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Abstract
us linear differential equations from the Bloch NMR
dependent and the other as time — independent. The

m magnetization M, radio frequency rfB,(x,t)
field, gyro-magnetic ratio of blood spiny, velocity V" as well as 7,and 7, relaxation times.
A general method of solution of each equation under the influence of radio frequency
magnetic field (7/B,(x,?) #0) and in the absence of radio frequency magnetic field (
rfB, (x,1)=0) is evolved. However, for the purpose of this study, only T,and 7, relaxation
times are varied and analyzed for the measurement of the signals in relation to its effect on

human anatomy.

Two - second order non-homogeno
equations are evolved one as time -
parameters in the equations are equilibriu

1.0  Introduction
Nuclear Magnetic Resonance (NMR) techniques now referred to as Magnetic Resonance
hod of studying the anatomy, physiology and

Imaging (MRI) is an effective met
pathology of human living tissues. Nuclear Magnetic Resonance, NMR, measures how

much electromagnetic radiation of a specific frequency is absorbed by an atomic nucleus
that is placed in a strong magnetic field. Its objective is to visualize the atomic and
molecular structure of chemical compounds — (Edward 1945). NMR is produced when a
radio frequency field is imposed at right angles to a much larger static magnetic field to
perturb the orientation of nuclear magnetic moments generated by spinning electrically
charged atomic nuclei - (Bloch 2006). The improvement made on NMR towards -evolving
MRI was on the precision of the radio waves in order to gauge the resonant signals with
more accuracy. In addition, means of applying the magnetic fields was enhanced.
Mathematical methods by which radio signals could be analyzed and transformed into a
useful image that would show precise distinctions between different areas of living tissue
was also developed — (Mansfield 2006). The ‘main goal of this study is to establish a
methodology of using mathematical techniques so that the accurate measurement of blood
flow in human physiological and pathological conditions can be carried out non-invasively

and become simple to implement in medical clinics.

2.0  Mathematical Model

2.1 Time — Independent Bloch NMR Flow Equations and Solutions

It is assumed that blood is a Newtonian fluid — (Ayeni 1993). It is magnetized by the static
B, field to an equilibrium magnetization and that resonance condition exists at Larmor

frequency: f, = yB—@ =0. The NMR signal is the electro-motive force, e.m.f. induced
by the precessing transverse magnetization M, of the flowing spins and is dependent on
the flow velocity ¥, Tyand T, relaxation parameters. M, results from the combined

effect of B, and rfB,(x,t) on blood spins. For steady flow, blood or ﬂu-id flows through a

blooq .vessel. of ur!ifqrm Cross .section with velocity V. It is also assumed that resonance
condition exists within the excitor as well as the detector coils. The x, y, z components of
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etization of fluid fl
oW are gi
re given by the Bloch equations below which ar¢

I
i
dt T, :
%=}’M,B‘(x)~—_]\i!_
dt T, )
M, -M))
3

M =—yM‘,B,(x)-£—-*—_—_
dt / T,
For blood f}]ow a'nal.ysis, it is assumed the blood spins to be
¢ flow is independent of y and z compornents.

nence th
constantl alonlg y and z directions. Flow against the gravity is mad
way Vvalves, ocated several centimeters apart in the veins — (Setar

kinetic theory of moving fluids, given a property Mo
hanges with respect to a point moving a

ong the -direction

flowing al
at the flow is

This implies th
e possible by
o 2006). From the

f the fluid, then the rate at which

fong with the fluid be the total

one -

this property ©
Jerivative:

i oM oM
oM My My By
dt ot Ox y ' o :
=5 _‘_iM- = Q_Aé— + V'VM
dt Ot ;

Therefore, the three Bloch equations (1-3) above become:
fiy—x— —_:____-—-aM" +V_VMX=:_-_MJ- . 4

da O T :

By iy +V VM =7MB(x)——A/£y— ' 5

g o Ny~ T,

M,-M,

ad, Moy, —m MO 6

dt ot 1

with (5)s equation (6) becomes: y -

; 1 0 1|
VZ/aa 4 +2V/aa£;t’ +V(?+?)7§+(T+—T—)—5}l+/aﬁy +
1
] 2p? yBl(x’I)M,)
(—+7B (x,OIM, = 7
T.T, . d T,
1 be applied to any

