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ABSTRACT

gﬂnﬂhoeorzﬁgfao'f ?:]?g(il-mg IS‘mcreasing|y being applied to interpret and predict the dyrllam.ics
strategies agai lous dIS.easeg. Applications include predicting the impact of vaccination
Qa!nst Common infections such as measles and malaria and determining optimal
contrpl strategies against HIV and vector-borne diseases. : ;
:_';,\/"/%SDgapera dlfferentlal equations were employed to model the dynamic spread of
S €épidemics and the intervention campaigning programmes against the future
pandgmlc of HIV/AIDS. The model will provide a veritable tool to estimating the level of
effectlveneS§ of mounting advertising campaigns against disease spread and adverse health
outcon?es Wlthln a given population. The goal of campaign programmes are to change
people’s behavior in order to minimize the spread of AIDS, to reduce the percentage of
people who smoke, to cut alcohol and drug abuse, Indian helm and so on. '

Key words: differential equations, limiting factors, HIV/AIDS dynamic, SIR model

1. INTRODUCTION
Unlike infectious diseases that were first recognized in the 20th century, AIDS has had not

only the most profound effect on human iliness and death, it ended the developed world's
complacency about infectious diseases. Caused by HIV, AIDS is, as far as we know, always
fatal, even with effective therapy. In the last 50 years, HIV went from being maintained
primarily, if not exclusively, in sooty mangebeys (HIV-2) and chimpanzees (HIV-1) to being
the etiologic agent of a worldwide pandemic.(see Gao F et al., 1999; 'Korb.er B, et al., 2000;
and Robertson DL, et. al.1999). AIDS was not recognized as a specific disease until 1980,
and HIV was not identified as the etiologic agent until 1983. Nevertheless, an estimated 16
million persons have died from AIDS wor|dwide with 50 million currently infected with HIV.

: ifferenti uation was employed to describe the population dynamics of
In this paper, 2 dlf{g rt?r?ltelea:js;gendent factor was later incorporated into the spread model as
:Ir\g/gl?i% tﬁesg‘fza of intervention campaign programmes against spread of a disease or

. social vices. This model can be used to provide fgedback mformanon to the
any other ant-s0% ing agency and to measure the relative effectiveness of such
gatemmeNt of SEANL ged to estimated the proportion of the susceptible population (risk
campaign. It can also be us fore minimize the cost committed to HIV/ AIDS
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the disease, like potential smoker, and so on. The pe
fected with the diseas

affected (the percentage who become in

the risk population denoted by y(t), which model estimates.

2. HIV DYNAMICS

When an infectious disease is first introduced into a population, it has'the greatest

unity to spread because all hosts are susceptible. Thus, suppose a S|ng|e mfected
mum opportunity exists for

producing secondary infections, the number of which is traditionally designated as Ro, Gao

F, etal( 1999).). Although R, is a measure of the potential of a disease to spread in a
population, it not a measure of the rate at which that disease will spread.

opport
person is introduced into a wholly susceptible population, the maxi

One way to measure the rate at which a disease spreads in’a wholly susceptible host
tric expansion rate of

populat?on is used by demogrdphers to represent the geome

populations, the intrinsic rate of increase, r (r>0). N persons at time 0 become Ne" persons
at time t, where e is the base of the natural logarithm (if N were an amount of money, r would
be the compound interest rate; in this case, r is the intrinsic rate of increase in the number of
infected persons). With age structure in the model, a certain "settling out" period occurs in
(\;vehcl:h t?i ratios gf numbers of infections at different stages oscillate. As these oscillations
- an))//, . t;;;;rc;ac; est|ts st_eady state value, which can be calculated from the rate Qf change
it ge categories of the Age of Infection (Aol) model proposed by Levin BR, et.

