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ABSTRACT 

This research focuses on the formulation of block hybrid methods with power series as 

basic function through interpolation and collocation techniques for numerical solution 

of second order initial value problems in ordinary differential equations. The step 

number for the derived block hybrid method is k=2 with two off-step point and four off-

step points. The basic properties of numerical methods were analyzed and findings 

revealed that the methods were consistent, zero-stable and convergent which makes 

them suitable for solving the class of problems considered such as linear and non-linear 

problems, oscillatory problems, Dynamic problem and Stiff system. The results 

obtained from the proposed methods, show that the methods are of higher accuracy and 

have superiority over some existing methods considered in the literature.  
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1  Background to the Study 

The mathematical formulation of physical phenomena in science and engineering often 

leads to differential equations, which can be categorized as an ordinary differential 

equation (ODE) and a partial differential equation (PDE). This formulation will explain 

the behavior of the phenomenon in detail. The search for solutions of real-world 

problems requires solving ODEs and thus has been an important aspect of mathematical 

study. These mathematical models are represented in the form of first order or higher 

differential equation. The reliability of numerical approximation techniques in solving 

such problems has been proven by many researchers as the role of numerical methods in 

engineering problems solving has increased drastically in recent years. 

Numerical analysis is the study of algorithms that use numerical approximation for 

problems of mathematical analysis. The numerical method for solving ordinary 

differential equations (ODEs) is the most powerful technique ever developed in 

continuous time dynamics; these are developed since most of the differential equations 

cannot be solved analytically (Chollum, 2004). 

A differential equation, shortly DE is an equation involving a relationship between an 

unknown function and one or more of its derivatives. 

Depending upon the domain of the functions involved we have ordinary differential 

equations, or shortly ODE, is when the unknown function depends on a single 

independent variable. Also, if it involves partial derivatives with respect to more, than 

one independent variable, then the differential equation is called a partial differential 

equation (PDE). 



Our goal is to obtain a numerical solution for a second-order initial value problem 

(I.V.P.) of the general form 

)',,('' yyxfy   0 0( ) ,   '( ) 'y a y y a y  ],[ bax     (1.1) 

Although it is possible to integrate a second-order I.V.P. by reducing it to a first order 

system and applying then one of the methods available for such systems, it seems more 

natural to provide numerical methods in order to integrate the problem directly. 

The advantage of this procedure lies in the fact that they are able to exploit special 

information about ODEs, resulting in an increase in efficiency.  

In order to get more accurate numerical solutions with less effort to solve the second-

order differential equation, many scholars including Vigo-Aguiar and Ramos (2016), 

Mazzia and Nagy (2015), Mazzia et al. (2012), Sommeijer (1993), Brugnano and 

Trigiante (1998), Butcher and Hojjati (2005), Franco (2002), Mahmoud and Osman 

(2009), among others, developed different numerical methods to give the approximate 

solutions to (1.1) and higher-order ODEs without reducing it to a system of first-order 

ODEs. Some of the numerous numerical approaches presented by the aforementioned 

researchers included higher derivative multistep methods, Runge-Kutta methods, spline-

collocation methods, and Runge-Kutta-Nystrom methods. It is well-known that a 

Runge-Kutta-Nystrom method for solving (1.1) has a greater improvement as compared 

to standard Runge-Kutta methods. In case of a linear k-step method for first order 

ODEs, it becomes a 2k-step method for (1.1), thus increasing the computational work. 

The need to improve on the aforementioned methods became important to researchers in 

this area. Different scholars such as Ramos and Singh (2016), Ramos and Rufai (2018), 

Ramos and Lorenzo (2010), have developed block methods for solving higher-order 
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ODEs directly.In block methods, the approximations are simultaneously obtained at a 

number of 2 consecutive grid points in the interval of integration. These methods are 

less costly in terms of number of function evaluations compared to the reduction 

method and linear multistep methods. 

A merit of the block methods over traditional predictor-corrector ones is that they give 

better approximate solutions when solving many problems of the form in (1.1) and 

higher-order ODEs directly. 

This research is focused on development of Falkner-type method for numerical solution 

of second order initial value problems (IVPs) in ordinary differential equations. 

1.2  Statement of the Research Problem 

Several numerical methods cannot solve the second order problem directly without 

reducing to lower order equation. Also, these methods have been found to have major 

setbacks such as large computer storage memories because of too many auxiliary 

functions, wastage of computer time and a lot of human effort. Awoyemi (1992), the 

inability of the method to utilize additional information related to the specific ODEs and 

the lower order of accuracy of the methods used to solve the system of first order after it 

has been reduced compared to the increased dimension of the original problem. 

Predictor-corrector method was also reported to have some major drawbacks due to the 

number of functions evaluated and the order of accuracy of corrector is higher than the 

predictor especially when there is need to interpolate and collocate at grid and off-grid 

point. This major setback of predictor-corrector methods are extensively addressed by 

Jator (2007). Also to overcome this setback of predictor-corrector methods researchers 

have proposed the block methods which gives solutions at each grid within the interval 



of integration without overlapping. They are implemented in a block-by-block fashion 

in other to reduce the burden of developing predictors (Jator 2007, Jator and Li 2009). 

1.3  Aim and Objectives of the Study 

The aim of this research work is to develop a Falkner-type method for the solution of 

the second order initial value problems (IVPs).  

The following objectives are to be achieved 

i. To construct a block hybrid method for k=2 for the solution of second order 

initial value problems. 

ii. To obtain the order and error constant, zero stability, consistency and 

convergence of the method. 

iii. To apply the proposed method to solve initial value problems. 

iv. To compare the results with some existing methods found in the literature. 

1.4 Justification of the Study 

The development of Hybrid Falkner-Type method will enhance, enrich and strengthen 

the subject of numerical methods for solution of second order ODEs. The proposed 

methods show that, from a single continuous scheme, multiple finite difference methods 

can be obtained which would allow the new methods to be self-starting and it is useful 

in numerical solution at several points without starting values, hence, increases the 

speed of integration. 

1.5  The Scope of the study  

Second order initial value problems (IVPs) in ODEs were considered in this thesis. 
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1.6  Limitation of the Study 

The research is limited to the following; 

i. Power series polynomial was considered as basis function because of its 

smoothness. 

ii. The research is limited to the formulation of Falkner-type method. 

iii. The research considers Second order initial value problems. 

1.7 Falkner Type Method  

The Falkner-type method is used to solve differential system of second order ordinary 

differential equations and its general form is as follows: 

1
2

1

0

k
j

n n n j n

j

y y hy h f






           (1.2)  

1
2

1

0

k
j

n n j n

j

y y h f






            (1.3) 

1.8  Maple Software 

The software package has the ability to algebraically manipulate mathematical 

expressions and find symbolic solutions to certain problems such as those arising from 

ordinary and partial differential equations. In this work, Maple (2015) is used for 

simulation.  



