

Article Publication

1 message

Logi VŠTEČB <logi.vste@gmail.com> Reply-to: logi@mail.vstecb.cz

To: Obioma Reuben Nwaogbe <obioma.nwaogbe@futminna.edu.ng>

Dear Author,

all necessary information can be found on the pages of the journal, see the link. Reviewers' comments were sent to you during the review process, a copy of this message is below.

Kind regards

Editorial Board of the Logi - Scientific Journal on Transport and Logistics

Result of review process

Dear Author,

Please see below results regarding the review process of your manuscript entitled " Analysis of Airport Operational Performance in Some Selected Airports of Northern Nigeria ".

Reviewer 1 recommended publishing your manuscript in the LOGI – Scientific Journal on Transport and Logistics with major revision.

Reviewer 2 did not recommend publishing your manuscript in the LOGI – Scientific Journal on Transport and Logistics.

Remarks from reviewer 1:

Authors have prepared interesting paper with application of SFA on productive analysis of domestic and international airports in Nigeria.

However the hypothesis set in part 3.5 lead to general result - authors have proved by this what has already been found in practice.

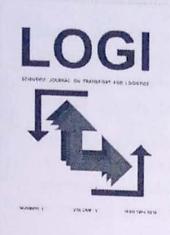
- 1) Please improve scientific approach.
- 2) Please check the English then the paper will be revised by native speaker and if there will be lot of mistakes in grammar, paper will be send to you for revision again.

Remarks from reviewer 2:

In the abstract there is the unfinished sentence "In the study". There are incorrect references to tables in the article (eg tables 4.3, 4.7). In Figure 1, the line graph for the TIE quantity is not appropriately chosen. The chosen hypotheses are very simple and it is clear from the logic of the airports operation, what there are the relationships

Tue, Jul 13, 2021 at 10:47

between passenger throughput, aircraft movement and the terminal capacity, as well as between aircraft movement and runway dimension. The content of the discussion does not correspond to the requirements for scientific discussion. In the conclusion, the same results are repeated as in the discussion.


Please rework the article according to the reviewers' comments, expand the list of literature, adjust the hypotheses, etc.

Send me back the reviewed version of your manuscript due January 29, 2021.

Thank you very much in advance!

pá 2. 7. 2021 v 20:54 odesílatel Obioma Reuben Nwaogbe <obioma.nwaogbe@futminna.edu.ng> napsal: [Quoted text hidden]

sciendo

LOGI – Scientific Journal on Transport and Logistics

Aims & Scope

Editorial Board Abstracting & Indexing

Issues

Submit

Editor in Chief

Assoc. Prof. Rudolf Kampf

Faculty of Technology,

The Institute of Technology and Business in Ceske Budejovice, Czech

Republic

e-mail: kampf@mail.vstecb.cz

Assistant of the Editor in Chief

PhD. Ondrej Stopka

Department of Transport and Logistics, Faculty of Technology,

The Institute of Technology and Business in Ceske Budejovice, Czech

Republic

e-mail: stopka@mail.vstecb.cz

Publishing Board

Assoc. Prof. Jan Lizbetin

Department of Transport and Logistics, Faculty of Technology,

Institute of Technology and Business in Ceske Budejovice, Czech Republic

e-mail: lizbetin@mail.vstecb.cz

Prof. Borna Abramovic

Faculty of Transport and Traffic Sciences,

University of Zagreb, Croatia

e-mail: borna.abramovic@fpz.hr

Prof. Jozef Gasparik

Faculty of Operation and Economics of Transport and Communications,

University of Zilina, Slovak Republic

e-mail: jozef.gasparik@fpedas.uniza.sk

Assoc. Prof. Petr Prusa

Jan Perner Transport Faculty, University of Pardubice, Czech Republic

e-mail: petr.prusa@upce.cz

Assoc. Prof. Jaromir Siroky

Jan Perner Transport Faculty, University of Pardubice, Czech Republic

e-mail: jaromir.siroky@upce.cz

PhD. Josef Novotny

Faculty of Economics and Administration, University of Pardubice, Czech Republic e-mail: josef.novotny@upce.cz

PhD. Maria Stopkova

Department of Transport and Logistics, Faculty of Technology, Institute of Technology and Business in Ceske Budejovice, Czech Republic e-mail: stopkova@mail.vstecb.cz

Assoc. Prof. Martin Straka
Institute of Logistics, Faculty BERG,
Technical University of Kosice, Slovak Republic
e-mail: martin.straka@tuke.sk

PhD. Petra Pártlová

Department of Management, Faculty of Corporate Strategy, Institute of Technology and Business in Ceske Budejovice
e-mail: partlova@mail.vstecb.cz

Ing. Patrik Gross

Institute of Technology and Business in Ceske Budejovice, Czech Republic e-mail: gross@mail.vstecb.cz

His competences encompass proof-reading activities, editing the manuscripts, correcting the English grammar and references, checking spelling errors of the manuscripts.

