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Abstract 
This present work concerns the theoretical and numerical investigation of a new combination preconditioner applied 
to the successive overrelaxation (SOR) method, in order to speed up its convergence for solving large sparse linear 
algebraic systems whose coefficient matrix is an matrix. The structures and properties of some lower triangular, 
upper triangular and combination preconditioners are studied, and a new combination preconditioner is proposed. 
The results of comparison theorems and numerical experiments revealed that the proposed preconditioned SOR 
scheme is the best one among all corresponding results, as it maintains faster convergence rate.  
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Introduction 
In the mathematical modelling of natural and social sciences such as economic modelling, numerical weather 
forecasting, optimization, simulated nuclear explosion, electrical networks, oil and gas resource development, it is not 
uncommon to resort to partial differential equations. The approximation of such partial differential equations by finite 
element or finite differences more often than not leads to an associated large sparse linear system of equations. 
However, the direct solution methods such as Gaussian elimination is not always applicable because of enormous 
storage space requirement; hence the recourse to iterative solution methods such as Jacobi, Gauss-Seidel and 
Successive Overrelaxation (SOR) methods. Typically, the large sparse linear system of equations is expressed in 
matrix form as  

 
where  is a square matrix while  are known and unknown vectors 
respectively. It is assumed, for simplicity, without loss of generality, that the diagonal entries of  are unit elements 
and  has the usual splitting , where  and  are strictly lower and strictly upper triangular 
matrices respectively. For any regular splitting 

   
with , then a linear stationary iterative method for the solution of (1) takes the form  

  
where  is the iteration matrix and  is the iteration vector.  
 For , and based on the splitting 

   

the SOR method introduced by Young (1950) for solving (1) is defined by  
 

where  
 

is the SOR iteration matrix. The splitting (4) is also called the SOR splitting of . 
 Convergence is a basic criterion required of any iterative method before it can be used to solve a linear system of 
equations. If  is nonsingular, then the stationary linear iteration (3) is guaranteed to converge if and only if the 
spectral radius of , , is less than 1 (Ames, 1977). The convergence speed of the iterative method is determined 
by the magnitude of , and the smaller it is, the faster the method converges (Song, 2020). Therefore, in order to 
improve the convergence of an iterative method, there is the need to decrease the spectral radius of its iteration matrix. 
Preconditioning is one technique for achieving just that. It involves transformation of original linear system (1) into an 
equivalent preconditioned linear system with more favourable properties for iterative methods, by application of a 
transformation matrix  thus: 

  
Here , which is nonsingular, is called the preconditioner. The preconditioned linear system (6) has the same solution 
as the original system (1). The preconditioned linear system (6) with different forms of preconditioner  have been 
investigated have applied for Jacobi, Gauss-Seidel, SOR and AOR methods in Milaszewicz (1987), Gunawardena et 
al. (1991), Li and Evans (1994), Kohno et al. (1997), Li and Sun (2000), Kotakemori et al. (2002), Morimoto et al. 
(2004), Kotakemori et al. (1996), Ndanusa and Adeboye (2012), Bai and Wang (2015), Mayaki and Ndanusa (2019), 
Faruk and Ndanusa (2019), Abdullahi and Ndanusa (2020), Ndanusa (2020) and Ndanusa et al. (2020). 
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 In this paper, an investigation of properties and behaviours of some lower triangular, upper triangular and 
combination preconditioners is undertaken. We propose a new combination preconditioner for the SOR method with  
convergence results that surpass corresponding schemes.  
 
Materials and Methods 
Preliminaries 
A great many researchers have proposed the preconditioner  in (6) by choosing , , where , 
the set of  identity matrices, and  is a sparse matrix whose nonzero entries are the negatives of the 
corresponding entries of . Therefore, the corresponding matrix splitting is defined by . And the 
corresponding preconditioned iterative method is defined by  

  
where  is the iteration matrix and  is the iteration vector. 
 Milaszewicz (1987) is a lower triangular preconditioner of the form , where 
 

 

The preconditioner of Morimoto et al. (2003) is another lower triangular preconditioner that attempts to provide the 
preconditioned effect on the last row of . It takes the form , where  is defined as  

 

An example of upper triangular preconditioner can be found in the works of Gunawardena et al. (1991) and Dehghan 
and Hajarian (2009) with corresponding  matrices defined by 

 

and  

 

respectively. Evans et al. (2001) proposed a lower triangular and an upper triangular preconditioner defined by  

 

and 

 

respectively. The preconditioners of Ndanusa and Adeboye (2012) and Abdullahi and Ndanusa (2020) with the  
matrix defined by  

 

and 

 

respectively, are examples of combination preconditioners.  
 
