—Az (9_02t )sin nmx | |

- ) |
+aghg 2 A sinnzx—ag | "0 2, —sinnzx+ A X% )sin® nzx + Az 2 Az sinnzx ||

n=1 K n=1 01 n=1

n=1n=1
In solving equations (3.79) and (3.80) we use eigenfunction expansion technique and

substitute the following equations, that is, (3.81), (3.82), (3.83), (3.96), (3.98) and (3.131)
into (3.79) and obtain,

2 o0
9 _ Do, pg - Ynrhe cosnax

ot OX et

S \N¢ [ . |

—a |Z Ae “sinnzx+q | | 1+f(e-2)| o1t (A1+(bn—A1)e 2 )smn;rx |
kn:l)\k n=1
( 1 ( o -ct \\\\(oo —ct \

—ay | "+ = ejor+ 2 (A+(by—A Je Jsinnzx | |1 X Ae isinnzx+q |

) k 2 n=1 n=1

| 1”(9-2 ) ot (At (ba-Ar)e |, )sinnzx ||

k K n=1 \\ )) \\

-az | 27 Ae " Slsinnzx+p I > Ae Slsinnzx+q |
Kn:ljknzlj
( | ‘ - | (3.161)
|14 (e=2) o1+ 2(Ar+(by—Ay e 2)Sinn7Z'X|| | @
\ ))

h(x,0)=0, 4 (0.1)=0 4 (11)=0
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That is, expanding the brackets we have,

2 © ]
9 _ Dy 24— — B — DnzAe St cosnzx |
ot ox n=1 |
( . —ct \ |
| (1+f(e-2)o1) 2 Ae . sinnzx+ |
n=1 | |
. o +A (by —Ar e A
—d | —Cqt —(c1+c2 )t | 2
l|| n=1 n=1 I I
|+(1+f(e—2)ol)q | | ||
o )” ( ) 1
+f e-2'¢q ZILA1+ b —Al e %' Isinnzx
kn:l j |
(\z;f <t sinnzx+q \‘ |‘
n=1 | |
(- N
| | 13" "osinnzx+ oq [
- e | _ L
dly e » = +A (by - A e [sin . il
7_ I *Clt ™ o
RN o
| | +a> [ A +(by —A e ™ Tsinnzx | ]|
( U o | ) )
[ (p () g1) il ] )
+r e—2 Ol + r( —2 ) %. ﬁ;n — 1) ? sinnzx
s : - S )| (3.162)
© 2 -2ct . 2 © -t . |
) YSA€ L SIN T NAX+ (peq)Tae sinnzx+pq | \
\n =1 n=1 n=1 oot | |‘
I( ( ) 1) @© 1 (n 0 g . | |
\1+ e-2 o + e-2 [A+b -Ae TSmnf:x) |
n=1

|
J¢1(><,0)=0, #(0,t)=0, ¢ (1,t)=0 |
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That is, expanding further we obtain,

ot ox n=1

(
|

n=1

n=1

© —ct \‘
| (L+f(e-2)o; )X Ae + sinnzx+ |
n:ll

| - +A(by-Ag)e

oh’ g ]
YD, 24 - Ynxhe Clcosnax |
|
|
|
\
|

-a |—_ o= (cp+co )t —| 2

1‘n:ln:l | |

| |
+(1+f(e-2) o )q | |

S P T !

+fe-2 Qras b -A ¢ % Tsinnax |
n=1 } |
- (1+r(e_2)01) OOZAE o sinnzx-a,r(e-2)XY e r \Mle{lt +A(bn—A]_ )e7“1+€2)t-| sin2 nzX ||
n=1n=1
2 ( )1) 2 (0C n 1 J.|
~al+r e-20c gq-are-2q | A+b—A e bsinnzx I
oo sAl-m)e sl
—cltr -c1t ~(ete2 )t —| 2 \\ F
n=1 n:ln:1||
B § |
|+1(+r(e—2)al)(,1q+r( e-2) Y zl Ly e ||
n=
| © 0 [ —Cit 7(01+cz)(—| 2 ||
|+(1+I’(e—2)01) Ty e +A(bn—A1 )e sin NzX I
n=1n=1
. _ _ |
lEa, | 0 © 0 [AAlze C1t+AA1 (bn—Al)e (Cl+cz)t+AA1(bn—A1)e (C1+Cz)t-‘ |
2 ol4r(e-2)22Y | 2 lsin® nzx [
n=in=1n=1 | - (er+2e2 )t | |l
+albn-Ar)el l
(re-2q. Vi
w ot « ) ) o |
) s oo A 1 +2A1‘b—A e | z \l‘\
+(1+r(e-2)o A+ (b —A)e innzx+ n 1 .
n:(1 (e-2)a)q ( ) s | ZZ:I (Z _ct) |SII’] n7zX| |
|n:1n:1|+(bn—A1) e Z| |||
\ L J M‘
Jl
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(1+(e- 2)01)ZZA e lsin®nrx+

n=1ln=1

® 0o o 2 ~2cit (2c04cp )t —| 3

(
|
\
|
[(e-2)XXX LA Ae  +A (bn— AL e jsin nzXx
|

-as|| +(p+q)(l+(e 2)0-1)ZAe “Usin X+

n=1
I w +A (by—Aq )e 1Sin nzx
| —cqt (eseo )t | 2
i n=1n=1
k+(pq)(1+ (e—2)ol)+(pq)(e—2) i Z\L/i+(hn—A 1)\,J
n=1

#(x,0)=0, ¢ (0,t)=0, 4 (Lt)=0.
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That is,

2 ©
0 _
o _ Dy —24- fig - 2nzhe ! cosnzx

ot Ox n=1
et
| Ay A Csinnzx +
| | n=1
0 0 |_ ~ ) X

—agl AEY e A (oA e T ]

| n=1n=1

| +A +A w|—A+(b—A

| 14 Yl 1 n 1

\ n=1

e “Hsinnzx
]

)

nzx |

)

nzX

0 -ot —cqt ~(cre)t 2
—a, Aig 2 Ae 1sinn7rx—a2A17ZZ e 1_A(bn_Al )e " J—lin nzX
n=1 n=1n=1
-t .
—aA —aA [ A+ b—A ¢ |sinnzx
1§ 219 L[ 1 (n 1) ]
n=1
( © -opt 0w r —cqt —(cp+c )t—|2
| "20X "¢ ' sinnzx+Ay 201 ¢ 1"'A(bn_Al)e ! 2Jsin nzX
[n=1 n=1n=1
et -
[+A +A . [A+ b—A e % Isinnzx
| 22 33 L 1 (n 1) ]
| | n=1
® r it ~ ) 2
| +"24 %5 "° * +A(bn‘A1 )e (12 \;|in nzX
| a n=1n=1
| o [ AAER T AN (b - A )e‘(%“z h +AA (bn—Al)e_(°1+°2 )‘W
| uyyy | 2 sin®
n=ln=1n=1 ‘HA(bn— A1) o "o J‘