{al equation which ca

equations 4 - 6, all partial derivatives

Equation 71is @
This then leads us 10t

fluid flow — (AWOJoyog e . =
To evolve time—independent flow equation rom
with respect 10 time can pe set to 2er0 (i.e. time independent).
e 3 Ly Ly 0B 1y MRS
— T —t — (x) + } = Q
a dxzy . V(Tl " Tz) ox & l TITZ . y VzT\ '
Equation 8 can pe re-writteh as
d’ M, |
___A_l_ya + _J:l ,c_i_.-—yf + —]}7 {7/
1

vV
1

Where .
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Equation 9 is Time-Independent Bloch NMR flow equation - (Awojoyogbe 2002)
Casel: ’B” << K (i.e. radio frequency field y*B, is negligible). -
This is the ground state of the protons, then equation 9 becomes

dzM,. T,dM, K F, 18,

=V T ' .

e |
Solving 10 using the method of variation of parameters by (Kreyszig 1988) gives -
-1 ) X F /12}’]}
M, (x)= A (x)e * +4,(x)e* I ol et SR
y)=A@e "+ AT Gy k)

Case II: Y2B? >> K (i.e radio-frequency field is introduced), then equation 9 becomes
d*M, T aM, r'B F B

___2_-,+_"’.____~+_..__ ,[',—_- o/ 71 ]2
&V a v

11

x x A yB '
= M, (x)=Cie 1+Che ‘+-——2;f—"l—12—7‘2_ 13
Vv -TVA+y B/ A)

2.2 Time — Dependent Bloch NMR Flow Equations and Solutions

Similarly, a time-dependent equation could be obtained by considering a flow that is

independent of the space coordinate, x, implying that the magnetization does not change
appreciably over a large x for a very long time, then all partial derivatives with respect to

x could be set to zero (time-dependent). Hence equations (4 - 6) become:

ad, _ M, £
dt T, :
aMm , _MB,( M,
dt z 1() T2 ‘ 15
dM, (M,-M,) _
e P M B ! SNz 07
- 19, T 16
From equations 15 and 16, we have
M. 1 1. dM 1 M yB, () -
& My YLt (B (D T i L ]
x (T1 Tz) ” (7B, () Tsz) ; T 7

NMR flow equation — (Awojoyogbe 2004).

Equation 17 is Time-Dependent Bloch
ce Flow Equations

3.1 Solution of Time-Dependent Bloch Nuclear Magnetic Resonan

1 1 1 M
Let F=—y I,=—=+—; F =—* and B (t)=coswt then
17, TG T i
) aM yz aM
equation 10 becomes: 4, —2 +kM = F, coswt 18
dt dt # R
By an ordinary comparison of equation 18 with
my"+ey'+py =r(t) 19
c \
We can assume: Ta =i k:f—; FOZM":_L anda]soletw:ﬁ 2w2:£
m m I, m m m
Using the method of undetermined coefficient by (Erwin Kreyszig 1988);
my"+cy'+py = F, coswi 20
Solving the complementary function :
21

= y,(t)=¢"" (acoswt +bsinwt)
The particular integral is given as
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y,()=F,—P~mw
p o(p_mwz)z T 2COSW1+F-—~___WL_~ﬁ . : ‘
This implies ¢ T (p-mwt) i Wl 2
(1) ) +wlc
:e“’(Acoswt+Bsinwz)+{F k—w?

0 L. —— < WT
(k — w?)? 7 Coswt + F 0
) +(an) (k__w2)2+(wT")2

23

sin wt}

3.0 Results and Discussions

3.1 Plot of a 3-Dimensional Tj

: me- ,
The solution to the equation as solved albl:)(:fzpi‘;ndem S umiion

M, (x)= A4 (xX)e % + 4 (x)e + F A8, '
o 2 V? “TVA+ k) Considering (#”B," << K ) on the left
2np?2
hamdt column an_d (v _Bl >>K) on the right hand. column and assuming T1 = 1 is
constant and T2 is varied between 0.01 and 0.53; 4, = A, =1; F, =1and radio frequency

x
field yB,(x) = cos 7’ the graphs plotted below would be obtained:
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Fig.1:- 3-Dimensional Time-Independent Flow Equation with T1 constant and T2 varied.
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Similarly, by considering M, (x) = A (x)e *