CHAPTER TWO 

2.0                                             LITERATURE REVIEW 

2.1    Review of Existing Method 

The development of numerical methods for the solution of initial value problems (IVPs) 

of ordinary differential equations (1.1). 

Reduction method is extensively use earlier in application to reduce higher order to first 

order differential equation of the form; 

),,,( yxfy   nRyxbxayay ,;,)( 0   and  baCf ,'    (2.1) 

After which existing method are used to solve the resultant systems.  

Hasan et al. (2014), presented an implicit method for solving first order singular initial 

value problem. The method is extended to solve second or higher order problems 

having a singular point. The method presents more correct result than those obtained by 

the implicit Euler and second order implicit Runge-Kutta (RK2) method. 

Jator and King (2018), provide greater accuracy of high-order methods with larger step-

sizes than lower order methods. Hence, the method is based on Block Hybrid Method 

(BHM) of order II for directly solving systems of general second-order initial value 

problems (IVPs), including Hamiltonian systems and partial differential equations 

(PDEs), which arise in multiple areas of science and engineering. The BHM is 

formulated from a continuous scheme based on a hybrid method of a linear multistep 

type with several off-grid points and then implemented in a block by block manner. 

Ramos et al. (2016), presented an optimized two-step hybrid block method for the 

numerical integration of general second-order initial value problems. The method 

considers two intra-step points which are selected adequately in order to optimize the 

local truncation errors of the main formulas for the solution and the derivative at the 
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final point of the block. The new method is zero-stable and consistent with fifth 

algebraic order. 

Tumba et al. (2018), studied a one-step hybrid block method for initial value problems 

of general second order ordinary differential equations. In the derivation of the method, 

power series is adopted as basis function to obtain the main continuous scheme through 

collocation and interpolations approach. Taylor method is also used together with new 

method to generate the non-overlapping numerical results. Suleiman and Gear (2012), 

show analysis of four points direct block one-step method for solving directly the 

general second order non stiff initial value problems (IVPs) of ordinary differential 

equations. Cohen and Schweitzer (2014), presented the numerical solution of nonlinear 

Hamiltonian highly oscillatory systems of second-order differential equations of a 

special form. 

Sekar (2014), used the Adomian Decomposition Method (ADM) to obtain the 

numerical solution the different types of second order systems like stable, unstable, stiff 

systems and system with singular-A. Sagir (2014), discrete linear multistep block 

method of uniform order for the solution of first order initial value problems (IVPs) in 

ordinary differential equations (ODEs) is presented in this paper. The approach of 

interpolation and collocation approximation were adopted in the derivation of the 

method which is then applied to first order ordinary differential equations with 

associated initial conditions. The continuous hybrid formulations enable us to 

differentiate and evaluate at some grids and off – grid points to obtain four discrete 

schemes, which were used in block form for parallel or sequential solutions of the 

problems. 



Ivaz et al. (2013), developed algorithms for solving first-order fuzzy differential 

equations and hybrid fuzzy differential equations. 

2.2    Review of Falkner-type Method 

 Li (2016), proposed and studied a family of improved Falkner-type Methods for the 

oscillatory system ))(,()()('' tutgtMutu  where : ,d dg   in which the first 

derivative does not appear explicitly, and d dM  is a symmetric positive semi-

definite matrix. The new methods take into account the oscillatory structures of the 

problem and exactly integrate the unperturbed problem .0)()(''  tMutu  Ramos and 

Lorenzo (2010), showed the review of explicit Falkner methods and its modifications 

for solving special second-order IVPs. Ramos et al. (2017), proposed a unified approach 

for the development of k-step block Falkner-type methods for solving general second-

order initial-value problems in ODEs. A family of k-step block multistep methods 

where the main formulas are of Falkner-type is proposed for the direct integration of the 

general second order initial-value problem where the differential equation is of the 

general form. The two main Falkner formulas and the additional ones to complete the 

block procedure are obtained from a continuous approximation derived via interpolation 

and collocation at 1k   points. 

Ramos and Rufai (2018), developed and analyzed a modified family of Falkner-type 

methods for solving differential systems of second-order initial- value problems. The 

approaches of collocation and interpolation are adopted to derive the new methods. 

These modified methods are implemented in block form to obtain the numerical 

solutions to the considered problems.  

Ramos and Singh (2016), presented an efficient variable step-size rational Falkner-type 

method for solving the special second-order initial value problems. A rational one-
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parameter family of Falkner-type explicit methods is firstly presented for directly 

solving numerically special second order initial value problems in ordinary differential 

equations. 

Nicolas (2019), developed a class of k-step hybrid Falkner-type block numerical 

integration schemes for solving second order ODEs. The proposed technique utilizes 

orthogonal polynomial and power series to form a trial solution which were evaluated at 

some selected points while its first and second derivatives were evaluated at selected 

grid and off-grid points in order to obtain a continuous scheme. 

2.3    Review of Collocation Method 

Mohammed et al. (2019), developed an implicit continuous four-step hybrid backward 

difference formulae for the direct solution of stiff system. For this purpose, the 

Chebyshev polynomial was employed as the basis function for the development of 

schemes in a collocation and interpolation techniques. The schemes were analyzed 

using appropriate existing theorem to investigate their stability, consistency, 

convergence and the investigation shows that the developed schemes are consistent, 

zero-stable and hence convergent. 

Costabile and Napoli (2011), studied a class of collocation methods for numerical 

integration of initial value problems. Vigo-Aguiar and Ramos (2006), considered the 

construction of a special family of Runge–Kutta (RK) collocation methods based on 

intra-step nodal points of Chebyshev–Gauss–Lobatto type, with A-stability and stiffly 

accurate characteristics. This feature with its inherent implicitness makes them suitable 

for solving stiff initial-value problems. Cardone et al. (2018), presented a collection of 

recent results on the numerical approximation of Volterra integral equations and integro 

differential equations by means of collocation type methods, which are able to provide 

better balances between accuracy and stability demanding. Saadatmandi and Dehghan 



(2008), developed a numerical technique Collocation Method for Solving Abel’s 

Integral Equations of First and Second Kinds. The solutions of such equations may 

exhibit a singular behavior in the neighbourhood of the initial point of the interval of 

integration. The proposed method is based on the shifted Legendre collocation 

technique. 

Xiu and Hesthaven (2005), proposed a high-order collocation methods for differential 

equations with random inputs. Levin (1996), analyzed a collocation method for 

approximating integrals of rapidly oscillatory functions. The method is efficient for 

integrals involving Bessel functions )(rxJ v  with a large oscillation frequency 

parameter r, as well as for many other one- and multi-dimensional integrals of functions 

with rapid irregular oscillations. The analysis provides a convergence rate and it shows 

that the relative error of the method is even decreasing as the frequency of the 

oscillations increases. 

2.4    Block Method  

Chu and Hamilton (1987) defined a block method as follows; 

Let mY  and  mF  be defined as by  11 ,,,  rnnnm yyyY  ,  11 ,,,  rnnnm fffF  . 