A ifA+ b-A e'CZthinanﬂ(A
26 L 1 (n 1) J

o olA +2A (by-Ay e ]
2

|
n=1 n:217n:1 | +b - A)ze%zt
| { L (n 1]
|
( o 2 =2ct . 2 \
| Aoy e SIn NzX+ |
| n=1n=1 |
| A o |7 2, 2t 2 (e |3 |
| Ty Ln A + A (by—A; e sin nzx |
| n=ln=1n=1 |
T |
% 1A 2 Ae Sisinnx + |
| n=1 |
| Ao’ |— -Gt - (cpiep 1t -|| 2
| T202 2 e +A (bn -A )e sin - NZX |
| n=1n=1 |
—Ct .
| +A +A JA+(b—A)eCJsmn7rx !
| 30 I L 1 n 1, |

A (x,0)=0,

[sin® nzx






Where,

A = (1+f(e=2)a1 )q ]

Ais =f(e-2)q !
f\\w = (1+r(e-2)o1 ) I
17:r(e—2) |
Ag = (1+r(e-2)or )g |
A =t (e-2)q |
A
zo;éE((l-H’(E—Z)Ul)O-l) I
A |
|
|

21:—1€r(e—2)0'1
2

"o %e ((1+r(e-2)o1 )arg )l
|
|
za:—ier(e—Z)qu F

Ia)

A24:%E (1+r(e—2)01)

"w=ler(e-2)
2

|
|
|
|
|
|
Azs = EE (1+I’(e—2)01 )q I
i I (3.165)
z7:;er(e—2)q |
|
A =(p+q)(1+ (e-2)or) I
A =(p+q)(e-2) I
Aso = (pg )(1+ (e-2)a ) I
As1=(pg )(e-2). J
That is,
5 2 (3.166)
7§:D ¢i—M—b }
182 113 T

¢ (x,0)=0, 4 (0,t)=0, ¢ (1,t)=0 |
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>nrAe 1 COS NZTX
n=1

(o )
|\
|

© -t .
\ | A 3he SINNzX+

-~
i

|‘ | e MO;EE +A (bn - Al)e sin |
| ot - (eps )t 2

|| || n=1n1 |

| +A +A (A+(b A e Wsin nzX |

‘ \ 14 mzn_l /‘

|

|

TagAgs DAe Clsinnax+ay Ay 20 A S A (b - Ay ) e ) %in, nzx

n=1 n=ln=1 | ]

+aA +aA ZfA+ ctTsmn;;x

219

| ‘»

| ® « o —Cc+C .2

As T Ae Usinnzx + Ay 22T Ade 4 +A (bn_Al )e (1+2)‘—|S|n nmzX }
‘l n=1 n=1n=1 J ‘
| |+A+AJA+b Ae Wsinn;zx |
| | 22 233 1 ‘

b3 =| | n=1 ‘
| = | Az Z?““*w +A (bn_Al )e ssin nzx ‘
| | | -t (et )t 2 ‘
| n=1n=1 ‘
| |+ oo | AN A (- A e (“°)+AA1(b “ADe (& *C.)tJ }
| RES»» e fsin”nzx
| | n=ln=1ln= 1| ‘ ~(c+2 t | ‘
t
| |+A - oA eoA (b — AL ) T
| | [A1+(b -A )e z—lsm Nz X+ Agy ZZ| , —2ct lsin“ nzx |
\ | n:1 n1n1\+b_A e =2 | ‘
|‘ K L (n \ 1) J )
| ‘ Am ZZAZe‘ch sin® nzx + |
|\ | n=1n=1 ||
| | "5zt ® oo A +A (bn_Al )e Jsin e
| 2 et 2 ~(2ey4cp )t |
|| || n=ln=1n=1 ||
I vag| + Ay DAe St sinnzx+ ||'
n=1
R +A(bp-Ar)e SN nzx |
| —cqt -(er+e )] 2

| | n=1n=1 |
| ‘|‘A+A (A+( b-Ae —|Slnn7rX |
| 30 312

St ) )
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Now we compare (3.166) with (3.84)—(3.88) we have the following,

=¢, k=D, =B, F(xt) =-b
“=¢ ' =hF 31 (3.168)
f(x)=0, L=l |
J
Then, it implies that,
by, =0. (3.169)
Similarly,
Fon(t)=-2 Il bz sin nzxdx . (3.170)

0

That is, substituting equation (3.167) into equation (3.170) we have,
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Yorae s COSNZXSINNZX+a; Ay SINNZX

1
[ . )
+LalAgZAE_Clt+alAl5ZU—A1+(bn—A1)e_CtJ—||5|n nzx+
n=1 n=1

= o +A(by-A e BIN nzx

| —cqt - ( PR )t | 3

)

|
|| (aAfAe_cf+aA [A+ b- Ae MaA AeC1t
| 2 16

2103 1 (n 2 203

| +| n=1 n=1 n=1 |S|n2 nzX

+d A \ /-\ + +d A _
| | 2 ayl (by-AJe " J 2 ZGZI_ (bn—Al)e cztjl |
|\ n=1 )
|
|| (\ 3 *‘172%00 \|AA19 - (bn Al) (o2 [J + \\
I n=1n=1 |
I| || % tayy !_“19 A (bn Al) o tJ + || .
|+ n=1n=1 SIN®nzx
| | L B |— -t + A (bn Al) (o146 -l_|_ | |

| n:ln:lr |
| i "
! | ngzv S LA + 20 (by-Ag e ™% (- Ay e JJ

n=1n=1
|| ‘(AAzle L Ay (by- Ay e (e e 1y
| TR Y 4 AA (b, - Al) RN sin nzx
| n=ln=ln=1 | ( |
I \L+Ab n_ (e 420 )t J\
| (_ . A
’ ! a3 HNZZA 2e—201t+ ‘| 3
n=1n=1
‘ +(3.2 A18+3.2 A22 )sin nzx+ ‘ oo | AA e—clt —||S|n nzX
| |a3A29ZZ| 1 —c+ct||
| | e A, A e (o) Il
e =22 A +A (by- Al)e SN nzx
| 2 -2cqt 2 -(2e14ept 4
n=1n=1n=1
A

+(d/-\cr/-\e T _Cﬂ - )
| D) Tag Ry 3] At (bn—Al )e J|S|n NzX+agAgsinnzx.
\ n=1 n=1 )

55

dx

|
|
i
| )

