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ABSTRACT 
In many industrial experimental situations, the levels of certain factors under investigation are much 
harder to change than others due to time and/or cost constraints. An appropriate approach to such 
situations is to restrict the randomization of the hard-to-change (HTC) factors, which leads to a split-plot 
structure. This work designs and conducts a split-plot central composite experiment for optimizing cake 
height using oven temperature(Factor A) as the HTC factor, amount of flour (B), baking powder (C), and 
amount of milk (D) as the easy-to-change (ETC) factors. A second-order split-plot central composite 
design (CCD) model was fit to the generated data and analyzed using generalized least squares (GLS). 
A stationary point, which gives optimum cake height, was then determined. The results show that main 
effects of oven temperature, flour, baking powder, and milk were highly significant on the cake 

height         . Their quadratic effects were also significant except that of the flour. The 
flower/baking powder interaction effect was significant. The fitted model accounted for about 95% of the 

total variability in the cake height data. The observed optimum cake height was  ̂           at a 
stationary point: A                                         . This study has 
established the potentials of response surface experiments in optimizing products in food industries. 
Keywords: Experiment, split-plot CCD, Cake height, Design, Stationary point. 

 
INTRODUCTION  
Many quality improvement projects require 
some form of experimentation on a process. 
Experimentation allows an investigator to 
examine the effect of purposeful changes of the 
settings of the input variables in a system, on 
the output or response. It covers a wide range 
of applications from household activities like 
food preparation to technological innovation in 
material science, life science, semiconductors, 
etc (Jeff and Hamada, 2009). 
 
The main task of every food industry is the 
production of health - supporting food of high 
quality on modern and effective technological 
and economic conditions, which have to 
consider also demands of ecology and food 
security (Romisch, 2005). Optimization of a 
product is an effective strategy of 
accomplishing its successful development and, 
for food processes, and especially for food 
development, it is a way to obtain ideal 
conditions to achieve a desired quality 
(physicochemical, chemical and sensory, for 
example) (Myers et al., 2009). If a food cannot 

be re-engineered or modified to fulfill consumer 
specifications, it will not succeed in the market. 
Thus a bakery scientist, for example, will 
always be interested in determining the settings 
for certain process variables to optimize a 
critical quality characteristic, such as nutritional 
qualities (like ‘fluffy’ texture of a cake, which 
depends strongly on its height), anti-nutritional 
or toxic levels, and shelf life etc., of the 
resulting product.  
 
In developing or optimizing processes, many 
companies use statistical approaches, such as 
response surface methodology (RSM) in their 
research departments in order to achieve the 
best settings of the factors that will yield the 
best characteristic of a product and/or process 
response. In food development or unit 
operations, RSM has important applications in 
the design, analysis and determination of 
optimum settings of the control variables that 
result in a maximum (or a minimum) response 
over a certain region of interest (Nwabueze, 
2010).Such determination requires having a 
‘good’ fitting model that provides an adequate 
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representation of the mean response, because 
such a model is used to determine the value of 
the optimum (Khuri and Mukhopadhyay, 2010).  
 
A lot of studies have been conducted that used 
RSM for process and product optimization 
(Elbert et al., 2001; Iwe et al., 2004; Wang et 
al., 2008;Kliemannet al., 2009; Ellendersen et 
al. 2012 and Granato et al. 2014). However, 
much of these studies focused on complete 
randomization of the levels of the experimental 
factors. For instance, Granato et al. (2014) did 
not mention what to do in instances where 
restriction on randomization is required. 
Therefore, even though the field of food science 
and engineering has seen a growth in the use 
of statistical tools, the applications often are 
misused or misrepresented (Nunes et al., 
2015). 
 
Most industrial experiments involve two types of 
factors, some with levels that are easy to 
change (which can be completely randomized) 
and one or more with levels that are difficult or 
costly to change (which cannot be completely 
randomized). The hard-to-change factors place 
restriction on randomization of its levels and 
this result in split-plot experiment where the 
experimental runs are performed in groups, 
and, in a group, the levels of the HTC factors 
are not reset from run to run. Research works 
on impact of a split-plot structure on response 
surface designs began in the 1990s including 
pioneer author like Letsinger et al. (1996) and 
others (Box,1996;  Trinca and Gilmour, 2000; 
Vining et al, 2005; Kowalski et al., 2006 and 
Bradley and Christopher, 2009). 
 