Scientific Editorial Board

Prof. Jozef Gnap
Faculty of Operation and Economics of Transport and Communications,
University of Zilina, Slovak Republic
e-mail: jozef.gnap@fpedas.uniza.sk

Prof. Gabriel Fedorko
Institute of Logistics, Faculty BERG,
Technical University of Kosice, Slovak Republic
e-mail: gabriel.fedorko@tuke.sk

Prof. Vieroslav Molnar
Faculty of Manufacturing Technologies of the Technical University of Kosice
with a seat in Presov, Slovak Republic
e-mail: vieroslav.molnar@tuke.sk

Prof. Vaclav Cempirek
College of Logistics, Prerov, Czech Republic
e-mail: <u>vaclav.cempirek@vslg.cz</u>

Prof. Gerhard Bahrenberg
Institute of Geography,
University of Bremen, Germany
e-mail: gbah@uni-bremen.de

Prof. Bernd Kortschak
Faculty of Commerce, Logistics, Transport,
University of Applied Sciences Erfurt, Germany
e-mail: kortschak@fh-erfurt.de

Prof. Hans-Martin Niemeier
Institute for Transport and Development,
School of International Business
Bremen University of Applied Sciences, Germany
Email address: Hans-Martin.Niemeier@hs-bremen.de

Prof. Ulrich Weidmann Eidgenössische Technische Hochschule Zurich, Swiss Federal Institute of Technology Zurich, Switzerland Prof. Maria Nadia Postorino
Department of Civil, Energy, Environment and Materials Engineering,
Mediterranea University of Reggio Calabria, Italy
e-mail: npostorino@unirc.it

Prof. Alexandre Dolgui
Professor and Head: Automation, Production and Computer Sciences
Department,
IMT Atlantique, Nantes, France
e-mail: alexandre.dolgui@imt-atlantique.fr

Prof. Srecko Krile
Department of Electrical Engineering and Computing,
University of Dubrovnik, Croatia
e-mail: srecko.krile@unidu.hr

Prof. Fusaomi Nagata

Department of Mechanical Engineering, Faculty of Engineering,
Tokyo University of Science, Yamaguchi, Sanyo-Onoda, Japan
e-mail: nagata@rs.tusy.ac.jp

Prof. Yossi Bukchin
Department of Industrial Engineering,
Tel Aviv University, Israel
e-mail: bukchin@tau.ac.il

Prof. Vladimiras Grazulis
Faculty of Politics and Management,
Mykolas Romeris University, Lithuania
e-mail: gravlad@gmail.com

Prof. Larisa M. Kapustina
Ural State University of Economics,
Yekaterinburg, Russia
e-mail: lakapustina@bk.ru

Prof. Elzbieta Marciszewska
Collegium of Management and Finance,
Warsaw School of Economics, Poland
e-mail: emarci@sgh.waw.pl

Prof. Momcilo Miljus
Faculty of Transport and Traffic Engineering,
University of Belgrade, Serbia
e-mail: mmiljus@sf.bg.ac.rs

Prof. Otgontugs Banzragch School of Economic Studies, National University of Mongolia, Mongolia e-mail: otgontugs2@num.edu.mn

Prof. Roberto Pinto University of Bergamo, Italy e-mail: <u>roberto.pinto@unibg.it</u>

Assoc. Prof. Stefano Ricci
Department of Civil Environmental and Building Engineering,
Sapienza University, Rome, Italy
e-mail: stefano.ricci@uniromal.it

Prof. Jasmina Pasagic Skrinjar
Faculty of Transport and Traffic Sciences,
University of Tagreb Croatia

e-mail: jpasagic@fpz.hr

Assoc. Prof. Milos Hitka

Faculty of Wood Sciences and Technology, Technical University in Zvolen, Slovak Republic e-mail: hitka@tuzvo.sk

PhD. Michal Weiszer
School of Engineering,
University of Lincoln, United Kingdom
e-mail: mweiszer@lincoln.ac.uk

PhD. Eric Tchouamou Njoya
Department of Logistics, Operations, Hospitality and Marketing,
University of Huddersfield, West Yorkshire, United Kingdom
e-mail: <u>E.Njoya@hud.ac.uk</u>

PhD. Sweek Kuik,
Division of Information Technology, Engineering and the Environment,
School of Engineering, University of South Australia,
Adelaide, South Australia
e-mail: Swee.Kuik@unisa.edu.au

Priv. Doz. Dipl.-Ing. Dr.techn. Andreas Schöbel, Institute for Railway Engineering, Vienna University of Technology, Austria e-mail: andreas.schoebel@tuwien.ac.at

PhD. Jerome Perrin

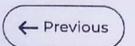
VP Scientific Director, – Department of Research and Advanced

Engineering, RENAULT S.A.S. - Guyancourt, France

e-mail: jerome.perrin@renault.com

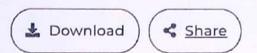
PhD. Chenguang Li
Faculty of Economics and Management,
North China University of Technology, Beijing, China
e-mail: dr.lcg@qq.com

PhD. Salvador Hernandez
School of Civil and Construction Engineering, Oregon State University,
Corvallis, Oregon, USA
e-mail: sal.hernandez@oregonstate.edu


PhD. Marin Marinov
School of Engineering and Applied Science, Aston University, Birmingham,
United Kingdom
e-mail: m.marinov@aston.ac.uk

PhD. Norbert Reuter
Managing Director of Saarbahn GmbH, Saarbrücken, Germany
e-mail: norbert.reuter@web.de

PhD. Jesus Gonzalez-Feliu Saint-Etienne School of Mines, France e-mail: <u>jesus.gonzalez-feliu@emse.fr</u>


Prof. Habib Hadj-Mabrouk
Scientific Direction of the French institute of science and technology of transport, spatial planning, development and networks (IFSTTAR), Marnela-Vallée, France
e-mail: habib.hadj-mabrouk@ifsttar.fr

Assoc. Prof. Željko Stević
Faculty of Transport and Traffic Engineering Doboj,
University of East Sarajevo, Bosnia and Herzegovina

Issues

Volume 12 (2021): Issue 1 (May 2021)

13 Articles

Sort By Y

a Open Access

Can B2B Implementation Enhance Competitiveness of Logistic Companies in Coronavirus Economic Recession?