The general k-block method is a matrix of finite difference equation of the form; 

 
 

 
k

j

k

i

mjmim fhyAY
1 1

11        (2.2) 

where sAi ' and si '  are properly chosen rr  matrix coefficients and m=0,1,2,

represent the block number, n=m is the step number of the mth block and r is the 

proposed block size. At each application of a block method, the solution will be 

approximated in more than one point. Abbas and Alshakhoori (2018), derived a new 

block method of order five for the numerical solution of initial value problems is 



11 
 

derived. Mukhtar and Abdul-majid (2011), presented a four point direct block one-step 

method for solving directly the general second order non-stiff initial value problems 

(IVPs) of ordinary differential equations (ODEs). Yakusak and Adeniyi (2015), derived 

a Four Step Hybrid Block Method for First Order Initial Value Problems in Ordinary 

Differential Equations. 

Mehrkanoon et al. (2009), Block Method for Numerical Solution of Fuzzy differential 

Equations. Fookand and Ibrahim (2017), studied the numerical method for solving 

second order Fuzzy Differential Equations (FDEs) using Block Backward Differential 

Formulas (BBDF) under generalized concept of higher-order fuzzy differentiability. 

Ramos et al. (2016), proposed a unified approach for the development of k-step block 

Falkner-type methods for solving general second-order initial-value problems in ODEs. 

2.5      Hybrid Method  

Over the years, observation has been made that numerical analysis has over time given 

to solution at grid and off-grid point only and suffered the disadvantage of requiring 

special procedure for step length changing and also a weak stability properties for a 

number of function evaluations per step. This observation was made by Chollum 

(2004). These difficulties can be reduced by lowering the step size number of the linear 

multistep method without necessarily reducing the order. Gragg and Steller (1964) 

overcome the difficulties working in conjunction with Butcher (1964) and Gear (1965) 

introducing a modified linear multistep formula which incorporates a function evaluated 

at an off-grid point. The method was called hybrid because it retains some properties of 

linear multistep and Runge-kutta methods which substitution and extrapolation method 

lies between. Hybrid use data at points other than the step point  ,| nhaxn nn  Bryne 

and Lambert (1966), proposed a generalization of Runge-kutta methods in which the 



computed derivatives in earlier stages are used alongside stage derivatives found in the 

current step to compute the output value in the next step which is evaluated in the same 

way as for the Runge-kutta methods. Derivatives evaluated at previous step is given as 

,]1[ nF i=1,2,…,s and the present step derivative by ,][nF i=1,2,…,s equations for a 

single step of the method is as follows. 




 
s

j

niin

n

i

n

jijni yYhcxfFFahyY
0

11 )(       (2.3) 














  

 





s

j

s

j

n

ii

n

iini FbFbhyY
0 0

1

1

.

      (2.4) 

Thus the k-step hybrid method is defined by; 

 
 

 
k

j

k

j

vnvjnjjnj ffhy
0 0

       (2.5) 

Where ,1k and 0  are both not zero, ],,1,0[ kv  and ),( vnvnvn yxff  . 

Several researchers have developed hybrid methods for the solution of initial value 

problems. Some of the researchers are Ramos et al. (2016), presented a new optimized 

two-step hybrid block method for the numerical integration of general second-order 

initial value problems. Jator (2010), proposed a family of hybrid linear multistep 

methods (HLMMs) with two non-step points for the direct solution of second order 

initial value problems (IVPs). Jator and king (2018), presented a Block Hybrid Method 

(BHM) of order II for directly solving systems of general second-order initial value 

problems. Yakusak and Adeniyi (2015), developed a Four Step hybrid block method for 

the solution of general first order Initial Value Problem (IVP) in Ordinary Differential 

Equations (ODEs) by collocation and interpolation techniques and with Chebyshev 

polynomial of the first kind as basis function. Ivaz et al.(2013), investigated a numerical 

algorithms for solving first-order fuzzy differential equations and hybrid fuzzy 

differential equations. Jator (2010), proposed a family of hybrid linear multistep 
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methods (HLMMs) with two non-off step points for the direct solution of second order 

initial value problems. The methods are applied in block form as simultaneous 

numerical integrators over non-overlapping intervals. 

  



CHAPTER THREE 

3.0    MATERIALS AND METHODS 

3.1 Derivation of the Methods 

In this section, we derive some linear multi-step methods in the form 

1
2

1

0

k
j

n n n j n

j

y y hy h f






           (3.1) 

1
2

1

0

k
j

n n j n

j

y y h f






    ,         (3.2) 

where h is the step-size, ny  and ny  are numerical approximations to the theoretical 

solution and its derivative at the grid point 

 
 ; 0,1,2,3,..., , , , ,n n n n n

b a
x a nh n N h f f x y y

N


      and j

nf  is the standard 

notation for the backward differences. 

We then construct the continuous approximation by imposing the following conditions 

( )

( ) .

( ) ( )

n k r n k r

n k r n k r

n j n j n j

y Y x

y Y x

y Y x f x

   

   

  




  
   

      (3.3)

 

  

 

Equation (3.3) leads to a system of equations and unknowns written in the form      

2 2

1

1

0 1 2 ( 2)

0 0 2 ( 2)( 1)

0 0 2 ( 2)( 1)

k

n k r n k r n k

k

n k r

k

n

k

n k

x x x

x k x

X k k x

k k x



    



 



 
 

 
   
 
 
   
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a 

 
 
 
 
 
 
   2

'

n k r

n k r

n

n

y

y

B f

f

 

 



 
 
 
 
 
 
  

      (3.4) 

Solving (3.4) by Gaussian elimination method, the coefficients    can be obtained. 

Substituting the coefficients    into (3.1) yields the continuous scheme: 

2

0

0

( ) ( ) ( ) ( ) ( )            
k

j n j n j j n k v n v

j

Y x x y x hy h x f x f      



 
     

 
   (3.5)

 

where j v( ),  ( ) and ( )j x x x   are continuous coefficients. We note that (3.3) involves 

first derivative, which can be obtained by substituting the coefficients of    into the first 

derivative of (3.2) to yield 

0

( ) ( ) ( ) ( )  
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j n j j n k v n v
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Y x x y h x f x f    
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       
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 .   (3.6)

 

3.2    Specification of the Method 

3.2.1   Two step method with
2 5

 and 
3 3

 off-step points 

To derive a continuous two step method by considering two off-step points
 

 
   

 

 
, the 

following specification were considered 1,  k=2, s=5.r  The continuous method with the 

continuous coefficient )(xj , )(xj and )(xv is of the form: 
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     (3.7) 

where: 

          (3.8) 

              (3.9) 












