This study seeks to model and optimize cake 
height for the consumers to achieve desired 
texture using a statistical experiment that 
involves key cake-baking materials (oven 
temperature, amount of flour, baking powder, 
and amount of milk) as factors. The oven 
temperature is a hard-to-change factor. 
Therefore, central composite design (CCD) 
experiment with a split-plot structure was 
conducted whereby the experimental runs are 
grouped by temperature, rather than waiting for 

the oven to heat up and cool down all of the 
time. 
 
Statistical Model and Notations 
As in all experiments with a split-plot structure, 
the observations from this experiment are 
correlated and this violates the assumption of 
independence of the ordinary least squares 
(OLS) estimator. Therefore the generalized 
least squares (GLS) model below, which 
accounts for the correlation between the 
observations, was fitted (Vining et al., 2005).  

           (1) 
 

where   is the N x 1 vector of responses,    is 

the N x p overall model matrix,   is the p x 1 
vector of regression coefficients,   is an N x b 
incidence matrix assigning observations to 

each of the b whole plots;   is the N x 1 vector 
of whole-plot error terms,   is the N x 1 vector 
of subplot error terms. It is assumed that  

    (    
 )               

        (      )  

 . 
The variance - covariance matrix for the 
observation vector y is: 

           
      

     

 

   
            (2) 

 

Where    
  
 

  
   gives the relative magnitude of 

the two variance components. The matrix 𝒁𝒁’ 
is a block diagonal matrix with diagonal 
matrices of  Jn1, 𝐽 2, …, 𝐽 𝑧, where 𝐽 𝑖 is an  𝑖 x 

 𝑖 matrix of 1’s and  𝑖is the number of 
observations in the ith whole-plot.  
 
The diagonal elements of V are the variances 
of the responses and the off- diagonal elements 
are the covariance between pairs of responses. 
The non-zero off-diagonal elements correspond 
to pairs of responses from within a given whole 
plot while the zero off-diagonal elements 
correspond to pairs of runs from two different 
whole plots. 
 
The generalized least squares (GLS) 
estimators of the model coefficients (Vining et 
al, 2005) are 
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 ̂                      (3) 
 
Thus, 

   ( ̂   )              (4) 

 
and 

 ̂                       (5) 
 
Where H is the ‘hat’ matrix. Equation (1.2) 
accounts for covariance among the responses, 
such as might be present in a mixed effects 
model. 
 
MATERIALS AND METHODS 
The key materials used for cake-baking in this 
work include flour (factor B), baking powder 
(factor C), milk (factor D), which were 
measured in grams (g), and oven temperature 
(factor A), measured in degree centigrade (°C), 
with fixed amount of other necessary 
ingredients (butter, eggs, sugar and salt, etc.) 
present. Oven temperature was included 
because the temperature at which the batches 
are baked strongly impacts cake height. It is a 
hard-to-change (HTC) factor since its levels 
cannot be easily randomized and thus the 
whole-plot factor, while the other three are 
easy-to-change (ETC) and thus were the 
subplot factors. A four-factor central composite 
experiment with a split-plot structure in the 
given variables was designed and conducted. 
The experimental runs were grouped by 
temperature (rather than waiting for the oven to 
heat up and cool down all of the time) and all 
runs with the same temperature level were 
executed simultaneously in one furnace. The 
factorial and axial parts were replicated only 
once and each of the factors consists of five (5) 

levels, which were coded as (       ) using: 
 

   
             

       
                (6) 

 

Where    is the coded level of the ith 
factor  𝑖         ;   is the actual 

(measured) value of the ith factor;     and     
are, respectively, the actual low and high levels 

of the ith factor. The choice of factors, levels 
and factor ranges are listed in Table1. 
 