3.170



That is,

1 1
( o o al sl (L it )
|Hn;rAe T ang Jo-l-k::Al Ae +an n:1|—A 4b A € U 2Lx -sin” ,__ 2n7zJ0 |

| 1( 0 © e, +A (bn —Al )e *((3 2+C)t \

| [ cosnzx] | pam .
|+(a1A14+azA18+a2A22+a3A30)|L Nz ‘ 0+‘| 11 cos3nzx — 3cos n;rx—|\1 | |\
| = \ |
I 4 anz Nz, )
|
| aA Shefrah L TAHb—A e +aA . A \ |
\ 2 16 Z 2 193] (n 1) 2202
| + n n=1 n=1 |1 l X sznﬂ'x ‘ |
\
||+aA A+ b-A el +ah | A b- Ae;“||2L N7 |
| ‘ 228% [ 1 (n 1) 22631 1 (n 1) |
| k n=1 n=1 ) |
+
. == Albh-A)e || (3.172)
|7 —Cqt (o 42 )t—| \
|‘ n=1n=1 . | |
‘ | Lo +A(bn‘Al)e ] ‘| 1 ‘l
| 4 E:l n-1 - e | | 1] cos3nzx _3cosnzzx1| I
Fa(t)=-2 If ‘OO ZZLO:AlE o +A (by - Ay )e_cl*'():t, 1 | 41 3nx nz Jo ‘
| | m || ||
|| 1
‘ |a2/-\27zz A +2A (by-Ar Je - + (oA )2 = | |
I U onamal 1) |
‘ I_AAZ]_E _Clt-l'AA]_ (bn—A]_ )e_(c1 +Cz )t-‘ |
. . 1
| e ove iy [sindnzx 2sin2nzx T
| TRy | +AA; (by—Ag)e' il — +3x| |
n=ln=1n=1 | |8 |_ Anrz n/T_lo
H +A b- A - (c1420 )t | |
| L (n J |
| |
| / o 2 -2t \ |
a A
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! n=ln=1 l1 ‘
1l ..l AAe: H;I ] N |
aA 1V nz
e ) [ I : |
‘ n=tn=1] +A (bn—A1)e (., 2 [ |
l \L 1) ( X i
A o xict 1] sindnzx  2sin2nzx |
3 u ZZZ\ A‘Ae L A (bn Al) B |—| - +3x | |
n=ln=ln=1 L JBL inr n7Z'_J0 l
© 1
|+ aAZAe1+aA !A+b Ae o= x —sm_l |
| 328 3313 1 (n ‘ ‘ |

k \ n=1 n=1 ) 2 \_ ZI'VZJO }
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That is,

S0 =) ]
(1 = o[Ath-Aee]+A | |
IE 18 =~ 1 15%:'_1 (n 1) JJ 32I_ nz |J
| o0 0 | n |
| +ga1H Z ’—AAle 1+A(bn Al) 1 z)t“ﬂL'
IL3 n=ln=l | 1l nrz J|
| ( S ct ct N -CI\
| RALRa ZHﬂbﬂ Aiiranlie
+ n=1 n=1
[ S I
| ‘+aAﬂ|A+b AEZ |+aé |A+b Aez JI |
2 23 1 (n 1) 226 1 (n
| a A n=l n=1 N )l
l ‘ 2 17\3_@_ ®© —A(bn—A]_)e J |
|| ( || -t (et | )
n=1n=1
I R |
| 2‘ dZ I-\Zl ZZ[AAleclt+A(bn—Al )97(01 +02)[]+ |‘ ( l)n |
M__ n=ln=1 " 1-\- ‘
| 3‘|_ %f\m\f -t + A (by — Ag Je-(ase) J:‘i- |L nrz J|
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| |
I |€2A27 ZZ LA +2A1 (bn-Ar Je 4 +(bn-Ag )2 2CtL|
n=1n=1
|
| l[ AA %1 0 Ay (by- Ag l)e‘ (e e )y
I P :
| +—8a2 st ZZZI +AA (bn Al) et ||
n=1n=1n=l
| | +tAb- A - (c142 1t |
\ L (n 1)J
! (= R \| n
| 2 2t |
R T T ==
| |33A29 ZZ| —c+4c t ||L J
| n=ln=1] +A(bn A1)e(1 2) “
\
d I'\
} +§ 11 ZZZ 2C1t+A (bn—A1 )e_(zc1+cz )t —|J
n=1n=1n=1
L aA. 3Ae7011+aA [ A+ b-A ¢%1 .
\ | 3282 : L1 (n 1)) \
n=1 n=1
L2 )
Where,

Azr =(ar Ay +ayAg+ax Ay +azAg ) .
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It implies that,

f1-(-1) ]

)
(1 . o olarb-Aes] val )
—|182 115ZL1 (n 1) J| 32
2\ " nha n=1 ) |

nz |

|
i | L| :

0 o0 n
|+ 20,00 D7 Ade L4 A (by-Ag)e & e |
l!L 37 nana L I nz |

i

||+l‘ AgAe 1+/.\ (A+ b Ae“ﬂ
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l (A 0 00 ( —C+C t—l n \I

| Ags Z3T AAe 1+ A(by — Ay e 1 2) n
| +2]  nam , h(i_Ll_ 1) |
| 3] © o 2 —cot 2 et | nr
| | %2"27 S A 2 0-Ade +(B-A)e 11

T ]
I T Yy YW (T S U
| | | — c+C t | ’
| 3 szzw - c+c)t
| +§I ay A25 | + AA; (bn A1 )e c I I+
n=ln=1n= 1

| | !+A(bn A]_) e_kc1+2C2)t | |‘
| |
I \( " z;“ oy \
‘| + ] n=1n=1 Lot | ““1 ( 1)
EREYS»i} war L)
|\ | n1n1\+A(bA \ ) J \/
|«
| +§d3 Hll ZZZ[AZAle 2C1t+A (bn Al)e( 1 zt-|
i 8 n=ln=ln=1 J
|
|

|
+l( aAZAe-CHaA | A+ b —A et I\.
| 328 1 (n 1) 1

331)]

K 2 \ n=1 n=1
Where,
Asz = (arAg+a Ay ) ]I
Agy = (@2 Agg+ay Az + a3 Agg ) r

Ags = (@ Aur+ay Apr + 2 Ay + 2 A )|
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Using (3.169) and (3.175) in (3.86) we have,

1 (n

n=1 n=1

n=1ln=1

o 00 © |

+ A3 200 +AAL (b —Ag e

n=ln=ln=1|

L
+| Ax ZZA e+ Ags ZZ|

n=1n=1

)€,

2 -c

® +A (bn
| 2 =207 2

| n=ln=ln=1

A e YEA TA+ b
1 (n

a7y

|
k n=1
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n=1

L
\ N
e l]f”
e +A TAE b-A
4031

A 20T Atie A (b - Ar )

[AAZe 7+ ARy (by- Ay e (e )r)
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+2¢ 1

oo | Me

n=ln= 1|+A(b —Ar e

nz |
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J]
08 J

n
- ¢ );||| 1—!—1! ||+
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o

: JEt—

—1+Cz |
o [ 3a77

)J|

Al )e 2C +Cr J
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1) ] }
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That is, (3.177) becomes

(
‘ - c-C1 |l_( )1n—|

: A352A+ A37 Z’— A]_e CZT+ ( bn —Al )e ‘1 2) |+ H32| |ec11
} n=1 ne1t ] I_ Nz J|
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n
38 |_ 1
ezl )
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- 1
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\ ]
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H n=1n=1 J‘L
1 |(AA 4 Ay (b - Ay )e‘“ﬂ|
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‘ I\ n=1n=1 n=1n=1 ] [ +A (bh—A1 e lyht nz J
\‘*"222“ e e gyr +A z(bn—Al )e (1 2) J
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‘ n=ln=1n=1
‘+/'\ OO/_H_ A © or (1 2) |
| 472 482 LA1e +(bn—A1)e e-¢ TJ.
\ n=1 n=1
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That is,