Libor Šimek, Václav Cempírek and Patrik Gross

Published Online: 24 May 2021

Page range: 1 - 12

▲ Download

99 Cite

Article Preview

3 Open Access

Influence of Cruise Control Use on Vehicle's Consumption

Michal Loman, Branislav Šarkan and Tomáš Skrúcaný

Published Online: 24 May 2021

Page range: 13 - 24

▲ Download

77 Cite

Article Preview

a Open Access

<u>Assessing the Energy Intensity and Greenhouse Gas Emissions</u> <u>of the Traffic Services in a Selected Region</u>

Tomáš Skrúcaný, Martin Kendra, Tomáš Čechovíč, Filip Majerník and Jan Pečman

Published Online: 24 May 2021

Page range: 25 - 35

♣ Download

99 Cite

Article Preview

3 Open Access

<u>Organization of Urban Transport Organization – Presentation</u> <u>of Bicycle System and Bicycle Infrastructure in Lublin</u>

Agnieszka Dudziak and Jacek Caban

Published Online: 28 May 2021

Page range: 36 - 45

♣ Download

99 Cite

Article Preview

a Open Access

Analysis of the Logistics Process of Waste Transport in the City of Pila (The Case Study From Poland)

Piotr Gorzelanczyk

Published Online: 28 May 2021

Page range: 46 - 57

🕹 Download

77 Cite

Article Preview

3 Open Access

<u>Analysis of Customs Processing of Wagon Consignment at Slovakia-Ukraine Border</u>

Zuzana Gerhátová, Vladislav Zitrický and Vladimír Klapita

Published Online: 01 Jun 2021

Page range: 58 - 66

▲ Download

99 Cite

Article Preview

3 Open Access

The Importance of Alternative Drive Vehicles in Road Transport in Poland and the European Union

Damian Frej, Paweł Grabski and Emilia Szumska

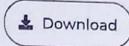
Published Online: 04 Jun 2021

Page range: 67 - 77

▲ Download

99 Cite

Article Preview


3 Open Access

Evaluation of the Hazard Perception Skills of Young Drivers

Hannes Sappl and Tibor Kubjatko

Published Online: 04 Jun 2021

Page range: 78 - 89

99 Cite

Article Preview

3 Open Access

Optimal Location of Distribution Site Based on Distance

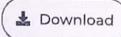
Jaroslava Kubáňová and Iveta Kubasáková

Published Online: 04 Jun 2021

Page range: 90 - 98

99 Cite

Article Preview


3 Open Access

<u>Smart City Decision Making System Based on Event-driven</u> <u>Platform</u>

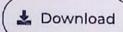
Andrej Saric, Ivona Zakarija, Vedran Batos and Srecko Krile

Published Online: 14 Jun 2021

Page range: 99 - 110

95 Cite

Article Preview


a Open Access

<u>Analysis of Airport Operational Performance in Selected</u> <u>Airports of Northern Nigeria</u>

Obioma R. Nwaogbe, Akorede Ibrahim Ayinla, Victor Omoke, Joel A. Ojekunle and Hauwa Wokili-Yakubu

Published Online: 28 Jun 2021

Page range: 111 - 122

99 Cite

Article Preview

a Open Access

Effect Size of Logistics: Evidence from Selected Countries

Cynthia Sénquiz-Díaz

Published Online: 28 Jun 2021

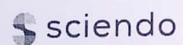
Page range: 123 - 134

<u>Evaluation and Selection of Nigerian Third-Party Logistics</u> <u>Service Providers Using Multi-Criteria Decision Models</u>

E.A. Ejem, C.M. Uka, D.N. Dìke, C.C. Ikeogu, C.C. Igboanusi and O.E. Chukwu

Published Online: 28 Jun 2021

Page range: 135 - 146


♣ Download

99 Cite

Article Preview

Plan your remote conference with Sciendo

Find out more

Sciendo is a De Gruyter company

Publish with us

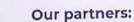
Latest News

About Sciendo

Contacts

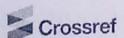
<u>Terms</u>

<u>Privacy</u>

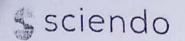

Publishing and Ethical Policies

Contact

De Gruyter Poland Sp. z o.o. Bogumila Zuga 32a 01-811 Warsaw, Poland


info@sciendo.com

+48 22 701 50 15



Clarivate

Website by Northern Comfort

LOGI – Scientific Journal on Transport and Logistics

© 2021 O. R. Nwaogbe *et al.* This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Analysis of Airport Operational Performance in Selected Airports of Northern Nigeria

Obioma R. Nwaogbe^{1*}, Akorede Ibrahim Ayinla², Victor Omoke¹, Joel A. Ojekunle² and Hauwa Wokili-Yakubu²

Nigeria Maritime University, Department of Marine Transport and Logistics, Okerenkoko, Warri, Delta State, Nigeria; Email: obioma.nwaogbe@futminna.edu.ng, omoke.victor@nmu.edu.ng

Federal University of Technology, Department of Transport Management Technology, Minna, Niger State, Nigeria; Email: akorede.pg814243@st.futminna.edu.ng, ojekun@yahoo.com, hauwa.wokili@futminna.edu.ng

*Corresponding Author: Obioma Reuben Nwaogbe

Received: 18 October 2020; Revised: 19 January 2021; Accepted: 5 March 2021; Published: 21 June 2021

Abstract: This study focuses on the overall airport operational performance of selected airports in Northern Nigeria using the stochastic Frontier Analysis (SFA) model. STATA version 7 software was used for the data analysis. Data collected from the Federal Airport Authority of Nigeria (FAAN) from all the selected airports from 2001 to 2018 included both domestic and international passengers in the given area. The study focused on measuring the operational performance of all selected airports; its results show that none of the airports under review showed 100% level of productivity benchmark. The study recommended that the airports in the given area can improve their technical performance by reducing the unit costs as well as some other inputs to increase efficiency.

Keywords: Airport, performance, productivity, efficiency, stochastic frontier analysis

1. Introduction

The Nigerian aviation industry has been deregulated since the mid-1990s, when the airports were commercialized and private airlines were granted lincence to operate in the country [1]. Moreso, [2] stated that the hub airport expansion for the international and domestic passenger traffic provides Nigerian residents, businessmen, and businesswomen with an improved offer in terms of travelling to various destinations, at a higher frequency, and for a lower price in terms of passenger fares within the West African sub-region.