+ A, (x)e_} +

Fn/lzyBl
(V2 ~TVA+kA)

for the

condition (;«"B2 << K) on the left hand colum and (y B >> K ) on the right hand

column) and now assuming T2 = 0.3 is constant and T1 is varied between 0.8 and 1 .3; the
graphs plotted below would be obtained. This is to examine if varying T1 has any effect

on the magnetization M .
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3.2 Plot of 2-Dimensional Time-Dependent Flow Equation
Recall the solution of time - dependent flow equation from 23, the complementary part is
Vv, (1) =e " (acoswt + bsinwr)

T I . -
Assumea =b =1; o :72‘1- and ‘*':J,.,.‘ and by keeping 7, = I (constant) and

142 '
varying T,between 0.01 and 0.53 at regular intervals, the graph below would be evolved:
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Fig.3:- Plot of 2-Dimensional Ti ime-Dependent Flow Equation
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From figure 1, where radio frequency is n
column, the effect is that between 0.01s and

0.05s

Discussion on the Results obtained from Time - Ingiependent Equation
egligible ie. (¥*B,” <<K) on the left hand

both the transverse magnetization M,

and the velocity V', show appreciable difference. The implication is that the strength of
the signal is high with high velocity as there is rapid interaction between the molecules

and its environment.
significant difference between

Similarly in the right hand column,

the effect is that between 0.01s and 0.13s b
show appreciable differe
frequency field. However, the respon

velocity V',

significant difference thereafter.

From the various graphs pl
and T,, it is generally obvi

more sensitive to change in the spin — spin re

However, the res
0.09s

ponse of the magnetization and velocity do not show

and 0.53s implying the strength of the signal is low.
where radio frequency is applied i.e. (2B’ >>K)

otted above for M, wit
ous that the NMR system as could be seen mathematically is
laxation time (7,) than the spin — lattice

oth the transverse magnetization M , and the

nce with an extended duration due to the radio
se of the magnetization and velocity do not show

h respect to the separate variation of T,

relaxation time (7). This is evident from figure 2 where T, is constant when 7, was

. R 2
varied for both conditions ¥” By
significant difference from O

ne another. This alsoc

<< K and ;/24812 >> K . The graphs here do not show
onfirms that only 7, has effect on MRI

when distinguishing between various organs of the human body. Note that transverse

magnetization M, carry in
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3.4 Discussion on the Results obtained from Time - Dependent Equation

The solution of time-dependent Bloch NMR equation has two parts namely the
complementary function and the particular integral. The complementary function
e~ (Acoswt + Bsin wr) approaches zero as t approaches infinity practically after a
sufficiently long time. This complementary part represents the transient solution as seen in
figure 3. The complementary function can lead to three different types of motion namely
over-damping, critical damping and under damping which are not in focus in this write up.
However, damped and un-damped forced oscillation will be briefly highlighted.

34.1 Un-damped Forced Oscillation
s B . . - . ? ) . "
Thisis when 7, = 0. Assuming whtw, where w!
m
£ F,

then M (1) = : COS Wf = ~———feu— COS W/

P 2 2 W

W

0

From the above and using the expression-

: I v 42 L n? sind  _
Acosx + Bsinx=+4? 4 B? cos(x + J); C=vA*+B* and tans =219 _ +§
for the complementary solution, the gcneral solution will be -

F
M, (1) = Ccos(w,t - 5) + s COBWE
' m(w, —w

This implies a superposition of two harmonic oscillations whose frequencies are the

wD
natural frequency
2r

i.e. the frequency of the free un-damped motion of the system and

the frequencyzl- of the output. This phenomenon is called resonance and it forms the
/4

basis of operation in Nuclear Magnetic Resonance — NMR. However, if w is close tow, ,

. il F )

the particular solution is M ()= —(T"—z)(coswt—cos w,t) corresponding to the
. m(w, —w

initial condition y(0) = 0and »'(0) = 0. By using the relation

N S VR TR
COSV—cosu = 2sin 5 -sin >

. : 2F, -
Equation 22 may be re-written as M ()= o ! _giite L tsin e ",

v m(w, —w?) 2

o

This results in beats as the difference between the input and natural frequencies is small.