#in (1) =-2¢"%

Where,

A

)

|
|
|
|
|
|
|
‘d
I
|
|
|
|
|

cC 1
( 1" )
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| ® ‘ n-\
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| ] ]
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| I ]
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o o o | |
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I n=ln=1n=1 \L+Ab(— n A Ze —2cir J||
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"o =(Ag7 +Ago + Agg )},

Asy = (Asg + As1) J
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Integrating (3.180) with respect toz, we have

[ e 2[A (b=A) cc.] AA
As ZAT[) ZI —r+| e |+ ;

n=1 1L G \lech Jo
A ooao | (bl’] Al) -7

5122 52 L 12’——5—62 |

n=1n=1 0

0 0 (AZ 2A(b A c-cr (b A) c— 201
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et 1Y C1-Cp -2,
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|
\
|
\
|
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e
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n=in=1 % hy n=1n=1 |
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AGZZZ I _eiclr*- — e |
n=in=1n=1| C1 (Cl+02) |
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That is we have,
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| n=1 mil 109 ) N C1 (Cl nY) )) J | |
| I |
| |_A N n (b_A)‘—(‘:+clz‘t]|
| A A © . ||A,’“e " ¢ \ |
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That is,
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din (1) | L s 58 | J
| 2 ot ~(er4ep )t
fls>>3 ®o® | - A59e - A6Oe
| -(cr+ o)t -(cp+2ep)t |
n=ln=1n=1 |
| L + A59 e Clt + Asg e C1t + Ag()eiclt |
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2
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Now, we substitute (3.185) in (3.85) and obtain,

( - . A ]
| -2 A4g Z Ate C1t B AASOE - +Asze czt - A54€701[ ‘
| n=1 1l 1
c . t
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| [A° e AE S
| © e i Age At D
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k n=ln=1n=1
Finally, to obtainé; , we substitute (3.82), (3.83), (3.96), (3.131) and
obtain,
20 ;
" =1 %% ( 4Rye+a )0 - Znﬁ(A1+(b—A1)e )cos nzx
(( 1 [ - ot N
| - el o1+ 2(A+(ba—Ar)e sinnzx || |
I\ 2 n-1 |
( ( - . N
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That is, we expand (3.188) and obtain,
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It implies that,

=t
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J
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|
|
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Where,
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We then compare (3.190) with (3.84)—(3.88) and obtain,

u=4,

f(x)=0, L=L
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'
|
J

So, it implies that,

bn :O

Similarly,

Fn (t) =-2 Il by sin Nz xdx .

0
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That is, we substitute (3.191) into (3.194) and obtain,
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Integrating (3.195) we have,
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| 1 0 1 |
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I L nz o 2m | L anr |
| aA ¢ —ct r 2n7zx—|l |
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Fa(t) = -2| 21 2nz o
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|-——2Ae ,|*-sin - 1 ||
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| —~ | ||
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1 a A © 1
| [ cos2nzx] 5 @ | onzx ||
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K |_ nz ] 2 |_ 2n7zJ 0 }
That is (3.196) becomes
( | ) )
A54A52+A55 Z (A1+(bn—A1 )e . )+ A66 Z(Al + ( bn _Al )e _CZt)
n=1 n=1
‘ ] 0 o0 (A]_Z + 2A1 (bn _Al )e_czt\
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Where,

A

6 = (.a4A16+a4A20 —3.5A12 )]
d A |
A PR Y |
6= 2 |
d A |
A 42 |

66 =
2 \
d A |
A = 4 u |
n |
6 28.4 A25 ‘}
3 |
A — d5 /-\10 |
69 5 ||
A 28.5 A“ |
"3 |
d A |
A 5013 |
7l = =—— ‘
2 J

This implies that,

C
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n=1
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|

|
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Using (3.193) and (3.199) in (3.86) to have,

[ )
| ’ —Czr) |
\A72+A73 (A + (ba—Ar e |
t £y wnzl | |
thn (t):—Ze‘Ctheczr | +Ag 20 Aso (A12+2A1 (b= A Je &+ (by—Ar )28—2021) } dr (3.201)
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That is,
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That is,
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Using (3.205) in (3.85) we have,

[ A LA AT
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Then the solution for dimensionless equations (3.56) — (3.60) are;

1 sm nrrx (3 206)
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The computations were done using Maple 17 and the graphs generated were shown and

discuss in Chapter four.
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION

4.1 Results

To conclude this analysis we examine the effects of the Frank-Kamenetskii numbers

(8, &), Radiation number (Ra ), Peclet energy number (Pe ), Peclet mass number (Pen ),
Activation energy number (e)and the Equilibrium wind velocity (v ) on the transient state
temperature & (x , t ), the oxygen concentration ¢ (x , t ), the volume fraction of dry organic
substance y4 (x b ) , the volume fraction of moisture v (x b ) and the volume fraction of

coke y3 (x , t ) Analytical solutions given by equation (3.207), (3.208), (3.209), (3.210) and

(3.211) were computed using computer symbolic algebraic package MAPLE 17. The

numerical results obtained from the solutions are shown in Figure 4.1 to 4.46. The effect of

Frank-Kamenetskii number (5) on temperature 6 (x ot ) against distance is depicted in figure
4.1. The effect of Frank-Kamenetskii number () on temperature 6 (x , t ) against time is

depicted in figure 4.2. The effect of Frank-Kamenetskii number (5) on temperature @ (x , t )
against distance and time is depicted in figure 4.3. The effect of Radiation number

(Ra )on temperature 0(x : t) against distance is depicted in figure 4.4. The effect of
Radiation number (R, )on temperature & (x , t ) against time is depicted in figure 4.5. The
effect of Radiation number (Ra )on temperature @ (x , t ) against distance and time is

depicted in figure 4.6. The effect of Radiation number (Ra )on oxygen concentration
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¢ (x , t ) against distance is depicted in figure 4.7. The effect of Radiation number (R )on
oxygen concentration ¢ (x ,t ) against distance and time is depicted in figure 4.8. The effect of
Radiation number (Ra) on volume fraction of dry organic substance y4 (x , t) against
distance is depicted in figure 4.9. The effect of Radiation number (R, ) on volume fraction of
dry organic substance (x , t ) against time is depicted in figure 4.10. The effect of
Radiation number (Ra ) on volume fraction of dry organic substance y1 (x ,t ) against
distance and time is depicted in figure 4.11. The effect of Radiation number (Rj ) on
volume fraction of moisture y » (x , t ) against distance is depicted in figure 4.12. The effect
of Radiation number (Ra ) on volume fraction of moisture ¥ (X, t)against time is
depicted in figure 4.13. The effect of Radiation number (Ra)on volume fraction of

moisture v (x, t ) against distance and time is depicted in figure 4.14. The effectof