Performing the Experiment 
This experimental design consists of four 
categories of points, which include the factorial 
portion (f), the whole-plot axial point with a 

distance,  , from the design center, the subplot 
axial point with distance,  , from the design 
center, and the center (c) points, as given in the 
design matrix in Table 2.For every cake, the 
butter and sugar were first mixed together in 
the same Kitchen-aid mixer on the same speed 
setting. The flour, baking powder and salt were 
sifted together and added with the specified 
amount of milk and mixed at the same speed. 
This was then poured into the cake pan and a 
spatula was used to scrape all into the pan. All 
cakes were baked from the same batch of 
ingredients and the same cake pans were used 
for each run.  
 
At each of the factorial points involving the HTC 
factor (oven temperature (A)), the subplot runs 
are the factorial points in the ETC factors (B, C 
and D). At each of the two whole-plot axial 
points (i.e., z1 = 150°C, 250°C), eight replicates 
of the center of the subplot factors (i.e., x1 = 
120.5g, x2 = 4.5g, x3 = 129.37g) were run. Two 
replicates of the whole-plot center points (z1 = 
200 oC) were run, one consisting of the six (6) 
axial points in the ETC factors [x1 = (60.25g, 
180.75g), x2 = (2.25g, 6.75g), x3 = (64.68g, 
194.06g)] while the other contains four(4) 
replicates of the center of the subplot factors (x1 
= 120.5g, x2 = 4.5g, x3 = 129.37g).Thus each of 
the whole-plot factorial and axial portions of the 
design is of size eight while the first and second 
replicates of the whole-plot center portion are, 
respectively, of size six and four. Thus the 
resulting split-plot central composite design 
(CCD) has nf = 16 factorial points, nα = 16 
whole-plot axial points, nβ = 6 subplot axial 
points and nc = 4 center points. That is, there 
were N = 42 cake mix batches but only 6 
operations of the oven as given in Table 2. 
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Table1: Original and Coded Levels of Factors used in the Experiment 

Factor  coded levels 

  -1 -1 0 1 1 

Amount of Flour(X1) 60.25g 60.25g 120.5g 180.75g 180.75g 
Amt of Baking Powder(X2) 2.25g 2.25g 4.5g 6.75g 6.75g 
Amount of Milk(X3) 64.68g 64.68g 129.37g 194.06g 194.06g 
Temperature of Oven(z1) 150oC 150oC 200oC 250oC 250oC 

 
Table 2: Design Matrix for the D (1,3) split-plot Central Composite Experiment 

Run 
order 

Whole 
plot 

Oven 
Temperature (oC) 
Z1 

Amount of 
Flour (g) X1 

Baking Powder 
(g) X2 

Amount of 
Milk(g)     
X3 

category 

1 1 150 60.25 2.25 64.68 factorial 

2 
 

150 180.75 2.25 64.68 (f) 

3 
 

150 60.25 6.75 64.68 
 

4 
 

150 180.75 6.75 64.68 
 

5 
 

150 60.25 2.25 194.06 
 

6 
 

150 180.75 2.25 194.06 
 

7 
 

150 60.25 6.75 194.06 
 

8 
 

150 180.75 6.75 194.06 
 

9 2 250 60.25 2.25 64.68 factorial  

10 
 

250 180.75 2.25 64.68 (f) 

11 
 

250 60.25 6.75 64.68 
 

12 
 

250 180.75 6.75 64.68 
 

13 
 

250 60.25 2.25 194.06 
 

14 
 

250 180.75 2.25 194.06 
 

15 
 

250 60.25 6.75 194.06 
 

16 
 

250 180.75 6.75 194.06 
 

17 3 150 120.5 4.5 129.37 wp axial  

18 

 

150 120.5 4.5 129.37 
 

19 
 

150 120.5 4.5 129.37 
 

20 
 

150 120.5 4.5 129.37 
 

21 
 

150 120.5 4.5 129.37 
 

22 
 

150 120.5 4.5 129.37 
 

23 
 

150 120.5 4.5 129.37 
 

24 
 

150 120.5 4.5 129.37 
 

25 4 250 120.5 4.5 129.37 wp axial 

26 
 

250 120.5 4.5 129.37 
 

27 
 

250 120.5 4.5 129.37 
 

28 

 