Murtala Muhammed International Airport, Lagos, and Nnamdi Azikwe International Airport, Abuja have converted many Nigerian airports into feeders for the few hub airports in the country because of the population, economic situation, and political activities in Lagos and Abuja. Akanu

Ibiam Airport (Enugu) was rebuilt into a standard international airport and has been serving as a hub airport for the eastern part of Nigeria since 2013. Experts acknowledged that the liberalization of airport operation between the regions improves flexibility, competence, and professionalism in the aviation industry [3].

As a major component of the aviation sector, airporst play a key role in accelerating social and economic development at the regional, national, and global levels. Airports offer dynamic services with multiple inputs and outputs. With that, the airport sector facilitates domestic and international trade (by providing access to markets); creates employment opportunities related to both aeronautical and non-aeronautical activities; and enhances communication and integration between people, countries, and cultures through tourism, business activities and merchandise trade. Airports operate in different environments (large cities, remote areas) and serve users with various needs (business and leisure travellers), thus making efficiency assessments very challenging. Many stakeholders, including airlines, regulatory agencies, ground handling companies, and many others have various interests and objectives that further complicate the evaluation of airport performance [4]. This study aims to evaluate the operational performance of selected airports in northern Nigeria and the objective is to estimate the production function of the selected airports as well as to benchmark them against the global standard.

1.1 Literature Review

The researchers [5] adopted the Bayesian stochastic frontier to determine the technical efficiency of Mozambican airports. The study presented a functional form that introduces the risk of misspecification. They used SFA to test the statistical significance of each cost driver. Performance appraisal of some selected Nigerian Airport using Stochastic Frontier Analysis was addressed in [6]. The study concluded that organizations that possess unique resources can provide better/a wider range of services and meet service user demands more effectively than those without such resources. The study also recommended a single guideline for the operation of Nigerian airports in terms of the procurement and usage of resources.

Moreso [7] carried out a study on airport cost-efficiency using a homogenous SFA model on 10 Portuguese airports between 1990 and 2000. The author also published a study concerning the UK airports between 2000 and 2006 using the stochastic frontier analysis to describing airport heterogeneity and calculating their cost-efficiency.

Some researchers [8] studied the performance, heterogeneity, and managerial efficiency of African airports using stochastic frontier analysis. The research was conducted between 2003 and 2010 on a sample of thirty airports. The airports were ranked according to their technical efficiency, and common policies/strategies as well as individual policies/strategies by segments were proposed.

Studies by [9] used Stochastic Frontier Analysis to study the impacts of the competition between Italian airports on their technical efficiency in the period 2005-2008. The results of the study confirmed that the intensity of competition affects airport efficiency.

Cost effectiveness evaluation of Nigerian airports was dealt with by [10], who analyzed cost effectiveness of the airports together with their productivity. For the purpose of the analysis, Cobb-Douglas and Translong model were used to analyze ten (11) different airports operating in six Nigerian geo-political zones on the basis of multi-stage sampling in the years 2001-2013. The results represent an adequate network for improving the operational performance of the airports in Nigeria or other countries.

The study [12] analysed in more detail the efficiency of Nigerian airports in terms of handling imprecise data using a two-stage fuzzy approach. The study focused on assessing the efficiency of six major Nigerian airports in the period 2007-2013 by applying a two-stage fuzzy-based methodology suitable for handling imprecise data. Fuzzy data envelopment analysis models for traditional assumptions concerning scale returns are employed to assess the productivity of Nigerian airports over time. In the second stage, fuzzy regression based on different rule-based systems are used to predict the relationship of a set of contextual variables and airport efficiency. The results revealed the impact of operator and cargo type on efficiency levels, and determined the policy implications for Nigerian airports.

Furthermore, [13] studied the efficiency of Nigerian Airports using the Stochastic Frontier Model (Cost Function) that captures the impact of unobserved managerial ability. In the study, they utilized Alvarez, Arias, and Greene model (2004), referred to as the AAG model. Their findings show that contextual variables may, if allowed simultaneously will, control the impacts of managerial ability on the efficiency on passenger traffic, which is the major output of the air transport operation. Some researchers [14,15] also studied airport efficiency performance in Nigeria using the DEA-BCC model. It follows from the study that there is a highly significant relationship between the inputs (total assets, runway dimension, and number of employees) and the output, which is passenger and aircraft traffic during air transport operations. The study also proposes policy/strategies to turn inefficient airports into efficient.

Finally, [16] focused on measuring and explaining the evidence of efficiency and sustainability of Italian airports. The findings reveal that airport size, presence of low-cost carriers, and cargo traffic have a significant impact on the technical and scale efficiency of Italian airports. In other words, air transport privatization and deregulation can positively affect regional airport efficiency and sustainability.

Studies by [9] used Stochastic Frontier Analysis to study the impacts of the competition between Italian airports on their technical efficiency in the period 2005-2008. The results of the study confirmed that the intensity of competition affects airport efficiency.

Cost effectiveness evaluation of Nigerian airports was dealt with by [10], who analyzed cost effectiveness of the airports together with their productivity. For the purpose of the analysis, Cobb-Douglas and Translong model were used to analyze ten (11) different airports operating in six Nigerian geo-political zones on the basis of multi-stage sampling in the years 2001-2013. The results represent an adequate network for improving the operational performance of the airports in Nigeria or other countries.