Radiation number (R, )on volume fraction of coke i3 (x b ) against distance is depicted in
figure 4.15. The effect of Radiation number (R, )on volume fraction of coke ys (x, )
against time is depicted in figure 4.16. The effect of Radiation number (Ra )on volume
fraction of coke v (x ,t ) against distance and time is depicted in figure 4.17. The effect of
Peclet energy number (Pe ) on temperature & ( *-t) against distance is depicted in figure
4.18. The effect of Peclet energy number (Pe ) on temperature 6 (x.1) against time is

depicted in figure 4.19. The effect of Peclet energy number (Pe ) on temperature ¢ (1)
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against distance and time is depicted in figure 4.20. The effect of Peclet energy number (Pe )
on oxygen concentration ¢ (x ,t ) against distance is depicted in figure 4.21. The effect of
Peclet energy number (Pe ) on volume fraction of dry organic substance yn (x , t ) against
distance is depicted in figure 4.22. The effect of Peclet energy number (Pe )on volume
fraction of dry organic substance w1 (x , t ) against time is depicted in figure 4.23. The
effect of Peclet energy number (Pe ) on volume fraction of dry organic substance y1 (x 1 )
against distance and time is depicted in figure 4.24. The effect of Peclet energy number (Pe )
on volume fraction of moisture w, (x , t ) against distance is depicted in figure 4.25. The effect
of Peclet energy number (Pe) on volume fraction of moisture w , (x , t) against time is

depicted in figure 4.26. The effect of Peclet energy number (Pe ) on volume fraction of
moisture against distance and time is depicted in figure 4.27. The effect of Peclet energy

number (Pe ) on volume fraction of coke v (x ,t ) against distance is depicted in figure
4.28. The effect of Peclet energy number (Pe ) on volume fraction of coke y3 (x b ) against
time is depicted in figure 4.29. The effect of Peclet energy number (P, ) on volume fraction of
coke ys3 (x , 1 ) against distance and time is depicted in figure 4.30. The effect of Peclet mass
number (Pem ) on oxygen concentration ¢ (x 1 ) against distance is depicted in figure 4.31.
The effect of Peclet mass number (Pem ) on oxygen concentration ¢ (x , t ) against time

is depicted in figure 4.32. The effect of Peclet mass number (Pey ) on oxygen concentration

@ (x b ) against distance and time is depicted in figure 4.33. The effect of dimensionless
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Activation energy number (e) on temperature € (x ,t ) against distance is depicted in
figure 4.34. The effect of dimensionless Activation energy number (e) on temperature

0 (x , t ) against time depicted in figure 4.35. The effect of dimensionless Activation energy
number (e) on temperature @ (x , t ) against distance and time depicted is depicted in figure
4.36. The effect of dimensionless Activation energy number (e) on volume fraction of dry
organic substance ya (x , t ) against distance is depicted in figure 4.37. The effect of
dimensionless Activation energy number (e) on volume fraction of dry organic substance

W1 (x , t ) against time is depicted in figure 4.38. The effect of dimensionless Activation

energy number (e) on volume fraction of dry organic substance w1 (x , t ) against distance
and time is depicted in figure 4.39. The effect of dimensionless Activation energy number

(€) on volume fraction of moisture y » (x , t ) against distance is depicted in figure 4.40.
The effect of dimensionless Activation energy number (e) on volume fraction of moisture
y2 (x, t) against time is depicted in figure 4.41. The effect of dimensionless Activation
energy number (e) on volume fraction of moisture y » (x , t ) against distance and time is
depicted in figure 4.42. The effect of dimensionless Activation energy number () on volume
fraction of coke y3 (x , t ) against distance is depicted in figure 4.43. The effect of

dimensionless Activation energy number (e)on volume fraction of coke 3 (x , t ) against
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time is depicted in figure 4.44. The effect of dimensionless Activation energy number (e)

on volume fraction of coke w3 (x , t ) against distance and time is depicted in figure 4.45.

The effect of Equilibrium wind velocity (v )on oxygen concentration ¢ (x,t ) against

distance depicted in figure 4.46.
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Figure 4.1: Graph of temperature & (x ot ) against distance x for different values of
(5)=0.6 (Green) and

Frank-Kamenetskii ~ number (&) . (5)=0.4 (Red),
(5)=0.8 (Blue).
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Figure 4.2: Graph of temperature 6 (x , t ) against time t for different values of
(5)=0.6 (Green) and

Frank-Kamenetskii ~ number (&) . (5)=0.4 (Red),

(5)=0.8 (Blue).
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Figure 4.3: Graph of temperature 0(x.t) against distance X andtime t for different
values of Frank-Kamenetskii number (6). (5)=0.4 (Red), (&)= 0.6 (Green)and
(5)=0.8 (Blue).

O(x,1)

0.5+

Figure 4.4: Graph of temperature & (x ,t ) against distance X for different values of
Radiation number (R, ). (Ra ) =1 (Red), (Ra ) = 2 (Green) and (R4 ) = 3 (Blue).
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Figure 4.5: Graph of temperature 6 (x ,t )ﬂv‘gg.ainst time t for different values of

(Ra ) =1 (Red),

O(x.t)
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Figure 4.6: Graph of temperature e(x,t) against distance X andtime t for different
(Ra)=2 (Green) and

number (Ra ). (Ra ) =1 (Red),

values of Radiation

(Ra ) =3 (Blue).
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Figure 4.7: Graph of oxygen concentration ¢ (x t ) against distance X for different values

of Radiation number (Ra ). (R. ) =1 (Red), (R )=2 (Green)and (Ra ) =3 (Blue).

Figure 4.8: Graph of oxygen concentration ¢ (x , t ) against distance X and time { for
different values of Radiation number (Ry ). (Ra ) =1 (Red), (Ra ) = 2 (Green) and
(Ra ) = 3 (Blue).
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Figure 4.9: Graph of volume fraction of dry organic substance y1 (x , 1 ) against distance X

for different values of Radiation number (R ). (Ra ) =2 (Green) and

(Ra ) =1 (Red),
(Ra ) =3 (Blue).
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Figure 4.10: Graph of volume fraction of dry organic substance y1 (x , t ) against time t
for different values of Radiation number (Ry ). (R ) =1 (Red), (Ra ) = 2 (Green) and
(Ra ) =3 (Blue).
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w, (x,1)

Figure 4.11: Graph of volume fraction of dry organic substance w1 (x , t ) against
distance X and time t for different values of Radiation number (Ry ). (Ra ) = 1 (Red),

(Ra ) =2 (Green)and (R, ) =3 (Blue).
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Figure 4.12: Graph of volume fraction of moisture i » (x , t ) against distance x for

different values of Radiation number (R, ). (Ra ) =1 (Red), (Ra ) = 2 (Green) and
(Ra ) =3 (Blue).
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0.4 06 038
Figure 4.13: Graph of volume fraction of moisture y » (x, t )against time t for different
values of Radiation e (8 ) (Ra) =2 (Green) and

(Ra ) =1 (Red),
(Ra) =3 (Blue).