250 120.5 4.5 129.37 

 29 
 

250 120.5 4.5 129.37 
 

30 
 

250 120.5 4.5 129.37 
 

31  250 120.5 4.5 129.37 
 

32 

 

250 120.5 4.5 129.37 

 33 5 200 60.25 4.5 129.37 sp axial 

34 
 

200 180.75 4.5 129.37 
 

35 

 

200 120.5 2.25 129.37 

 36 

 

200 120.5 6.75 129.37 
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37 
 

200 120.5 4.5 64.68 
 38 

 
200 120.5 4.5 194.06 

 39 6 200 120.5 4.5 129.37 Center  

40 
 

200 120.5 4.5 129.37 (c) 

41 
 

200 120.5 4.5 129.37 

 42   200 120.5 4.5 129.37   

 
The oven was big enough to accommodate 
eight (8) pans of the cake at a time and thus at 
each randomly-selected setting of the oven 
temperature factor, all possible combinations of 
the levels of the other (ETC) factors (flour, 
baking powder and milk) were baked at the 
same time. One run of the oven (i.e., one oven 
temperature setting) was performed in a day 
and the experiment took six (6) days to 
complete. This enables the oven temperature to 
stabilize (i.e., cool down to 0oC) after each run 
before another level was randomly selected for 
another run in another day. All cakes were 
baked for 28 minutes to minimize baking time 
as a nuisance factor. All cakes measurements 
were taken in centimeters (cm).  
 
The design consists of two different 
randomization structure:- temperature (HTC) 
factor-levels were randomly and independently 
assigned to the whole-plots; within each whole 
plot, the ETC factor level combinations were 
randomly and independently assigned to the 
subplots using a different randomization 
technique. This was achieved with the aid of 
the Design-Expert (version 12) statistical 
package, which was used to create the design 
layout in a fully-randomized order of runs of the 
experiment. Thus levels of the whole-plot factor 
were not reset for each run of the subplot 
factors and this leads to two error terms for 
effects comparison, one for the whole-plot 

treatments (
2

 ), and one for the subplot 

treatments (
2

 ), as well as the interaction 

between whole-plot treatments and subplot 
treatments.  
 
Data Analysis 
The data analysis here was a form of maximum 
likelihood (ML) estimation, more specifically, 
restricted maximum likelihood (REML) 
estimation. The REML is used here to estimate 

whole-plot and subplot variance components 

(  
  and   

 , respectively) based on maximum 

likelihood (ML) estimation of the residual error 
distributions. Then the estimated error 
variances are plugged into the Generalized 
Least Squares (GLS) estimator (equation 1.2), 
which was used to estimate the factor effects 
and their corresponding p-values. This was 
achieved with the aid of Design Expert (version 
12) statistical package by maximizing the 
restricted log likelihood function: 

    
 

 
   | |  

 

 
   |      |  

 

 
       

   

 
         (7) 

 

Where and are as defined in section 1.1 

above;                     and p 

is the number of parameters in  . The standard 
errors for the factor effects were then computed 
as the square root of the diagonal elements of 
the covariance 

matrix          .Optimization facility of the 
statistical package was then used to obtain the 
set of levels of the factors that yields optimum 
value of the cake height (the stationary point). 
 
RESULTS AND DISCUSSION 
The REstricted Maximum Likelihood (REML) 
analysis results are given in Table3 with 
Kenward-Roger p-values. We observed from 
this table that variance terms are grouped into 
two sections: a Whole-plot section for the HTC 
factors and a subplot section for ETC factors. 
This result is consistent with the findings of 
Letsinger et al. (1996), Hand & Crowder (1996) 
and Little et al (1996) in their experiments. The 
p-value (Prob>F) for the whole-plot was 
observed to be highly significant with a value 
much less than the generally acceptable 0.05 
alpha level. That is, for all the terms making up 
the whole-plot (HTC) portion of the model. It 
was also observed that the p-values for the 
individual whole-plot terms were each 
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significant with values much smaller than 
0.05.This indicates that the oven temperature 
(factor A) has significant effect on the height of 
the cake. Also, the quadratic effect of this factor 
on the cake height is highly significant. Table 3 
also showed the subplot terms as a whole were 
observed to be highly significant, though some 
individual subplot terms (AB, AC, AD, BD, CD, 
and B2) were not. The main effects of factors B, 
C, and D (amount of flour, amount of baking 
powder and amount of milk), the interaction 
effect of the quantity of flour and amount of 
baking powder (BC) and the quadratic effects of 
C and D (C2 and D2) were each observed to be 
highly significant on cake height (with p-values 
far less than 0.05).  
 