4

6

4

5

4

422

33223

4

2432234

4

3234

4

4322342

0

200

3)34(

100

3)5414491(

240

1

)18729136(

60

1

)948917220(

40

1

)1872540300(

300

1

)18144455720600(

1200

1

h

x

h

xxh

h

xxhxh

xxhxxhh

h

xxhxxhxhh

h

xxhxxhhx

h

xhxxhxhhx

nnn

nnn

nnnn

nnnn

nnnnn


  (3.10) 









































4

6

4

5

4

422

4

3323

4

23223

4

322232

4

322233

1

80

9)67(

80

9)6147(

32

9

)6215(

8

3)3142110(

16

9

)635727050(

80

9

)6242105100(

600

3

h

x

h

xxh

h

xxhxh

h

xxxhh

h

xxhxxhhx

h

xxhxhxxhhx

h

xhxxhxhhx

nnn

nnnnnn

nnnnn

nnnnn

   (3.11) 

 










































4

6

4

5

4

422

4

432223

4

23223

4

322232

4

32233

2

20

3)1213(

40

3)5411752(

32

9

)3611711710420(

12

1

)9395220(

4

1

)10858558510406000(

120

1

)18117260200(

120

1

h

x

h

xxh

h

xxhxh

h

xxhxhxxhh

h

xxhxxhhx

h

xxhxhxxhhx

h

xhxxhhx

nnn

nnnn

nnnn

nnnnn

nnnn


  (3.12) 

 



17 
 











































4

6

4

5

4

422

4

33223

4

23223

4

32232

4

32233

3

100

9)1211(

200

9)6114(

40

9

)1233244(

30

3

)311124(

20

9

)12558040(

200

9

)6336040(

200

3

h

x

h

xxh

h

xxhxhx

h

xxhxxhh

h

xxhxxhhx

h

xhxhxxhhx

h

xhxxhhx

nnnn

nnn

nnnn

nnnn

nnnn

   (3.13) 

 










































4

6

4

5

4

422

4

33223

4

23223

4

32232

4

32233

4

80

3)65(

80

3)549031(

96

1

)1845315(

24

1

)9303110(

16

1

)54225310150(

240

1

)1890155100(

480

1

h

x

h

xxh

h

xxhxhx

h

xxhxxhh

h

xxhxxhhx

h

xhxhxxhhx

h

xhxxhhx

nnnn

nnn

nnnn

nnnn

nnnn


  (3.14) 

Evaluating (3.7) above at point 2 1 5 2

3 3

, ,  and n n
n n

x x x x x 
 

  gives the following four 

discrete scheme that form the block method 
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The following schemes are obtained by differentiating equation (3.7) and evaluating at 
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3.2.2     Two-step method with 
1 3 5 7

, , and 
2 4 4 4

off-step points

 To derive a continuous method by considering four off-step points
1 3 5 7

, , and 
2 4 4 4

the 

following specifications were considered 1,  k=2, s=7.r   The continuous method with 

the continuous coefficient )(xj , )(xj and )(xv is of the form: 
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where: 

10 
           (3.24) 

xxn 1           (3.25) 
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The following schemes are obtained by differentiating equation (3.23) and evaluating at 

points 1 3 1 5 7 2

2 4 4 4

, , , ,  and n n
n n n n

x x x x x x x 
   

  
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3.2.3   Two step method with
1 3 7 9

, , and 
5 5 5 5

 off-step points 

To derive a continuous method by considering four off-step points
1 3 7 9

, , and 
5 5 5 5

the 

following specifications were considered 1,  k=2, s=7.r   The continuous method with 

the continuous coefficient )(xj , )(xj and )(xv is of the form: 

' ' 2
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 
         

 
 (3.45) 

Where: 
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Evaluating (3.45) above at points 1 3 1 7 9 2

5 5 5 5

, , , ,  and n n
n n n n

x x x x x x x 
   

 gives the 

following six discrete schemes that form the block method 
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The following schemes are obtained by differentiating equation (3.45) and evaluating at 
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3.3 Analysis of the Methods 

In this section, we discuss in general the order and error constants, consistency, zero-

stability and convergence of the proposed method. 

3.3.1  Order and error constants 

Let the linear difference operator L associated with k-step method be defined as 
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respectively. Assuming that  ny x  and  ny x are sufficiently differentiable, we can 

expand the terms in (3.67) and (3.68) as Taylor series about the point nx  to obtain the 

expression  
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The methods (3.5) and (3.6) are of order p if 0 1 1 2... 0, 0p p pC C C C C       and 

2pC  is the error constant and 
   22

2

pp

p nC h y x


  the principal truncation error at the 

point nx .  
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3.3.1.1 Order and error constant of two-step with 
2 5

 and 
3 3

 off-step points 

Let equation (3.15) be written in the form
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Expanding the above equation in Taylor series form yields    
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and collecting the power in terms of h and y leads to the following 
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Let equation (3.16) be written in the form 
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Expanding the above equation in Taylor series in the form 
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and collecting the power in term of h and y leads to the following 
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Let equation (3.17) be written in the form 
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Expanding the above equation in Taylor series in the form 
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(3.80) 

and collecting power in term of h and y leads to the following 
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Let equation (3.18) be written in the form 
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Expanding the above equation in Taylor series in the form 
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 (3.83) 

And collecting the power in term of h and y leads to the following 
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The block method (3.15), (3.16), (3.17) and (3.18) has error constant  

T

pc 









14175

17
,

4536000

1375
,

453600

209
,

382725

97
2

with order  Tp 5,5,5,5  

Following similar procedure the summary of the order and error constant is presented in 

Tables 3.1, 3.2 and 3.3. 

Table 3.1 Order and Error constant of Two-Step with 
2 5

 and 
3 3

Off-Step Points 

Equation number  order p    Error Constant 2pc  

(3.15)     5     
382725

97
 

(3.16)     5     
453600

209
 

(3.17)     5     
453600

1375
 

(3.18)     5     
14175

17
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Table 3.2 Order and Error constant of Two-Step with 
1 3 5 7

, , and 
2 4 4 4

Off-Step 

Points 

Equation number            Order p    Error Constant 2pc  

(3.33)     7    
02601123840

38183  

(3.34)     7    
411041792

1077  

(3.35)     7    
40645600

1531  

(3.36)     7    
46658877030

327125  

(3.37)     7    
1061683200

7889
 

(3.38)     7    
10160640

89  

Table 3.3 Order and Error Constant of Two-Step with 
1 3 7 9

, , and 
5 5 5 5

Off-Step 

Points 

Equation Number  Order p    Error Constant 2pc  

(3.55)     7    
0006201362500

346931  

(3.56)     7    
001531250000

4311  

(3.57)     7    
496125000

31
  

(3.58)     7    
002531250000

38759
 

(3.59)     7    
7656500000

13851
  

(3.60)     7    
248062500

31


 



3.3.2 Zero stability 

This is the concept concerning the behavior of a numerical method as   , the system 

of equation (3.6) becomes 


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
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rknkn

rknn

rknn
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2

1



         

(3.85) 

which can be written in matrix form as 

0 '
1 0A Y A Y 

 

           (3.86) 

where    Trknnn

T

knnn yyyYyyyY 







 ,,,,,, 1121   , 0A  is the identity matrix of 

dimension k and 1A  is a matrix of dimension K. 