The study [12] analysed in more detail the efficiency of Nigerian airports in terms of handling imprecise data using a two-stage fuzzy approach. The study focused on assessing the efficiency of six major Nigerian airports in the period 2007-2013 by applying a two-stage fuzzy-based methodology suitable for handling imprecise data. Fuzzy data envelopment analysis models for traditional assumptions concerning scale returns are employed to assess the productivity of Nigerian airports over time. In the second stage, fuzzy regression based on different rule-based systems are used to predict the relationship of a set of contextual variables and airport efficiency. The results revealed the impact of operator and cargo type on efficiency levels, and determined the policy implications for Nigerian airports.

Furthermore, [13] studied the efficiency of Nigerian Airports using the Stochastic Frontier Model (Cost Function) that captures the impact of unobserved managerial ability. In the study, they utilized Alvarez, Arias, and Greene model (2004), referred to as the AAG model. Their findings show that contextual variables may, if allowed simultaneously will, control the impacts of managerial ability on the efficiency on passenger traffic, which is the major output of the air transport operation. Some researchers [14,15] also studied airport efficiency performance in Nigeria using the DEA-BCC model. It follows from the study that there is a highly significant relationship between the inputs (total assets, runway dimension, and number of employees) and the output, which is passenger and aircraft traffic during air transport operations. The study also proposes policy/strategies to turn inefficient airports into efficient.

Finally, [16] focused on measuring and explaining the evidence of efficiency and sustainability of Italian airports. The findings reveal that airport size, presence of low-cost carriers, and cargo traffic have a significant impact on the technical and scale efficiency of Italian airports. In other words, air transport privatization and deregulation can positively affect regional airport efficiency and sustainability.

Table 1 List of airports, names, and location. Source: Federal Airport Authority of Nigeria

Airport abbreviations	Name and location of the airports			
KANO INTL	International wing of Mallam Aminu Kano Airport, Kano			
KANO DOM	Domestic wing of Mallam Aminu Kano Airport, Kano			
SOK INTL	International wing of Sultan Saddik Abubakar Airport, Sokoto			
SOK DOM	Domestic wing of Sultan Saddiq Abubakar Airport, Sokoto			
ABJ INTL	International wing of Nnamdi Azikwe Airport, Abuja			
ABJ DOM	Domestic wing of Nnamdi Azikwe Airport, Abuja			
ILR INTL	International wing of Ilorin Airport, Ilorin			
ILR DOM	Domestic wing of Ilorin Airport, Ilorin			
MAID INTL	International wing of Maiduguri Airport, Maiduguri			
MAID DOM	Domestic wing of Maiduguri Airport, Maiduguri			
YOLA INTL	International wing of Yola Airport, Jimeta			
YOLA DOM	Domestic of Yola Airport, Jimeta			

2. Data and methods

Data was collected from the departments of statistics of all selected airports via the Federal Airport Authority of Nigeria (FAAN). The study covered a period of 18 years (from 2001 to 2018), from six northern Nigeria airports. SFA model was used to carry out the analysis using the software STATA, version 11.

2.1 Model specification

Stochastic Frontier Analysis (SFA) is a parametric statistical approach developed by Aigner et al., (1977). It is used to calculate efficient production frontier and enable the division of random error and efficiency factors. SFA is a well-known technique for determining the production frontier and efficiency score of any organization.

Mathematically, stochastic frontier analysis can be expressed as follows:

$$yi = f(xi; \beta).TEi, [-]$$
 (1)

$$TE = \frac{y!}{f(x!,\beta) \exp(vi)}, [-]$$
 (2)

$$\exp TEi = \frac{\exp\{\beta o + \beta t(\ln x_1 it)\} + \beta t(\ln x_2 it) + \beta t(\ln x_3 it) + \beta t(\ln x_4 it) + V i + U i}{\exp\{\beta o + \beta t(\ln x_1 it) + \beta t(\ln x_2 it) + \beta t(\ln x_3 it) + \beta t(\ln x_4 it) + V i}, [-]$$
(3)

where: yi is passenger throughput [people]; TE is technical efficiency [-]

Taking the log of both sides,

$$ln(yi) = ln\{f(xi; \beta) + ln(ei) + vi\}, [-]$$
 (4)

$$ln(yi) = \beta o + \sum_{t=1}^{n} \beta t \, ln(xit) + vi - ui, [-]$$
(5)

$$Log L = \frac{n}{2} ln \frac{\pi}{2} - \frac{n}{2} ln(\sigma 2) + \sum_{i=1}^{n} ln (1 - \phi(z1)), [-]$$
 (6)

Assuming that there is n input with linear production function in logs, it can be defined that:

$$ui = -ln(ei), [-] \tag{7}$$

resulting in

$$ln(yi) = \beta o + \sum_{j=1}^{n} \beta j \ln(xij) + vi - ui, [-]$$
(8)

Since ui was subtracted from ln(ei), ui > 0 which confirms the earlier stated $0 < ei \le 1$.

The Productivity output index used for this study under the stochastic analysis model are:

Y1 is Passenger throughput [people]; Y2 is Aircraft Movement [n].

While the productivity input index to be used are:

X1 is Terminal capacity [-]; X2 is Runway Dimension [m]; X3 is Total operations cost [\$]; X4 is Ground Handling Equipment (GHE) [-]; X5 is Number of Employees[n].

3. Result

Stochastic Frontier Analysis used for performing the analysis shows a robost result as regard to airport operational performance using some inputs and output variables.

3.1 Descriptive Statistics of SFA

Table 2 below presents brief descriptive statistics of the variables, which represent the selected twelve northern Nigeria airports subjected to the analysis using the Stochastic Frontier Analysis model.