W, (x,1) ‘

Figure 4.14: Graph of volume fraction of moisture i » (x , t ) against distance x and time
t for different values of Radiation number (R ). (Ra ) =1 (Red), (Ra ) =2 (Green) and
(Ra ) =3 (Blue).
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Figure 4.15: Graph of volume fraction of coke w3 (x , t ) against distance X for different
values of Radiation number (R, ). (Ra ) =1 (Red), (Ra ) = 2 (Green) and
(Ra ) =3 (Blue).

0 02 04 06 08 1
Figure 4.16: Graph of volume fraction of coke 3 (x , t ) against time t for different values

of Radiation number (R, ). (Ra ) =1 (Red), (Ra ) =2 (Green) and (R, ) = 3 (Blue).

89



v, (x.t) -

Figure 4.17: Graph of volume fraction of coke ys (x ,t ) against distance X and time t for
different values of Radiation number (R ). (Ra ) =1 (Red), (Ra ) = 2 (Green) and
(Ra ) =3 (Blue).
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Figure 4.18: Graph of temperature 8 ( Peclet

energy number (P ). X,t ) against distance X for different values of

(Pe ) =1 (Red),

e) 2 €

p_= (Green)and (P ) =2 (Blue).
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Figure 4.19: Graph of temperature 6 (x ,t ) against time t for different values of
Peclet energy number (P ). (P)=1(Red), P =3 (Greenyand (P )=2 (Blue).
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Figure 4.20: Graph of temperature e(x,t) against distance X and time t for different
values of Peclet energy number (P ). (P )=1(Red), P =23 (Green)and
2

e e ( e)
(Pe)=2 (Blue).
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Figure 4.21: Graph of oxygen concentration ¢ (x ,t ) against distance X for different values
of Peclet energy number (P ). (P )=1(Read), P =3 (Green)and (P )=2 (Blue).
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Figure 4.22: Graph of volume fraction of dry organic substance w1 (x , 1 )against distance
x for  differentvalues of  Peclet energy number (Pe). (Pe ) =1 (Red),
P =3 (Green)and (P ) =2 (Blue).
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Figure 4.23: Graph of volume fraction of dry organic substance y1 (x,t) against time t for
2

e e e

different values of Peclet energy number (P ). (P )=1(Red), P = = (Green) and
(Pe ) =2 (Blue).
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Figure 4.24: Graph of volume fraction of dry organic substance y1 (x t ) against distance

xand time t for different values of Peclet energy number (Pe ).  (Pe ) =1 (Red),
(e) 2 e

P = 2 (Greenyand (P ) =2 (Blue).
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Figure 4.25: Graph of volume fraction of moisture w, (x,t) against distance x for

different values of Peclet energy number (P ). (P )=1(Red), P =3 (Green)and
: e () 2
(Pe ) =2 (Blue).
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Figure 4.26: Graph of volume fraction of moisture y (x N ) againsttime T for different

values of Peclet energy number (P ) (P ) =1 (Red), P =3 (Green)and
e ‘ () 2
(Pe)=2 (Blue).
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W, (x,1)

Figure 4.27: Graph of volume fraction of moisture v » ( for

different values of Peclet energy number (Pe ). X, t) against distance X and time t

3
(Pe ) =1 (Red), P = (Green)and
e 2
(Pe ) =2 (Blue).
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Figure 4.28: Graph of volume fraction of coke  ys (x 1 ) against distance x for different
(e) 2

values of Peclet energy number (Pe ). (Pe) L1(Red), P -~ (Green)and

(Pe ) =2 (Blue).

95



—P =1

'Jllw

=
«eesP=2

3
(Pe ) =1 (Red), P_ = (Green)and

Figure 4.29: Graph of volume fraction of 2
coke w3 (x, t ) of Peclet energy number (P, ).
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Figure 4.30: Graph of volume fraction of coke s (x,
t ) different values of Peclet energy number (Pe ).
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Figure 4.31: Graph of oxygen concentration ¢ (x ,t ) against distance X for different values
of Peclet mass number (Pey ). (Pem ) =0.3 (Red), (Pem ) = 0.5 (Green) and
(Pem ) = 0.7 (Blue).
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Figure 4.32: Graph of oxygen concentration ¢ (x ,t ) against time t for different values of

Peclet mass number (Pem ). (Pem ) = 0.3 (Red), (Pem ) = 0.5 (Green) and (Per ) = 0.7 (Blue).
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Figure 4.33: Graph of oxygen concentration ¢ (x.t) against distance x andtime t for
different values of Peclet mass number (Pem ). (Pen ) =03 (Red), (Pen ) =0.5 (Green) and
(Pen ) = 0.7 (Blug).
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Figure 4.34: Graph of temperature 6 (x ,t ) against distance X for different values of
dimensionless activation energy number (). (&) =0.01 (Red), (&) = 0.05 (Green) and

(€)=0.1(Blue).
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Figure 4.35: Graph of temperature 6 (x ,t ) against time t for different values of
dimensionless activation energy number (). (&) =0.01 (Red), (&) = 0.05 (Green) and
(e)=0.1(Blue).

Figure 4.36: Graph of temperature 49(X , t) against distance x and time t for different

) e = 0.01 (Red),

values of dimensionless activation energy number ( ()

€ =0.05 (Green)and € =0.1 (Blue).
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Figure 4.37: Graph of volume fraction of dry organic substance w1 (X, t ) against distance
x for different values of dimensionless activation energy number (e) (e) =0.01 (Red),
() =0.05 (Green) and (e)=0.1 (Blue).
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Figure 4.38: Graph of volume fraction of dry organic substance (x , against timet for
t ) different values of dimensionless activation energy number (). (€)=0.01 (Red),
(€)=0.05(Green)and (€)=0.1 (Blue).

100



Figure 4.39: Graph of volume fraction of dry organic substance y1 (x ,t ) against distance
x and time t for different values of dimensionless activation energy number (&) .
(€)=0.01(Red), (€)=0.05(Greenyand (e)=0.1(Blue).
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Figure 4.40: Graph of volume fraction of moisture ¥ (X,t) against distance X for
€ e =0.01 (Red),

number ( ). )

different values of dimensionless activation energy
(€)=0.05(Green)and (€)=0.1 (Blue).
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Figure 4.41: Graph of volume fraction of moisture v (x ,t ) against time t for different

S
values of dimensionless activation energy number (). (E) = 001 (Red),

€ =0.05 (Green)and € =0.1 (Blue).
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Figure 4.42: Graph of volume fraction of moisture v » (x , t ) against distance X and time
t for different values of dimensionless activation energy number (€). (€)= 0.01 (Red),
(€)=0.05 (Green) and (e)=0.1 (Blue).
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Figure 4.43: Graph of volume fraction of coke w3 (x , t ) against distance X for different
S
values of dimensionless activation energy number ().
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Figure 4.44: Graph of volume fraction of coke y3 (x b ) against time t for different values
of dimensionless activation energy
(e€)=0.05 (Green) and (e)=0.1 (Blue).
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Figure 4.45: Graph of volume fraction of coke ys (x ,t ) against distance
S

different values of dimensionless activation energy number ( ).
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Figure 4.46: Graph of oxygen concentration ¢ (x b ) against distance X for different values of

equilibrium wind velocity (v ). (v) = 0.1 (Red), (v) = 0.2 (Green) and (v) = 0.4 (Blue).
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4.2 Discussion of the Results

Figure 4.1 depicts the graph of temperature 6 (x ,t ) against distance x for different values

of Frank-Kamenetskii number (5 ) . It is observed that the temperature decreases but later

increases along the distance and the minimum temperature decreases as Frank-Kamenetskii

number increases.