3.3.2.1 Zero stability of two step method with 
2 5

 and 
3 3

off-step points 

Expressing methods (3.15), (3.16), (3.17) and (3.18) in the form 

0 1

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
,  

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

A A

   
   


    
   
   

   

 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
det

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

    
    

       
    
    

     

     (3.87) 

0 0 0

0 0 0
( ) 0,

0 0 0

0 0 0



 
 


          
 
 

  

     (3.88) 
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Since | |=1, the method is zero stable. 

3.3.2.2     Zero stability of two step method with 
1 3 5 7

, , and 
2 4 4 4

 off-step points 

Expressing (3.33), (3.34), (3.35), (3.36) (3.37) and (3.38) in the form 

0 1

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
,

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

A A

   
   


   
   

    
   

   
   

   

 

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
det

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

    
    

    
    

       
    

    
    

     

   (3.89) 

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

 
 


 
 

  
 

 
 

  

        (3.90) 

( ) 0,  or 1         

Since | |=1, the method is zero stable. 

3.3.2.3 Zero stability of two step method with 
1 3 7 9

, , and 
5 5 5 5

 off-step points 

Expressing (3.55), (3.56), (3.57), (3.58) (3.59) and (3.60) in the form 



0 1

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
,

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

A A

   
   


   
   

    
   

   
   

   

 

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
det

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

    
    

    
    

       
    

    
    

     

   (3.91) 

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

 
 


 
 

  
 

 
 

  

        (3.92) 

( ) 0,  or 1         

Since | |=1, the method is zero stable. 

3.3.3 Consistency  

Each of the methods is consistent as they all have order > 1. 

3.3.4 Convergence 

The convergence of the proposed methods, are considered in the light of the basic 

properties in conjunction with the fundamental theorem of Dahlquist (Henrichi 1962) 

for linear multistep methods. We state here the Dahlquist theorem without proof. 

3.3.4.1 Theorem 

The necessary and sufficient condition for a multistep method to be convergent is for it 

to be consistent and zero-stable. 
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Numerical Experiments  

In this section, we solve some standard second order initial value problems of ordinary 

differential equations using the proposed Falkner-type method in order to demonstrate 

its efficacy. However, the implementation is carried as a block (self-starting) method 

whereby the continuous forms of the methods generates the main and additional discrete 

Falkner formulas to produce approximation simultaneously at each step of 

implementation within the interval of integration. Comparisons were made with the 

exact solutions of the problems considered and absolute errors were compared with 

some other existing methods found in the literature and presented in tables. 

For the purpose of comparative analysis, the following notations are adopted.  

FTM1: The proposed Falkner-type Method 1 with 
2 5

,
3 3

 
 
 

 as off-grid points 

FTM2: The proposed Falkner-type Method 2 with 
1 3 5 7

, , ,
2 4 4 4

 
 
 

 as off-grid points 

FTM3: The proposed Falkner-type Method 3with 
1 3 7 9

, , , .
5 5 5 5

 
 
 

 as off-grid points 

HFBM2,2: 2-step, two off-grid hybrid block Falkner-type method by Nicholas (2019) 

HFBM2,4.: 2-step, four off-grid hybrid block Falkner-type method by Nicholas (2019) 

BFM6: Block Falkner method for k=6 by Ramos et al., (2016) 

Problem 1.  (Source: Ramos et al. (2016)) 

Consider the non-linear homogeneous problem given by:  

     
2
, 0 1, 0 0.5

0 1, 0.1

y x y y y

x h

    

  
 



Exact solution:  
1 2

1 ln
2 2

x
y x

x

 
   

 
 

Problem 2.  (Source: Ramos et al. (2016)) 

Consider a linear homogeneous problem given by  

   , 0 0, 0 1

0 1, 0.01

y y y y

x h

     

  
 

Exact solution:   1 xy x e   

Problem 3.  (Source: Adediran and Ogundare,(2015)) 

Consider a highly stiff initial value problem given by  

   1001 1000 , 0 1, 0 1

0 1, 0.05

y y y y y

x h

       

  
 

Exact solution:   xy x e  

Problem 4.  Dynamic Problem (Source: Nicholas,(2019)) 

A 10kg mass is attached to a spring having a constant of 140N/m. The mass is started in 

motion from the equilibrium position with an initial value of 1m/sec in upward direction 

and with an applied external force    0.5sinF t t . The resulting equation due to air 

resistance 9y N  is given as 

   
1

9 14 sin , 0 0, 0 1
2

0 0.1, 0.001

y y y x y y

x h

        

  

 

Exact solution:   2 79 99 9
cos

50 500 500

x xy x e e x      

Problem 5.  Van Der Pol Oscillator (Source: Mohammed et al.,(2019)) 

     22 1 0, 0 0, 0 0.5, 0.025, 0 1y y y y y y x             

This problem has no exact solution, our result is however validated using Runge-Kutta 

(RK45) and compared with Mohammed et al., (2019).  
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Problem 6: Consider the problem:  

   2 , 0 1, 0 0

0 1, 0.01

y y y y

x h

    

  
 

Exact solution:   cos 2y x x
 

Table 4.1: Comparison of Numerical Results with the Exact Solution for Problem 

1.  

x  Exact solution FTM1 FTM2 FTM3 

0.1 1.050041729278491 1.0500417290 1.05004172927816 1.050041729278497 

0.2 1.100335347731076 1.1003353470 1.10033534773031 1.100335347731086 

0.3 1.151140435936467 1.1511404343 1.15114043593459 1.151140435936488 

0.4 1.202732554054082 1.2027325512 1.20273255405083 1.202732554054115 

0.5 1.255412811882995 1.2554128067 1.25541281187637 1.255412811883062 

0.6 1.309519604203112 1.3095195961 1.30951960419224 1.309519604203209 

0.7 1.365443754271396 1.3654437402 1.36544375424890 1.365443754271615 

0.8 1.423648930193602 1.4236489079 1.42364893015604 1.423648930193938 

0.9 1.484700278594052 1.4847002385 1.48470027850756 1.484700278594945 

1.0 1.549306144334055 1.5493060786 1.54930614418128 1.549306144335512 

 

Table 4.1 is the comparison of the results obtained from the derived Falkner-type 

methods with the exact solution for problem 1. It is shown that as the number of 

iteration progresses within the interval of integration of problem 1 with the step size 

h=0.1, the approximate solutions from the derived methods get closer to the analytical 

solution. This shows the effectiveness of the derived methods.  