Table 2 Descriptive statistic for the distribution of SFA. Source: authors

LnVariable	Description	Mean	Standard deviation	Minimum	Maximum
Ln Y ₁	Natural log of passenger throughput	10.3115	3.4036	0.0000	15.167
Ln Y ₂	Natural log of Aircraft movement	6.5626	2.6949	0.0000	11.0676
Ln X ₁	Natural log of terminal capacity	5.3134	0.6482	3.9120	7.2442
Ln X ₂	Natural log of runway dimension	11.9902	0.2239	11.5899	12.6603
Ln X₃	Natural log of total operation cost	19.1929	2.0234	14.3514	27.319
Ln X4	Natural log of Ground handling equipment	2.4382	0.5090	2.0794	3.8501
Ln X5	Natural log of the number of employees	5.1144	0.9623	3.2189	7.0553

3.2 Analysis of Production Function of Some Selected Airports

Table 3 below presents the calculated production function of each selected airport at a given level of both the dependent and the independent variables. The regression analysis results show the relationship between the dependent variables and independent variables as used in the study.

Table 3 Output summary of production function. Source: authors

0.7960				
2.2617				
0.4676				
0.4549				
216				
Coefficient	Standard	t-test	P > t	
	Error			
68.789	.10.2085	6.895	0.000	
0.646	0.3103	2.09	0.038	
-6.027	0.9489	-6.83	0.000	
0.113	0.1201	0.775	0.428	
0.435	0.5983	0.815	0.476	
1.783	0.2785	6.505	0.000	
	2.2617 0.4676 0.4549 216 Coefficient 68.789 0.646 -6.027 0.113 0.435	0.7960 2.2617 0.4676 0.4549 216 Coefficient Standard Error 68.789 .10.2085 0.646 0.3103 -6.027 0.9489 0.113 0.1201 0.435 0.5983	0.7960 2.2617 0.4676 0.4549 216 Coefficient Standard t-test Error 68.789 10.2085 6.895 0.646 0.3103 2.09 -6.027 0.9489 -6.83 0.113 0.1201 0.775 0.435 0.5983 0.815	

3.3 Comparison of actual airport productive efficiency using SFA and Cobb-Douglas production function

The study compared the performance efficiency results obtained through the SFA using half normal and exponential distribution model with the results of the production function obtained through the Cobb-Douglas as shown in Table 4 below. The result shows the coefficients, standard error, and Tratio with the calculated values of the variables used are interrelated, and the error term shows the technical inefficiency and elminates random noise. The exponential distribution tends to eschew all inaccuracies from the analysis presented in Table 4 below.

Table 4 Comparison of Cobb-Douglas production frontier and SFA estimates. Source: authors

COBB DOUGLAS PRODUCTION FRONTIER			STOCHASTIC FRONTIER ANALYSIS ESTIMATES						
			Half-Normal			ponential			
Estimates	Coefficient	Standar d Error	T- ratio	Coefficient	Standard Error	T-ratio	Coefficient	Standard Error	T- ratio
Constant	68.98	10.2085	6.895	53.610	3,484	17004.3	51.904	6,359	8.105
Ln Tmc	0.646	0.3103	2.09	0.918	0.131	8998.33	0.759	0.251	3.015
Ln Rwd	-6.027	0.9489	-6.83	-4.638	0.328	-15504.1	-4.542	0.613	7.345
Ln T.cost	0.113	0.1201	0.775	0.146 "	0.199	1193.6	0.045	0.066	0.70
Ln GHE	0.435	0.5983	0.815	-1.158	0.378	-4837.2	-0.723	0.340	-2.13
Ln Emp	1.783	0.2785	6.505	2.043	0.081	17506.1	1.944	0.145	13.40
Sigma	*			61.5E+05	0.046		0.499	0.088	
(σv)									
Sigma			-11-1-11-11-11-11-11-11-11-11-11-11-11-	3.363	0.180	er managari i kapi agari girki (- A. s.kr) (s. kapita ke abi s s s	2.095	0.176	2. au . la la la la japan ilimee
(σu)					ş				
Sigma				11.66	2.403	to allow all to discuss makes to the first three between to the	4.665	0.709	
(σ^2)									
Lamda				15.55	0.205		4.378	0.224	
(λ)									
Log K				-432.107			-420.198		

3.4 Estimation of productive efficiency scores of domestic and international airports in given area using SFA

Table 5 below presents estimated SFA the productive efficiency results of each airport in the period 2001-2018. The efficiency of each airport is measured in percentage. Airports are considered productive and efficient only if the observation level equals 100% (the productive frontier). Airports with the efficiency score below 100% are considered inefficient. Combined output and input variables were analyzed and the efficiency level of the airports is estimated by obtaining values from 0 and 1 as efficiency score. It shall be noted that any airport operating below an efficient score of 1 (100 %) is not productive and efficient while the SFA estimated result for this study shows that all the airports are inefficient. The airports can improve their productive efficiency by increasing the level of input variables to produce an effective output level.

Table 5 SFA estimated efficiency score in the years 2001 - 2018. Source: authors

Airport abbreviations	Efficiency Scores	Ranking	TIE (%)
ABJ INTL	0.424915	5	57.51
KAN INTL	0.120539	10	87.95
SOK INTL	0.165216	8	83.95
ILR INTL	0.085441	. 11	91.46
MAID INTL	0.231759	7	76.83
YOLA INTL	0.130707	9	86.93
ABJ DOM	0.642003	1	35.8
KAN DOM	0.055293	12	94.48
SOK DOM	0.550622	2	35.8
ILR DOM	0.46933	4	53.07
MAID DOM	0.513922	3	48.61
YOLA DOM	0.358177	6	64.19
Average score	0.312327019		

$$TEi = \frac{y1 (output)}{f (xi,\beta).exp (vi) (frontier)}, [-]$$
(9)

$$exp TEi = \frac{exp(\beta o + \beta t(lnx1it)) + \beta t(lnx2it) + \beta t(lnx3it) + \beta t(lnx4it) + Vi + Ui}{exp \{\beta o + \beta t(lnx1it) + \beta t(ln2it) + \beta t(lnx3it) + \beta t(lnx4it) + Vi}, [-]$$
(10)

where: TEi is Technical Efficiency [-].