The group (whole-plot) and residual (subplot) 
variance components were considered next. 
These are variations that were not explained by 
the model in terms of the factors, as given in 
Table 4. 

The group (or whole-plot error) variance is due 
to resetting of a hard-to-change factor level 
(oven temperature). The computed group 
variance was zero, and this signifies that the 
whole-plot model explained all of the variation 
between the whole plots. The residual (or 
subplot error) variance is due to each of the 
subplot runs. In this work, the residual variance 
was 0.38, indicating that the subplot model 
accounted for about 62% of the variation 
between the subplots. Then we looked at the 
computed regression coefficients and variance 
inflation factors (VIF) as given in Table5. The 
VIF measures how much the variance of the 
model is inflated by lack of orthogonality in the 
design and indicates the extent to which multi-
collinearity is present in a regression analysis. 
Similar results were obtained by Vining et al. 
(2005), in their experiment on strength of 
ceramic pipe. 

 
Table 3: REstricted Maximum Likelihood (REML) analysis with Kenward-Roger p-values 

Source Term df Error df F-value p-value   

Whole-plot 2 27 11 0.0003 significant 

a-A Oven Temperature 1 27 8.14 0.0082   

a² 1 27 13.87 0.0009   

Subplot 12 27 42.19 < 0.0001 significant 

B-B Quantity of flour 1 27 355.82 < 0.0001   
C-C Amount of baking 
powder 

1 27 10.92 0.0027   

D-D Amount of milk 1 27 17.86 0.0002   

aB 1 27 2.27 0.1432   

aC 1 27 2.03 0.1653   

aD 1 27 0.0149 0.9036   

BC 1 27 8.37 0.0075   

BD 1 27 0.0814 0.7776   

CD 1 27 0.0415 0.8401   

B² 1 27 0.7063 0.4081   

C² 1 27 6.97 0.0136   

D² 1 27 6.97 0.0136   

 
Table 4: Whole-plot and Subplot Variance Components 

Source Variance StdErr 95% CI Low 95% CI High 

Group 0 0 0 0 

Residual 0.38 0.1 0.24 0.7 

Total 0.38       
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Table 5: Estimates, Standard Errors and Variance Inflation Factors (VIF) of Parameters of the Fitted 
Split-plot CCD Model 

Source Coefficient Estimate Standard Error VIF 

Intercept 5.73 0.1987   

Whole-plot Terms:       

a-A Oven Temperature -0.3094 0.1085 1 

a² -0.8614 0.2313 1.08 

Subplot Terms:       

B-B Quantity of flour 2.73 0.1446 1 

C-C Amount of baking 
powder 

0.4778 0.1446 1 

D-D Amount of milk 0.6111 0.1446 1 

aB 0.2313 0.1534 1 

aC -0.2188 0.1534 1 

aD 0.0188 0.1534 1 

BC 0.4438 0.1534 1 

BD -0.0437 0.1534 1 

CD 0.0312 0.1534 1 

B² 0.3036 0.3613 3.57 

C² 0.9536 0.3613 3.57 

D² 0.9536 0.3613 3.57 

 
The VIFs values (Table 5) are equal to one 
except for the last three terms of the model (B2, 
C2 and D2) which indicates the predictors had 
non correlated orthogonal relationship with all 
the other predictors in the model. Each of the 
last three predictors had VIF values of 3.57, 
which indicates that it was moderately 
correlated with all the other predictors. Thus 
there was no case of multicollinearity in the 
data, and we have the fitted second-order 
model as: 
 