Figure 4.2 shows the graph of temperature & (x , t ) against time t for different values of

Frank-Kamenetskii number (&) . It is observed that the temperature decreases and later

increases and becomes steady with time but decreases as the Frank-Kamenetskii number

increases.

Figure 4.3 displays the graph of temperature & (x ,t ) against distance x andtime t for

different values of Frank-Kamenetskii number (5 ). It is observed that the temperature

decreases but later increases along the distance. It decreases and later increases and

becomes steady with time while it decreases as the Frank-Kamenetskii number increases.

Figure 4.4 depicts the graph of temperature 6 (x ,t ) against distance x for different values
of Radiation number (R, ). It is observed that the temperature decreases but later increases

along the distance and the minimum temperature decreases as Radiation number increases.

Figure 4.5 shows the graph of temperature 6 (x ,t ) against time { for different values of

Radiation number (R, ). It is observed that the temperature decreases and later increases

and becomes steady with time but decreases as the Radiation number increases.
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Figure 4.6 displays the graph of temperature & (x ,t ) against distance x andtime t for

different values of Radiation number (R, ). It is observed that the temperature decreases

but later increases along the distance. It decreases and later increases and becomes steady

with time while it decreases as the Radiation number increases.

Figure 4.7 depicts the graph of oxygen concentration ¢ (x , t ) against distance x for

different values of Radiation number (R, ). It is observed that the oxygen concentration

oscillates along the distance and maximum concentration decreases as the Radiation

number increases.

Figure 4.8 displays the graph of oxygen concentration ¢ (x ,t ) against distance X and
time

t for different values of Radiation number (Ra ) It is observed that the oxygen

concentration oscillates along the distance and does not change with time but the maximum

concentration decreases as the Radiation number increases.

Figure 4.9 depicts the graph of volume fraction of dry organic substance y1 (x 1 ) against

distance x for different values of Radiation number (R, ). It is observed that the volume

fraction of dry organic substance increases but later decreases along the distance and
maximum volume fraction of dry organic substance increases as the Radiation number

increases.

Figure 4.10 displays the graph of volume fraction of dry organic substance yn (x , t ) against

time t for different values of Radiation number (Ry ). It is observed that the volume
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fraction of dry organic substance decreases with time and increases as the Radiation

number increases.

Figure 4.11 depicts the graph of volume fraction of dry organic substance w1 (x , t )

against distance x and time t for different values of Radiation number (R ). It is

observed that the volume fraction of dry organic substance increases but later decreases

along the distance. It decreases with time and increases as the Radiation number increases.

Figure 4.12 displays the graph of volume fraction of moisture y , (x, t ) against distance x

for different values of Radiation number (R, ). It is observed that the volume fraction of

moisture increases but later decreases along the distance and maximum volume fraction of

moisture increases as the Radiation number increases.

Figure 4.13 depicts the graph of volume fraction of moisture w, (x , t ) against time t for
different values of Radiation number (R, ). It is observed that the volume fraction of
moisture decreases with time and increases as the Radiation number increases.

Figure 4.14 displays the graph of volume fraction of moisture w, (x,t) against distance

x andtime t for different values of Radiation number (R, ). It is observed that the

volume fraction of moisture increases but later decreases along the distance. It decreases

with time and increases as the Radiation number increases.

Figure 4.15 depicts the graph of volume fraction of coke w3 (x , t ) against distance x for

different values of Radiation number (R, ). It is observed that the volume fraction of coke
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decreases but later increases along the distance and decreases as Radiation number

increases.

Figure 4.16 displays the graph of volume fraction of coke w3 (x,t)  againsttime t for
different values of Radiation number (R, ). Itis observed that the of volume fraction of
coke increases with time and decreases as the Radiation number increases.

Figure 4.17 depicts the graph of volume fraction of coke w3 (x , t ) against distance x and

time t for different values of Radiation number (Ry ). It is observed that the volume

fraction of coke decreases but later increases along the distance. It increases with time and

decreases as the Radiation number increases.

Figure 4.18 depicts the graph of temperature 6 ( X 't) against distance x for different values

of Peclet energy number (Pe ). It is observed that the temperature decreases but later

increases along the distance and the minimum temperature decreases as Peclet energy

number increases.

Figure 4.19 shows the graph of temperature 6 (x ,t ) against time t for different values of

Peclet energy number (Pe ) It is observed that the temperature decreases and later

increases and becomes steady with time but decreases as the Peclet energy number

increases.

Figure 4.20 displays the graph of temperature @ ( *'!) against distance x and time t for

different values of Peclet energy number (Pe ). It is observed that the temperature
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decreases but later increases along the distance. It decreases and later increases and

becomes steady with time while it decreases as the Peclet energy number increases.

Figure 4.21 depicts the graph of oxygen concentration #(x.1) against distance x for

different values of Peclet energy number (Pe ). It is observed that the oxygen

concentration oscillates along the distance and maximum concentration decreases as the

Peclet energy number increases.

Figure 4.22 displays the graph of volume fraction of dry organic substance yn (x 1 ) against

distance x for different values of Peclet energy number (Pe ) It is observed that the

volume fraction of dry organic substance increases but later decreases along the distance
and maximum volume fraction of dry organic substance increases as the Peclet energy

number increases.

Figure 4.23 depicts the graph of volume fraction of dry organic substance 1 (x , t ) against

time t for different values of Peclet energy number (Pe ). It is observed that the volume

fraction of dry organic substance decreases with time and increases as Peclet energy

number increases.

Figure 4.24 displays the graph of volume fraction of dry organic substance y; (x , t ) against

distance X and time 1 for different values of Peclet energy number (Pe ) It is observed that

the volume fraction of dry organic substance increases but later decreases along the

distance. It decreases with time and increases as the Peclet energy number increases.
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Figure 4.25 depicts the graph of volume fraction of moisture w , (x, t ) against distance x

for different values of Peclet energy number (Pe ) It is observed that the volume fraction of

moisture increases but later decreases along the distance and maximum volume fraction of

moisture increases as the of Peclet energy number increases.

Figure 4.26 depicts the graph of volume fraction of moisture w, (x , t ) against time t for
different values of Peclet energy number (Pe ). It is observed that the of volume fraction of
moisture decreases with time and increases as the Peclet energy number increases.