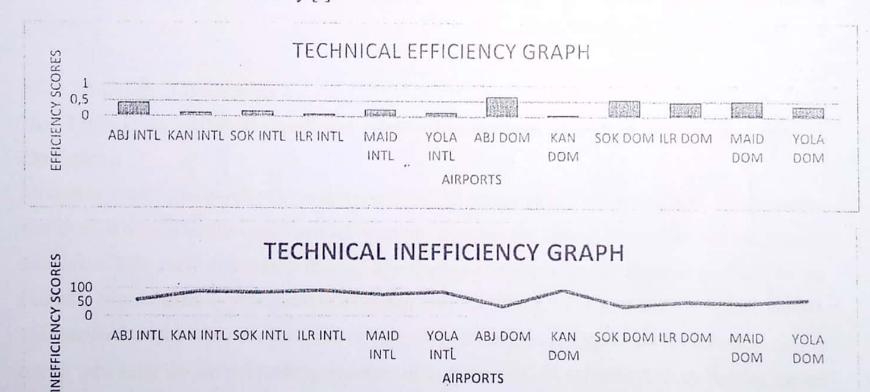


Fig. 1 Airports technical efficiency and inefficiency according to SFA in the period 2001 - 2018. Source: authors.

Hypothesis testing

The formulated hypothesis was tested using the Wald test, which is a parametric test applied in the stochastic frontier analysis to find out whether the explanatory variables used are significant input variables or not.

Rule statement: If the probability-value is < 0.05 (5 %), the null hypothesis is rejected while the alternative hypothesis is accepted.

3.5.1 Analysis of Hypothesis 1

Hol: There is no statistical association between passenger throughput, aircraft movement, and the terminal capacity.

Table 3 shows that the calculated p-value is 0.038, which is lower less than the tabulated value (0.05), which indicates there is a statistically significant positive relationship of passenger throughput, aircraft movement, and terminal capacity. This study thus rejects the null hypothesis and confirms the alternative hypothesis on the existence of a statistically significant relationship of passenger throughput, aircraft movement, and the terminal capacity. This implies that passenger throughput is a determinant of aircraft movement terminal capacity utilization; the higher the passenger throughput, the higher the number of aircraft movements, and the more terminal capacity occupied. Moreover, [17] focused on the appraisal of airport terminal performance. Using the data from MMIA Lagos, they used a multiple regression model to determine the production levels, operations capacity, and attractiveness for the stakeholders. The study reveals that terminal infrastructure helps the airport in terms of landing and take-off; adequate funding thus must be provided for the transport-related project.

3.5.2 Analysis of Hypothesis 2

H₀₂: There is no statistical significant relationship between aircraft movement and runway dimension.

As seen in Table 3, the p-value calculated is 0.00 < 0.05 compared to p-value tabulated. This indicates that there is a statistically significant relationship between the aircraft movement and the runway dimension. This study thus rejects the null hypothesis and accepts the alternative hypothesis on the existence of a statistically significant relationship between aircraft movement and runway dimension. This implies that the better the condition of the runway dimension and the larger the dimension of the runway, the safer the aircraft landing and take-off is. Moreover, the safer the runway and the greater its dimension, the higher number of aircraft will use the airport, thus increasing the productivity and efficiency of the airport. [2]

4. Disscussion

The table presents the average value, the standard deviation, the minimum, and the maximum value of the variables used for the purposes of the study. The total cost (input variable) achieves the highest maximum value of 27.319. This is followed by passenger throughput (output variable) with the value

of 15.167, runway dimension (input variable) with the value of 12.6603, and finally aircraft movement (output variable) with the value of 11.0676.

The table also shows the coefficient of each variable, standard error, t-value, and the p-value, where the t-value shows the ratio and significancy of each variable for other variables; it can also be used to test the hypotheses. Terminal capacity, total cost, ground handling equipment, and the number of employees are highly significant with a positive t-value of 2.09, 0.775, 0.815, and 6.505, while the runway dimension is also significant, with a negative t-value of -6.83, which implies a decrease in the efficiency level. The R2 value of 47 % implies that the aircraft movement in the study area is explained by the explanatory variables. It shows 45.49 % of modified R, which explained the percentage at which the independent variables explained the dependent variables. The Multiple R with a value of 0.7960 shows the overall existing relationship of 79.60 % between the independent variables (passenger and aircraft) and dependent variables (Terminal, runway, total cost, GHE, and the number of employees).

Table 5 presents the overall average of the technical inefficiency score of the domestic and international airports in the area under review. According to the results, the most efficient airport is ABJ DOM, with the efficiency score of 64.20 %, followed by SOK DOM with the efficiency score of 55.06 %, MAID DOM (51.39 %), ILR DOM (46.93 %), all of them operating at the above-average level of the efficiency score. The remaining eight (8) airports include MAID DOM with the efficiency score of 13.07 %, KAN INT'L (12.05 %), SOK INTL (8.54 %), ILR (23.17 %), YOLA INT'L (13.07%), KAN DOM (5.52 %), and ABJ INTL with the mean efficiency score of 42.49 %. SFA result estimated the average efficiency score to be 31.23% and the average inefficiency score of 68.77 % for the airports in the given area. Coelli et al. (2005) believe that most of the output-oriented measurings of technical efficiency is the ratio of observed output to the corresponding stochastic frontier output. The policy implication resulting from this study indicates that reducing the number of employees by making airports in the given area more efficient would be a befitting solution for these airports to minimize the costs and other input variables to improve the efficiency level. The decreasing return-to-scale is observed to be the predominant form of scale inefficiency in the northern Nigeria aviation industry. Finally, the two hypothesis testing show that there is a statistical significant relationship between the dependent variable and independent variables used for the analysis.