  



Table 4.2: Comparison of Absolute Errors of the Proposed Methods for Problem 1.  

x  FTM1 FTM2 FTM3 

0.1 3.0010
-10 

3.3010
-13

 6.0010
-15

 

0.2 7.0010
-10

 7.6010
-13

 1.0010
-14

 

0.3 1.6010
-09

 1.8810
-12

 2.1010
-14

 

0.4 2.9010
-09

 3.2510
-12

 3.3010
-14

 

0.5 5.2010
-09

 6.6310
-12

 6.7010
-14

 

0.6 8.1010
-09

 1.0910
-11

 9.7010
-13

 

0.7 1.4110
-08

 2.2510
-11

 2.1910
-13

 

0.8 2.2310
-08

 3.7610
-11

 3.3610
-13

 

0.9 4.0110
-08

 8.6510
-11

 8.9310
-13

 

1.0 6.5810
-08

 1.5310
-10

 1.4610
-12

 

 

Table 4.2 is the comparison of the absolute errors of the derived methods for problem 1.  

FTM1 of order of accuracy p=5 has relatively small error. However, FTM2 and FTM3 

have the same order of accuracy p=7 but with varying error constants. FTM3 has 

generally lower error constants than FTM2 which accounts for its superiority over 

FTM3.
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Table 4.3: Comparison of Numerical Results with the Exact Solution for Problem 2.  

x  Exact solution FTM1 FTM2 FTM3 

0.1 -0.1051709180756476248117078 -0.10517091807564740 -0.10517091807564762481156 -0.10517091807564762481170852 

0.2 -0.2214027581601698339210720 -0.22140275816016893 -0.22140275816016983392047 -0.22140275816016983392107353 

0.3 -0.3498588075760031039837443 -0.34985880757600097 -0.34985880757600310398234 -0.34985880757600310398374684 

0.4 -0.4918246976412703178248530 -0.49182469764126630 -0.49182469764127031782224 -0.49182469764127031782485660 

0.5 -0.6487212707001281468486508 -0.64872127070012146 -0.64872127070012814684432 -0.64872127070012814684865573 

0.6 -0.8221188003905089748753677 -0.82211880039049862 -0.82211880039050897486873 -0.82211880039050897487537410 

0.7 -1.0137527074704765216245494 -1.0137527074704615 -1.0137527074704765216149 -1.0137527074704765216245576 

0.8 -1.2255409284924676045795375 -1.2255409284924467 -1.2255409284924676045660 -1.2255409284924676045795477 

0.9 -1.4596031111569496638001266 -1.4596031111569213 -1.4596031111569496637818 -1.4596031111569496638001392 

1.0 -1.7182818284590452353602875 -1.7182818284590075 -1.7182818284590452353362 -1.7182818284590452353603027 

Table 4.3 is the comparison of the results obtained from the derived Falkner-type methods with the exact solution for problem 2. It is shown that 

as the number of iteration progresses within the interval of integration of problem 2 with the step size h=0.01, the approximate solutions from the 

derived methods get closer to the analytical solution. This shows the effectiveness of the derived methods.



Table 4.4: Comparison of Absolute Errors of the Proposed Methods for Problem 2.  

x  FTM1 FTM2 FTM3 

0.1 2.0010
-16 

1.4010
-22

 7.2010
-25

 

0.2 8.7010
-16

 6.3010
-22

 1.5310
-24

 

0.3 2.1310
-15

 1.3610
-21

 2.5410
-24

 

0.4 4.0010
-15

 2.6610
-21

 3.6010
-24

 

0.5 6.6410
-15

 4.3810
-21

 4.9310
-24

 

0.6 1.0410
-14

 6.6710
-21

 6.4010
-24

 

0.7 1.5010
-14

 9.6010
-21

 8.2010
-24

 

0.8 2.0910
-14

 1.3510
-20

 1.0210
-23

 

0.9 2.8410
-14

 1.8310
-20

 1.2610
-23

 

1.0 3.7710
-14

 2.4110
-20

 1.5210
-23

 

 

Table 4.4 presents the absolute errors obtained from the proposed methods for problem 

2. FTM1 has relatively small error while FTM2has smaller error and FTM3has the least 

error among the proposed methods. It is also evident that the order of accuracy of each 

method has impact on the performance of the methods.  
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Table 4.5: Comparison of Numerical Results with the Exact Solution for Problem 3.  

x  Exact solution FTM1 FTM2 FTM3 

0.1 0.9048374180359595731642 0.904837418035972 0.90483741803595957308 0.9048374180359595732079 

0.2 0.8187307530779818586699 0.818730753078054 0.81873075307798185908 0.8187307530779818587435 

0.3 0.7408182206817178660669 0.740818220681853 0.74081822068171786700 0.7408182206817178661625 

0.4 0.6703200460356393007444 0.670320046035825 0.67032004603563930208 0.6703200460356393008571 

0.5 0.6065306597126334236038 0.606530659712857 0.60653065971263342533 0.6065306597126334237281 

0.6 0.5488116360940264326285 0.548811636094282 0.54881163609402643464 0.5488116360940264327609 

0.7 0.4965853037914095147048 0.496585303791691 0.49658530379140951694 0.4965853037914095148425 

0.8 0.4493289641172215914301 0.449328964117518 0.44932896411722159382 0.4493289641172215915713 

0.9 0.4065696597405991118835 0.406569659740910 0.40656965974059911440 0.4065696597405991120260 

1.0 0.3678794411714423215955 0.367879441171759 0.36787944117144232417 0.3678794411714423217379 

 

Table 4.5 presents the numerical solutions obtained using the proposed methods for 

problem 3. It is observed from the table that the numerical solutions are in agreement 

with the analytical solution. 

  



Table 4.6: Comparison of Absolute Errors of the Proposed Methods for Problem 3.  

x  FTM1 FTM2 FTM3 

0.1 1.2010
-14 

8.0010
-20

 4.3710
-20

 

0.2 7.2010
-14

 4.1010
-19

 7.3610
-20

 

0.3 1.3510
-13

 9.3010
-19

 9.5610
-20

 

0.4 1.8610
-13

 1.3410
-18

 1.1310
-19

 

0.5 2.2410
-13

 1.7310
-18

 1.2410
-19

 

0.6 2.5610
-13

 2.0110
-18

 1.3210
-19

 

0.7 2.8110
-13

 2.2410
-18

 1.3810
-19

 

0.8 2.9610
-13

 2.3910
-18

 1.4110
-19

 

0.9 3.1110
-13

 2.5210
-18

 1.4310
-19

 

1.0 3.1710
-13

 2.5710
-18

 1.4210
-19

 

 

Table 4.6 presents the absolute errors obtained from the proposed methods for problem 

3. FTM1 has relatively small error while FTM2has smaller error and FTM3has the least 

error among the proposed methods. It is also evident that the order of accuracy of each 

method has impact on the performance of the methods.  
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Table 4.7: Comparison of Numerical Results with the Exact Solution for Problem 4.  

x  Exact solution FTM1 FTM2 FTM3 

0.01 -0.009560889194649846804166497015 -0.00956088919464984351 -0.009560889194649846804166437 -0.009560889194649846804166501561 