  𝑖             𝑧  
                         𝑧    
    𝑧         𝑧             
                        𝑧 

  
      

        
        

   (3.1) 
 

Each of the terms in this model has the same p-
value as in Table 3. Thus the effects of the 
terms: a, B, C, D, BC, a2, C2, and D2 were each 

significant while that of the remaining terms 
were not significant. The model summary is 
given in Table6, this fitted model explains 95% 
of the total variability in the cake height 

(       ). Thus only 5% variability was not 
accounted for by the model, also, the adjusted 

   was 0.92 (              ). These 
statistics signify that the fitted model was good, 
that is, the model captures most of the variation 
in the data. 
 
Diagnostic plots 
Here we diagnose the statistical properties of 
the above fitted model. Figure 1 gives the 
normal probability plot of the residuals, which 
indicates whether the residuals follow a normal 
distribution. From this plot, nearly all the points 
fall on the straight line. This indicates that, to 
some extent, the residuals were normally 
distributed. 
 

 
Table 6: Explanatory Power of the Fitted Model (3.1) 

Std. Dev. 0.6135   R² 0.9502 

Mean 6.02   Adjusted R² 0.9183 

C.V. % 10.19       
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Thus there are no problems with our data. Next 
the plot of the residuals versus the predicted 
values was considered, as given in Figure 2. 
This plot is a visual check for the assumption of 
constant variance. As can be directly seen, this 
plot is a random scatter with a consistent top to 
bottom range of residuals across the 
predictions on the X axis. Thus we can 
conclude here that the model satisfied the 
constant variance assumption. Next we looked 
at the plot of the residuals versus the 
experimental run order, as presented in Figure 
3. This plot provides a check for lurking 
variables that may have influenced the 
response during the experiment. As can be 
directly observed, the plot showed a random 
scatter without any trend. Thus there were no 
any lurking variable in the background. The plot 
of the predicted values versus the actual values 
was examined, as given in Figure 4.The plot 
help us to detect observations that were not 
well predicted by the model and shows that the 
data points were evenly split by the 45 degree 
line.  

 
Figure 1: Normal probability plot of the 
residuals for the cake height data  
 

 
 
Figure 2: Plot of residuals versus fitted values 
for the cake height data 

 

 
Figure 3: Plot of residuals versus experimental 
run order for the cake height data 

 

 
Figure 4: Plot of fitted values versus actual 
values for the cake height data 
 
Lastly numerical optimization facility of the 
Design Expert package was used to see what 
combination of levels of the factors A, B, C, and 
D yields optimum cake height. This gives the 
results in Figure 5 from where we observed that 
the optimum cake height occurs at a factor 
setting, which consists of high level of each of 
the four factors. That is, an optimum cake 
height of 11.047 occurred at 250°C of oven 
temperature, 180.75 g of flour, 6.75 g of baking 
powder, and 194.06 g of milk. The package 
conducted the numerical optimization with 
these high factor levels expressed in their 
coded (-1, +1) values (equation 6) as given in 
Figure 5 below. This is the stationary point 
since all of the other possible solutions that can 
be explored through this package gave less 
cake height. 
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Figure 5: Numerical optimization results showing optimum cake height occuring at a factor setting, 

which consists of high level of each of the factors. 
 
CONCLUSION  
This study revealed that cake height and its 
texture is positively and significantly affected by 
each of the whole-plot and subplot factors 
investigated. The fitted second-order split-plot 
CCD model captured almost all the variability 
(95%) in the generated data, and thus provides 
an adequate representation of the mean cake 
height response. The model provides an 

optimum cake height of  ̂           at a 
factor setting, which consists of high level of 
each of the factors. This is the stationary point 
since all of the other possible solutions that can 
be explored gave less cake height. The study 
has established the potentials of split-plot 
response surface experiments in the design, 
analysis and determination of optimum settings 
of the control variables that result in a 
maximum (or a minimum) response for 
nutritional qualities of products in food 
industries. The proposed design will help food 
scientists to use their specialized knowledge to 

better understand the basic mechanism of the 
processes that go on in food industry. 
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