5. Conclusion

The study concludes that the results of airport operational performance estimated through the SFA model show that none of the airports is operating under an efficiency score of 100% during the study period.

The results of the analysis show that none of the airports operating in the northern region are operating at 100% efficiency level. Three of the airports analysed show 50% efficiency level and above while the remaining airports are operating below 50% efficiency level. Ilorin International airport (ILR INT'L) is the least efficient airport with the score of 0.085441. This indicates that such an airport should be closed down or privatized. The SFA result estimated the average efficiency score in the given area to be 31.23 % and the average inefficiency score of 68.77 %. The study recommended the airports in the area under review to improve their technical efficiency by reducing their unit costs as well as some other inputs to increase their efficiency. Finally, the government should find a way to start public privatisation or concession of the airports (airport reform), which could make some airports try to improve their efficiency level.

Acknowledgement

We wish to thank the Federal Airport Authority of Nigeria for the assistance and Department of Transport Management Technology and the Post Graduate School, Federal University of Technology Minna, Nigeria will not be left out for all their encouragement towards this study.

References

- [1] Nwaogbe, O.R. (2018). Assessment of Airport Productivity and Efficiency in Nigeria, Unpublished Ph.D. Thesis Dissertation, Federal University of Technology Owerri, Nigeria.
- [2] Nwaogbe, O.R., Pius, A. & Idoko, F.O. (2017). Estimating Nigeria Airport Production Function: Using the Cobb Douglas Analytical Model. International Scientific Journal of Air Transport Industry (AERO-Journal), Ed. 2, 40-45.
- [3] Nwaogbe, O.R., Ogwude, I.C. & Barros, C.P. (2015). An Assessment of Productivity and Efficiency in Nigerian Airports using Data Envelopment Analysis, in Proceedings of the 19th Air Transport Research Society (ATRS), World Conference, 2-5 July 2015. Singapore.
- [4] Serebrisky, T. (2012). Airport Economic in Latin America and the Caribbean: Benchmarking, regulation and Pricing. The WorldBank, Washington DC. DOI:10.1596/978-0-8213-8977-5.
- [5] Barros, C.P. & Marques, R.S. (2010). Performance of Mozambique and Airports. Regulation, Ownership, and Managerial Efficiency 18(1), 29-37. DOI: 10. 1080/13504850903409763.
- [6] Lin, Z.F., Choo, Y.Y. & Oum, T.H. (2013). Efficiency benchmarking of North American airports: comparative results of productivity index, Data envelopment analysis and stochastic frontier analysis. Journal of the Transportation Research Forum, 52(1), 47-67. DOI: 10.22004/ag.econ.207335.

- [7] Ogwude, I.C., Nwaogbe, O.R., Pius, A., Ejem, E.A. & Idoko, F.O. (2018). Performance Appraisal of Nigerian Airports: Stochastic Frontier Analysis. Transport & Logistics: The International Journal 4(44), 2406-1069.
- [8] Barros, C.P. (2008). Technical Efficiency in UK Airports. Journal of Air Transport Management 14(4), 175-178. DOI: 10.1016/j.jairtraman.2008.04.002.
- [9] Barros, C.P. & Ibiwoye, A. (2012). Performance, Heterogeneity and Managerial Efficiency of African Airports: The Nigeria Case, Mais Working papers, (WP 106) Ces A disporiveisem.
- [10] Scotti, D., Malighetti, P., Martini, G. & Volta, N. (2010). The impact of airport competition on the technical efficiency: A Stochastic frontier analysis applied to Italian airports, Department of Economics and Technology Management, University of Bergemo, Italy, Working paper, online at:https//mpra.ub.uni.muenchen.de/24648/
- [11] Oyesiku, O.O., Somuyiwa, A.O. & Adewale, O.O. (2016). Evaluation of Airport Traffic System in Nigeria. British Journal of Economics, Management and Trade 14(1), 1-13. DOI: 10.9734/BJEMT/2016/25528.
- [12] Wanke, P., Barros, C.P., & Nwaogbe, O.R. (2016). Assessing Productive Efficiency in Nigeria Airports using Fuzzy-DEA, Elsevier (Science Direct), Transport Policy 46, 9-19, DOI: 10.1016/j.tranpol.2016.03.012.
- [13] Barros, C.P., Wanke, P., Nwaogbe, O.R. & Azad, A.K. (2017). Efficiency in Nigerian Airports, Case Studies on Transport Policy 5, 573-579. DOI: 10.1016/j.cstp.2017.10.003.
- [14] Nwaogbe, O.R., Ogwude, I.C. & Ibe, C.C. (2017). Efficiency Analysis of the Nigeria Airports: An Application of DEA-BCC Model. International Scientific Journal of Air Transport Industry (AERO-Journal), Ed. 2, 28-39.
- [15] Wanke, P.F., Nwaogbe, O.R. & Chen, Z. (2017). Efficiency in Nigerian Ports: Handling Imprecise Data with a Two-Stage Fuzzy Approach, Maritime Policy and Management (MPM) 44 (8), 1-17. DOI: 10.1080/03088839.2017.1410588.
- [16] Carlcucci, F., Cirà, A. & Coccorese, P. (2018). Measuring and Explaining Airport Efficiency and Sustainability: Evidence from Italy, Journal of Sustainability (mdpi), 10, (400), 1-17; DOI: 10. 3390/su10020400.
- [17] Pius, A., Nwaogbe, O.R., Akerele, U.O. & Masuku, S. (2017). Appraisal of Airport Terminal Performance: Murtala Muhammed International Airport (MMIA). International Journal of Professional Aviation Training & Testing Research 9(1), 1-27. Retrieved from: http://ojs.library.okstate.edu/osu/index.php/IJPATTR/index.