0.02 -0.01828560322442636535366698297 -0.0182856032244263542 -0.01828560322442636535366697 -0.01828560322442636535366699154 

0.03 -0.02623395294528461006173430083 -0.0262339529452845861 -0.02623395294528461006173428 -0.02623395294528461006173431267 

0.04 -0.03346164077240591222029086964 -0.0334616407724058717 -0.03346164077240591222029085 -0.03346164077240591222029088424 

0.05 -0.04002053976823921905677551688 -0.0400205397682391593 -0.04002053976823921905677548 -0.04002053976823921905677553371 

0.06 -0.04595895383607522543831390479 -0.0459589538360751439 -0.04595895383607522543831384 -0.04595895383607522543831392339 

0.07 -0.05132186029705384635940248224 -0.0513218602970537414 -0.05132186029705384635940252 -0.05132186029705384635940250238 

0.08 -0.05615113604210135263053739521 -0.0561511360421012222 -0.05615113604210135263053744 -0.05615113604210135263053741635 

0.09 -0.06048576836973092957466960874 -0.0604857683697307730 -0.06048576836973092957466961 -0.06048576836973092957466963079 

0.1 -0.06436205154552458247878091963 -0.0643620515455243986 -0.06436205154552458247878093 -0.06436205154552458247878094217 

 

Table 4.7 presents the numerical solutions obtained using the proposed methods for problem 4. It is observed from the table that the numerical 

solutions are in agreement with the analytical solution. 



Table 4.8: Comparison of Absolute Errors of the Proposed Methods for Problem 4.  

x  FTM1 FTM2 FTM3 

0.01 3.2110
-18 

1.0110
-24

 4.5510
-27

 

0.02 1.1710
-17

 3.7510
-24

 8.5710
-27

 

0.03 4.1110
-17

 7.8610
-24

 1.1810
-26

 

0.04 2.4010
-17

 1.3110
-23

 1.4610
-26

 

0.05 5.9510
-17

 1.9310
-23

 1.6810
-26

 

0.06 8.1510
-17

 2.6210
-23

 1.8610
-26

 

0.07 1.0510
-16

 3.3910
-23

 2.0110
-26

 

0.08 1.3110
-16

 4.1910
-23

 2.1110
-26

 

0.09 1.5610
-16

 5.0210
-23

 2.2110
-26

 

0.1 1.8410
-16

 5.8810
-23

 2.2510
-26

 

 

Table 4.8 presents the absolute errors obtained from the proposed methods for problem 

4. FTM1 has relatively small error while FTM2has smaller error and FTM3has the least 

error among the proposed methods. It is also evident that the order of accuracy of each 

method has impact on the performance of the methods.  
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Table 4.9: Results for the Van Der Pol Oscillator Problem with h=0.1 

X RK(5) FTM1 FTM2 FTM3 Mohammed et 

al.(2019) 

1.0 0.431051 0.431431 0.431432 0.431431 0.431051 

2.0 0.47631 0.478239 0.478239 0.478239 0.476309 

3.0 0.076077 0.0765766 0.0765805 0.0765766 0.076076 

4.0 -0.41546 -0.417868 -0.417859 -0.417868 -0.41546 

5.0 -0.53857 -0.543708 -0.543698 -0.543708 -0.53857 

6.0 -0.16135 -0.163413 -0.163414 -0.163413 -0.16134 

7.0 0.386024 0.390437 0.390417 0.390437 0.386025 

8.0 0.595231 0.604590 0.604568 0.604590 0.59523 

9.0 0.254655 0.259731 0.259729 0.259731 0.254653 

10.0 -0.34157 0.347672 -0.347649 -0.347672 -0.34158 

 

Table 4.9 presents the numerical solutions obtained using the proposed methods for 

problem 5. It is evident from the table that the numerical solutions are in agreement 

with the Runge-Kutta (R-K5) solution and Mohammed et al. (2019). 
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Table 4.10: Comparison of Numerical Results with the Exact Solution for Problem 6.  

x  Exact solution FTM1 FTM2 FTM3 

0.1 0.99001665555952292782 0.99001665555952292782 0.99001665555952292801 0.9900166555595229278210 

0.2 0.96026595657052612022 0.96026595657052612022 0.96026595657052612056 0.9602659565705261202194 

0.3 0.91134192598371379346 0.91134192598371379346 0.91134192598371379393 0.9113419259837137934568 

0.4 0.84422141469661511369 0.84422141469661511369 0.84422141469661511426 0.8442214146966151136809 

0.5 0.76024459707563015125 0.76024459707563015125 0.76024459707563015191 0.7602445970756301512451 

0.6 0.66108821211140974067 0.66108821211140974067 0.66108821211140974139 0.6610882121114097406603 

0.7 0.54873208449309459031 0.54873208449309459031 0.54873208449309459105 0.5487320844930945903008 

0.8 0.42541959406470837817 0.42541959406470837817 0.42541959406470837891 0.4254195940647083781287 

0.9 0.29361288295777032751 0.29361288295777032751 0.29361288295777032828 0.2936128829577703274793 

1.0 0.15594369476537447346 0.15594369476537447346 0.15594369476537447423 0.1559436947653744734481 

 

Table 4.10 presents the numerical solutions obtained using the proposed methods for 

problem 6. It is evident from the table that the numerical solutions are in agreement 

with the analytical solution. 
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Table 4.11: Comparison of Absolute Errors of the Proposed Methods for Problem 

6.  

x  FTM1 FTM2 FTM3 

0.1 3.1010
-16 

1.9010
-19

 1.0010
-21

 

0.2 1.2710
-15

 3.4010
-19

 6.0010
-22

 

0.3 3.3910
-15

 4.7010
-19

 3.2010
-21

 

0.4 7.1610
-15

 5.7010
-19

 9.1010
-21

 

0.5 1.3010
-14

 6.6010
-19

 4.9010
-21

 

0.6 2.1410
-14

 7.2010
-19

 9.7010
-21

 

0.7 3.2410
-14

 7.4010
-19

 9.2010
-21

 

0.8 4.6310
-14

 7.4010
-19

 4.1310
-20

 

0.9 6.3110
-14

 7.7010
-19

 3.0710
-20

 

1.0 8.2610
-14

 7.7010
-19

 1.1910
-20

 

 

Table 4.11 presents the absolute errors obtained from the proposed methods for problem 

6. FTM1 has relatively small error while FTM2has smaller error and FTM3 has the least 

error among the proposed methods. It is also evident that the order of accuracy of each 

method has impact on the performance of the methods.  
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Table 4.12: Comparison of Absolute Errors for Problem 1 

x  James et al. 