Figure 4.27 displays the graph of volume fraction of moisture w, (x,t) against distance

x and time t for different values of Peclet energy number (Pe ). It is observed that the of

volume fraction of moisture increases but later decreases along the distance. It decreases

with time and increases as the Peclet energy number increases.

Figure 4.28 depicts the graph of volume fraction of coke y 3 (x , t ) against distance x for

different values of Peclet energy number (P ). It is observed that the volume fraction of

coke decreases but later increases along the distance and decreases as Peclet energy number

increases.

Figure 4.29 displays the graph of volume fraction of coke w3 (x,t)  againsttime t for

different values of Peclet energy number (P ). It is observed that the of volume fraction of

coke increases with time and decreases as the Peclet energy number increases.
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Figure 4.30 depicts the graph of volume fraction of coke w3 (x , t ) against distance X and

time t for different values of Peclet energy number (P ). It is observed that the volume

fraction of coke decreases but later increases along the distance. It increases with time and

decreases as the Peclet energy number increases.

Figure 4.31 depicts the graph of oxygen concentration ¢ (x , t ) against distance x for

different values of Peclet mass number (Pep, ). It is observed that the oxygen concentration

oscillates along the distance and maximum concentration increases as the Peclet mass

number increases.

Figure 4.32 shows the graph of oxygen concentration ¢ (x 1 ) against time t for different

values of Peclet mass number (Per ). It is observed that the oxygen concentration decreases

but later becomes steady with time and decreases as the Peclet mass number increases. Figure

4.33 displays the graph of oxygen concentration ¢ (x ,t ) against distance x and time

t for different values of Peclet mass number (Pey ). It is observed that the oxygen

concentration oscillates along the distance and decreases but later becomes steady with time

and increases as the Peclet mass number increases.

Figure 4.34 depicts the graph of temperature & (x 1 ) against distance x for different

values of dimensionless activation energy number (e) . It is observed that the temperature

decreases but later increases along the distance and the minimum temperature decreases as

dimensionless activation energy number increases.
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Figure 4.35 displays the graph of temperature & (x 1 ) against time t for different values of

dimensionless activation energy number (). It is observed that the temperature decreases

and later increases and becomes steady with time but decreases as the dimensionless

activation energy number increases.

Figure 4.36 displays the graph of temperature & (x , t ) against distance x and time t for

different values of dimensionless activation energy number (€). It is observed that the

temperature decreases but later increases along the distance. It decreases and later increases
and becomes steady with time while it decreases as the dimensionless activation energy

number increases.

Figure 4.37 depicts the graph of volume fraction of dry organic substance 1 (x , t ) against

distance x for different values of dimensionless activation energy number () . Itis

observed that the volume fraction of dry organic substance increases but later decreases
along the distance and maximum volume fraction of dry organic substance increases as the

dimensionless activation energy number increases.

Figure 4.38 depicts the graph of volume fraction of dry organic substance y1 (x ,t ) against

time t for different values of dimensionless activation energy number (). It is observed
that the volume fraction of dry organic substance decreases with time and increases as the
dimensionless activation energy number increases.

Figure 4.39 displays the graph of volume fraction of dry organic substance y1 (x , t)

against distance x and time t for different values of dimensionless activation energy
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number (€). Itis observed that the volume fraction of dry organic substance increases but
later decreases along the distance. It decreases with time and increases as the dimensionless

activation energy number increases.

Figure 4.40 depicts the graph of volume fraction of moisture  , (x, t ) against distance x

for different values of dimensionless activation energy number (). It is observed that the
volume fraction of moisture increases but later decreases along the distance and decreases

as dimensionless activation energy number increases.

Figure 4.41 displays the graph of volume fraction of moisture w , (x, t )against time t for

different values of dimensionless activation energy number (). It is observed that the
volume fraction of moisture decreases with time and decreases as the dimensionless

activation energy number increases.

Figure 4.42 depicts the graph of volume fraction of moisture w, (x, t )against distance X

and time t for different values of dimensionless activation energy number (<) . Itis
observed that the volume fraction of moisture increases but later decreases along the
distance. It decreases with time and decreases as the dimensionless activation energy
number increases.

Figure 4.43 depicts the graph of volume fraction of coke w3 (x, t ) against distance x for

different values of dimensionless activation energy number (e) It is observed that the

volume fraction of coke decreases but later increases along the distance and decreases as

the dimensionless activation energy number increases.
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Figure 4.44 displays the graph of volume fraction of coke y3 (x 1 ) against time t for

different values of dimensionless activation energy number (). It is observed that the
volume fraction of coke increases with time and decreases as the dimensionless activation

energy number increases.

Figure 4.45 depicts the graph of volume fraction of coke s (x,t ) against distance x and

time t for different values of dimensionless activation energy number (e) . Itis observed
that the volume fraction of coke decreases but later increases along the distance. It
increases with time and decreases as the dimensionless activation energy number increases.
Figure 4.46 depicts the graph of oxygen concentration ¢ (x ,t ) against distance x for

different values of equilibrium wind velocity (v ). It is observed that the oxygen

concentration oscillates along the distance and maximum concentration increases as the

equilibrium wind velocity increases.
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CHAPTER FIVE
5.0 CONCLUSION AND RECOMENDATION
51 Conclusion

For a high activation energy situation (i.e. as e— 0 ), we have solved the equations
governing fire spread in a real-time coupled atmospheric-Wildland fire using direct
integration and eigenfunction expansion technique. The effects of the dimensionless
parameters as shown on the graph were analyzed. From the result obtained, we can

conclude that:

(1) Frank-Kamenetskii number reduces the transient temperature.

(i)  Radiation number reduces the transient temperature, oxygen concentration and
volume fraction of coke while it enhances volume fractions of dry organic
substance and moisture.

(ili)  Peclet energy number reduces the transient temperature, oxygen concentration
and volume fraction of coke while it enhances volume fractions of dry organic
substance and moisture.

(iv)  Peclet mass number enhances the oxygen concentration.

(v)  Activation energy number reduces the transient temperature and volume fraction
of coke while it enhances volume fractions of organic substance and moisture.

(vi)  Equilibrium wind velocity enhances the oxygen concentration.
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5.2  Contribution to Knowledge

In this study, the following contributions were made to knowledge:

0] The thesis established that the Radiation number, R, , enhances the volume fractions of dry
organic substance and moisture while it reduces the temperature, oxygen concentration and

volume fraction of coke. The volume fractions of dry organic substance and moisture are at

maximum value (1 (x,t)=wj (x,t)~1) whenx=05

while the temperature and volume fraction of coke are at minimum value (6? (x,
t)=ys (x,t)~0.0001)whenx=0.5

(i) The present extends the work of Perminov (2018) by incorporating diffussion term
in fire spread process.

(iii)  Wildland fire model is solved analytically using eigenfunction expansion
technique.

53 Recommendations

Further work can be carried out on wildland fire model using other analytical methods to

ascertain how best the results can be obtained.
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