The Proposed Preconditioned SOR Schemes 
Following (6) and a careful analysis of the foregoing lower triangular, upper triangular and combination 
preconditioners, a new combination preconditioner  is proposed, where  is defined by  

 

The application of the preconditioner  to the linear system (1) results in the corresponding preconditioned system (6), 
which is more succinctly written as 

   
where, 
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where  and . Therefore,  
 

That is, , where ,  and . The effect of the preconditioner 
 on the coefficient matrix  is the reflected on the corresponding preconditioned coefficient matrix . Unlike the 

behaviour of many preconditioners where some entries of the coefficient matrix are eliminated from the 
preconditioned coefficient matrix, no entry gets eliminated in ; rather, each entry of the new matrix is a scaled down 
entry of the corresponding original matrix. Now, from (9) results the following  

 
Thus,  

 
 

 
 

 
And the preconditioned SOR scheme is takes the form  

 
 That is, 

 

where  is the preconditioned SOR iteration matrix. Also, from (10)  

 
 

is another splitting of the preconditioned coefficient matrix , where  and 
, from whence the second preconditioned SOR iterative scheme is defined as  

 

where . 
 
Convergence Analysis 
Lemma 1 (Varga (1981)) Let  be an irreducible  matrix. Then, 

i.  has a positive real eigenvalue equal to its spectral radius. 
ii.To  there corresponds an eigenvector . 

iii.  increases when any entry of  increases. 
iv.  is a simple eigenvalue of . 
v. 

Lemma 2 (Varga (1981)) 
i.  Let  be a nonnegative matrix. Then 

If  for some nonnegative vector , then . 
ii.  If  for some positive vector , then . Moreover, if  is irreducible and if 

 for some nonnegative vector , then  and  is a positive vector. 
 
Lemma 3 (Li and Sun(2000)) Let  be an splitting of . Then the splitting is convergent, i.e., 

, if and only if  is a nonsingular matrix. 

Theorem 1 Let ,  and 

 be the SOR, first preconditioned SOR and second preconditioned SOR iteration 
matrices respectively. If  is an irreducible matrix with , 

, , ,  and 
, then ,  and  are nonnegative and irreducible matrices. 

 
Proof: The matrices ,  and  reduce to  when . For  and , negative entries appear in 
these matrices. Thus, the range of values of  that ensures nonnegativity of these matrices is, .  
Given , , since F . Also, , 
since . Hence , that is, a nonnegative matrix. For , 
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Since  is irreducible, so also is the matrix  because the coefficients of 
 are not zero and less than 1 in absolute value. Hence,  is an irreducible matrix. The iteration matrix 

 is defined by  

 
Since , , , and for ,  and 

.Hence, , and therefore 
 is a nonnegative matrix. 

 
Let the coefficient matrix  be an irreducible matrix; then the preconditioned matrix  is defined by  

 
 

 
 
 

 

 
where  and  and  

denote the strictly lower and strictly upper parts of the matrix  respectively. Since  is irreducible, it is obvious that 
 is irreducible, since it inherits the nonzero structure of the irreducible matrix . Now, 

 

 

 

 
 

Since  is irreducible, it implies, for , the matrix  is also 
irreducible, because the coefficients of ,  and  are different from zero and less than one in absolute value. 

Therefore, the matrix   is irreducible. Hence  is a nonnegative 
and irreducible matrix. 
Similarly,  

 

 
 

 

 
 

 

Similarly, it is conclusive that  is a nonnegative and irreducible matrix. 
 

Theorem 2: Let  and  be the SOR 
and the preconditioned SOR iteration matrices respectively. If  and  is an irreducible matrix with 

, , , 
, , then 

a)  

b)  
c)  

 
Proof: It is established in Theorem 1 that the  and  are nonnegative and irreducible matrices. Now, suppose 
that , then there exists a positive vector  such that  

 
which implies  
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And for this  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose , where . Then 

, since ,  and 

. Also, , since  

and . Therefore, . Consequently, 

, since .  
a) If , then  but not equal to 0. Therefore, . Hence, 

 
b) If , then . Therefore, . Hence, 

 
c) If , then  but not equal to 0. Therefore, . Hence, 

 

Theorem 3: Let  and  be the SOR and 
preconditioned SOR iteration matrices respectively. If  and  is an irreducible matrix with 

, , , 
, , then 

a)  

b)  
c)  