(2013) 

h=0.1 

BFM6 

h=0.05 

Mohammad 

and Zurni 

(2017), h=0.05 

HFBM22 

h=0.1 

FTM2 

h=0.1 

0.1 1.11010
-15

 3.11410
-12 

2.22010
-16

 2.00010
-12

 1.4010
-22

 

0.2 5.99510
-15

 6.66010
-12

 2.22010
-16

 3.00010
-12

 6.3010
-22

 

0.3 2.55410
-14

 9.83310
-12

 6.66110
-16

 6.00010
-12

 1.3610
-21

 

0.4 7.10510
-14

 2.17310
-11

 1.11010
-15

 9.00010
-11

 2.6610
-21

 

0.5 1.15710
-13

 3.57010
-11

 4.44010
-16

 1.40010
-11

 4.3810
-21

 

0.6 1.19910
-13

 4.85910
-11

 8.88110
-16

 2.20010
-11

 6.6710
-21

 

0.7 6.85710
-13

 1.31010
-10

 1.55410
-15

 3.50010
-12

 9.6010
-21

 

0.8 3.47510
-12

 2.31310
-10

 4.44010
-15

 5.90010
-11

 1.3510
-20

 

0.9 1.22210
-11

 3.28610
-10

 8.66010
-16

 1.01010
-10

 1.8310
-20

 

1.0 7.72810
-11

 1.33510
-09

 1.26610
-14

 - 2.4110
-20

 

Table 4.12 shows the comparison of performance of the proposed method FTM2 with 

some existing methods for problem 1. It is shown that the FTM2 yield higher accurate 

results than the existing methods.  
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Table 4.13: Comparison of Absolute Errors for Problem 2 

x Kayode and Adeyeye. 

(2013), h=0.1 

BFM6 

h=0.1 

HFBM,4 

h=0.1 

FTM2h=0.1 

0.2 8.17110
-07

 2.42710
-11

 2.00010
-12

 1.06310
-14

 

0.3 3.10310
-06

 4.00110
-11

 1.00010
-12

 2.27210
-14

 

0.4 6.56910
-06

 5.74610
-11

 1.01010
-12

 3.78610
-14

 

0.5 1.14310
-05

 7.74110
-11

 1.40010
-11

 6.09010
-14

 

0.6 1.79610
-05

 9.51710
-11

 2.10010
-11

 8.85310
-14

 

0.7 2.64410
-05

 1.22110
-10

 3.00010
-12

 1.26810
-13 

0.8 3.72210
-05

 1.60410
-10

 4.00010
-11

 1.71710
-13

 

0.9 5.06710
-05

 2.01310
-10

 5.00010
-11

 2.30710
-13

 

1.0 5.25510
-05

 2.46610
-10

 - 2.99210
-13

 

 

Table 4.13 shows the comparison of performance of the proposed method FTM2 with 

some existing methods for problem 2. It is shown that the FTM2 yield higher accurate 

results than the existing methods  
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Table 4.14: Comparison of Absolute Errors for Problem 3  

X Adediran and 

Ogundare. 

(2015) 

Mohammad and 

Zurni (2017) 

FTM2 

h=0.1 

0.1 2.05010
-11

 1.05510
-14

 1.00510
-16

 

0.2 4.39010
-11

 1.77610
-14

 9.64210
-17

 

0.3 6.55010
-11

 2.34210
-14

 4.79510
-16

 

0.4 8.38010
-11

 2.79810
-14

 4.53010
-16

 

0.5 9.86010
-10

 3.13110
-14

 8.32910
-16

 

0.6 1.10010
-10

 3.39710
-14

 7.74310
-16

 

0.7 1.19010
-10

 3.56410
-14

 1.08010
-15

 

0.8 1.24010
-10

 3.67510
-14

 9.96010
-16

 

0.9 1.28010
-10

 3.73010
-14

 1.22310
-15

 

1.0 1.30010
-10

 3.74110
-14

 1.12210
-15

 

 

Table 4.14 shows the comparison of performance of the proposed method FTM2 with 

some existing methods for problem 3. It is shown that the FTM2 yield higher accurate 

results than the existing methods  
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Table 4.15: Comparison of Absolute Errors for Problem 4 

X HFBM2,1 HFBM2,2 HFBM2,4 FTM2 

0.01 1.30410
-10

 4.50010
-13

 1.70010
-13

 1.0110
-24

 

0.02 3.32310
-10

 1.00010
-13

 4.00010
-13

 3.7510
-24

 

0.03 6.44810
-10

 6.00010
-13

 2.00010
-15

 7.8610
-24

 

0.04 1.00310
-09

 1.50010
-12

 7.13010
-13

 1.3110
-23

 

0.05 1.43810
-09

 9.00010
-12

 1.00010
-15

 1.9310
-23

 

0.06 1.89910
-09

 1.40010
-12

 4.00010
-13

 2.6210
-23

 

0.07 2.41210
-09

 2.00110
-12

 1.01010
-12

 3.3910
-23

 

0.08 2.93310
-09

 1.50010
-12

 4.00010
-13

 4.1910
-23

 

0.09 3.48910
-09

 1.60010
-12

 5.00010
-13

 5.0210
-23

 

0.10 4.04110
-09

 1.40010
-12

 3.00010
-13

 5.8810
-23

 

Table 4.15 shows the comparison of performance of the proposed method FTM2 with 

some existing methods for problem 4. It is shown that the FTM2 yield higher accurate 

results than the existing methods  
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CHAPTER FIVE 

5.0  CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this thesis, we solved some standard second order initial value problems of ordinary 

differential equations using the proposed Falkner-type method involving Two off-step 

point and four off-step points using Block hybrid method. The orders of the developed 

methods are 5 and 7. It is zero stable, consistent and convergent. 

The developed methods were used to solve six test problems in Ramos et al. 

(2016),Adediran and Ogundare (2015), Nicolas, (2019) and Mohammed et al. (2019). 

The exact results were compared with result from the source as well as the result from 

the proposed methods. The desirable property of a numerical solution is to behave like 

the exact solution of the problem which can be seen in the tables of the results 

represented. 

5.2 Contribution to knowledge 

The incorporation of some carefully selected off-grid points in the derivation process of 

a class of two-step linear multistep methods has improved the order of accuracy of the 

method for the solution of a general and special second order initial value problems. It 

is established from the analysis that the off-grid points 
2 5

,
3 3

 
 
 

, 
1 3 5 7

, , ,
2 4 4 4

 
 
 

 and  

1 3 7 9
, , ,

5 5 5 4

 
 
 

 yield order of accuracy  Tp 5,5,5,5 ,  Tp 7,7,7,7,7,7 , and 

 Tp 7,7,7,7,7,7  respectively. Furthermore, the method with the smaller off-grid 

points produced the best numerical results, which in most cases are correct to about 25 

digits when compared with the exact solutions. 
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5.3 Recommendation for further work 

The further research should be carried out in the following areas; 

1. Construction of a new class of k=2 with more off step points to increase the 

accuracy and efficiency of the method. 

2. The method should be extended to handle boundary value problems. 

3. Formulations that handle higher order ODEs should be considered. 
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