3.4.2 Damped Forced Oscillation
The second case is when T, > (), This implies there is damping. From solution, M (1)
. ) k - w? wl ,
=e “(Acoswt + Bsin wi) +{F, o I 2 sin wt
(k=w?)? +(wT,)? coswr Lo (k-w?)? +(wT,)? :

The first part which is the complementary function e (A4 cos wt + Bsin wit) approaches
zero as t approaches infinity and practically after a sufficiently long time and the general
solution M (1) now represents the transient solution which tends to the steady state

solution M, (f). Hence, after a sufficiently long time, the output corresponding to a
purely sinusoidal input will practically be a harmonic solution whose frequency is that of
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. : amplit .
un-damped in which Plitude wily
' case the amplityq always be finite as against the situation when it is

5.0 Discussion e is infini

In this study, the ::lﬁfsusgls . ifinite as w approachesw, .
Resonance Imagin 2) has butno
independent and (b) time de
precision of the nuclei or nel-’

force. In each of these inst

n of
endent. In each cas . different headings- (a) time
gligible field nnd(thc, two instances were considered- the free
_ ances, T, longitudi ¢ presence of an exciting field or driving
constant while T, transverse ¢ 1‘ ' gitudinal or spin - lattice relaxation time was kept
reversed. Graphs of these diﬂbrc:tspm ~ spin relaxation time varied and the process
It has further been discovered It stages were plotted and the results obtained analyzed.
ed that for blood, while spin — lattice relaxation time (7,) is

constant, the spin — spi b
P Spin relaxation time (7,) shows remarkable difference.

Finally, from the vari g
ious graphs plotted above for Magnetization M, with respect 10 the

separate variation .

Ingependent . uat? of T, and T,, It is generally obvious from the plots in Time-

mathemaﬁcanq ations (Figures 1 and 2) that the NMR (now MRI) system as developed
y 1s more sensitive to change in 7, (transverse or spin — spin relaxation

time) than 7, (longitudinal or spin — lattice relaxation time). This is evident in all the cases

with T,- constant (figures 2), where the curves for each set of the varying 7, do not show
significant difference from one another. For -time-dependent (ﬁgljre- 3), the
complementary function e ™ (Acoswt + Bsinwir) approaches zero as t approaches
infinity practically after a sufficiently long time. This complementary function represents
the transient solution. On the whole, it can be concluded that the particular integral is the
only part contributing to the transverse magnetization.

References
Awojoyogbe,
quantitative analysis of blood
Physica A 303 page 163-175. .
n of the Time —Dependent Bloch NMR Flow

Awoioyogbe, O. B. (2004) Analytical Solutio
i 0yl;‘)c?u:tions: A( Translational Mechanical Analysis, Physica A 339 page 437-460.

Ayeni R.O (1993) Lectures delivered at the Foundation Postgraduate Course in Fluid

ics at National Mathematical Centre, Abuja. Unpublished.
‘tEdwar(;y;? mlifl:;“'” (2006) Microsoft ® Encarta ® [DVD]. Redmond, WA: Microsoft

Corporation. | .. Mathematics. Published by John Wiley and
. . (1988 Advanced Engineering ! : Yy wucy
Erwin Kreyszig (1988) 50133

Sons Canada, Page ’
“Felix Bloch” (2006) Microsoft ® En

O. B. (2002) A mathematical model of the Bloch NMR equations for
flow in blood vessels with changing cross-section - 1

carta ® [DVD]. Redmond, WA: Microsoft

B\ fongpgfaflif;’t’ér » (2006) Microsofi ® Encarta ® [DVD]. Redmond, WA: Microsoft
ansfield, SIr .
Corporation: S System” Microsoft ® Encarta ® [D
Circulatory Y [DVD].
Setaro, John F (2006) lCorp'oration. :

Redmond.WA 3 Microsoft

151