 
Proof: Theorem 1 established that  and  are nonnegative and irreducible matrices. Let , then 
there exists a positive vector , such that  

 
Or, 

 
 

Therefore, for this , 
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Let , where . It is obvious that 
,  and . Since  is a nonsingular matrix, we 

let  be a splitting of some matrix , i.e., . Also,  is an matrix and . Thus, 
 is an splitting. Now,  is a strictly lower triangular matrix, and by implication its eigenvalues lie on its 

main diagonal; in this case they are all zeros. Therefore,  since ,  is a 
convergent splitting. By the foregoing,  is an splitting and , we employ Lemma 3 to 
establish that  is an matrix. Since  is an matrix, by definition,  . Thus,  and 

. 
(i) If , then  but not equal to 0. Therefore, . From Lemma 2, we have 

. 
(ii) If , then . Therefore, . From Lemma 2, we have . 
(iii) If , then  but not equal to 0. Therefore, . From Lemma 2, we have 

. 
(iv)  

Numerical Experiments 
Sample problems are presented in order to further validate the convergence analysis established by the theorems 
advanced.  
 

Problem 1 Let the coefficient matrix  of the linear system (1) be given by the following  matrix. This problem 
is a numerical example that can found in Huang et al. (2016). 

 

Problem 2 (Huang et al. (2016) Let the coefficient matrix  of the linear system (1) be given by the  matrix 

 

where , , ,  and . 
 
Results and Discussion 
The results of problems 1 and 2 are computed with the aid of Maple 2019 software package and presented in Tables I 
and II respectively. In the tables, the notations , ,  and  represent the spectral radius 
of SOR, preconditioned SOR (11), preconditioned SOR (12) and preconditioned SOR method of Ndanusa and 
Adeboye (2012), respectively.  
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Table 1: Comparison of results for Problem 1 
     

0.
1 

0.9644090640 0.9539352950 0.9513093108 0.9487706750 

0.
2 

0.9264180370 0.9050606920 0.8995894909 0.8948089750 

0.
3 

0.8856946400 0.8529979890 0.8444253633 0.8377503510 

0.
4 

0.8418228960 0.7972703120 0.7852897456 0.7771301540 

0.
5 

0.7942684577 0.7372580538 0.7214907367 0.7123358942 

0.
6 

0.7423219616 0.6721237843 0.6520793817 0.6425234885 

0.
7 

0.6849998071 0.6006731629 0.5756717219 0.5664557928 

0.
8 

0.6208537069 0.5210652978 0.4900562182 0.4821474331 

0.
9 

0.5475543628 0.4300944329 0.3911239201 0.3859049667 

 
Table 2: Comparison of results for Problem 2 

     

0.
1 

0.9735960110 0.9652295940 0.9650865648 0.9637454210 

0.
2 

0.9450680960 0.9280487730 0.9274330393 0.9248632890 

0.
3 

0.9141011790 0.8881203950 0.8866219554 0.8829676410 

0.
4 

0.8803021930 0.8450226883 0.8421239306 0.8375700830 

0.
5 

0.8431699784 0.7982145211 0.7932486414 0.7880350069 

0.
6 

0.8020477532 0.7469789371 0.7390626349 0.7335046327 

0.
7 

0.7560437506 0.6903249539 0.6782402510 0.6727634288 

0.
8 

0.7038884351 0.6268006095 0.6087628289 0.6039659495 

0.
9 

0.6436497250 0.5540893195 0.5272084388 0.5240003219 
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 Tables 1 and 2 display comparison of spectral radii of four different iterative schemes of the SOR method for two 
problems, Problem 1 and Problem 2 respectively; these are the classical SOR method with iteration matrix , the 
preconditioned SOR method with iteration matrix , the preconditioned SOR method with iteration matrix  
and the preconditioned SOR method of Ndanusa and Adeboye (2012) with iteration matrix . As is revealed from 

the two tables, , which indicates the superiority of the new 
preconditioned SOR iterations  and  over the un-preconditioned SOR and another preconditioned SOR 
iteration in literature. It is further observed that convergence tend to be faster when the value of the relaxation 
parameter  moves closer to 1 than when it moves closer to 0. 
 
Conclusion 
A new approach of constructing preconditioners for linear system is adopted; it entails the introduction of a 
preconditioner that does not eliminate any of the entries of the coefficient matrix of the linear system; rather, it scales 
down the entries. The result is a combination preconditioner whose performance far outweighs the performance of the 
un-preconditioned system as well as some other preconditioned system in literature. 
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