LT\? la?:zjgigué?;f;m?;;’t‘.fed'g” is important in understanding the intrinsic rate of increase of
i Shels: AT8 iR ion through a population. During the epidemic phase of the disease,
geometrically, the coyt ?bUSGeptlble hosts and the number of new infections is increasing
the spread of o v'rn ribution of transmissions occurring at later stages of the infection to
{iertad persens atl _US‘t.'SI severely discounted Thus, new infections transmitted by recently
from per ns, at initial stage, contribute much more to the spread of HIV than infections
persons in final stage (say 12 years later). ( for detail see Levin BR, et. al.(1996) and

May RM, et.al (1990)).

3 DETERMINISTIC MODELS FOR HIV/ AIDS DYNAMICS '

Consider a simple differential equation proposed by Muench (1959) for Spread of a dise
ase:

Q\[ o r(1 - ¥ ), i 0oLy <
s y) <y< | 0
where r is the infection rate, usuall '
; ’ y a positive constant. N ' B
of increase of y decreases. The soluti is i - Note that as y incr \
: olution to this linear ion i eases, the rate
v = (1 (o) | equation is ( e

As t approaches infinity, ™ "

, ty, € approaches zero. Thus v (t . : .
susceptible become infected. The data generated )les(lr)1 — 1i that is , eventually all the:
appendix 1 . g equation(2) is shown in the:
To illust 6 this princi , ‘ PR
all transrrz:stig': pfnnc,pk.e, let's use the model by Levin BR, et. al.(19 -
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: ar infections doubli s
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o secodﬂggl;l)i/ncfi:;?gn;hﬁ ;asymptpmatic period will requi‘r’g"adnaglv ;rr\:;ctlons if transmission
ransmission occurr i .
AIDS (at an Aol between 10 and 12 years in thizde)s(glrilgledsunng the
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cted persons. That js fect
Us before they seroconvertay. Intected persons may well
4. FACTORS LIMIT|
Although at least & NG THE RATE OF SPREAD OF HIV/AIDS

, Which makes
or humans less susceptible to HIV infections. More-so, it
may well be that the dominant reason for observed decli

nes in the rate of spread of this
retrovirus ‘lies in the progression (and confinement) of the epidemic in particular
subpopulations (risk groups). The reductions in the spread

of HIV in these subpopulations
could be due to the saturation of the pool of susceptible hosts in these groups r.

ather than to
successful intervention programmes or behavioral changes (see Koopman J. S, Pollock SM,
et al.(1997)).

2 MODEL WHEN INCORPORATING INTERVENTION CAMPAIGN FACTOR
" . n used to address several questions concerning the
Mathematical models have bee : _
epidemiologic and evolutionary future of HIV/AIE_)S in human populations. It has been shown
P first enters a human population, and for ‘many subsequent years, the
thgt when_ HIV. I by early transmissions, possibly occurring before donors have sero-
SpidSmic [8 AuvSn { e status. Also, evolution of the virus or to the efficacy of intervention,
converted to HIV-pO_S| rl]v lth measures are likely to reduce the rate of spread of the disease.
education, and public eaduce the transmissibility of the virus and treating individual patients
HIV chemothﬁrafPYqvl\:Ignrsy of HIV infections and AIDS deaths in the general population.( for
can reduce the tre ' -
more detail see Koopman JS et.al 1997).

~ he ici h a series of advertising campaigns

‘ lic health officials launc : |

To avoid this dire outcome, pfhbe public awareness and suggest ways to protect against the

with all designed to lncreaS‘la not to smoke, not to involve in anti-social vices etc) . If the .

disease ( to persuade peop et and effective from then on, then thg rate of increase qf y(t) is

campaign is mounted at ttimirom time t onwards, and the differential equation modeling in .

nt o _

reduced by some amou -

_¥ =

dt .
where o is effectiv .
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(s + r)l{y} -y = B + y{0}- ae ! \
S s
__IIS
Ly} = r + y{0} - o« e
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Using partial fraction
r = 1 - 1
s(s+r) r s S+
so "
—1;S -1, 8
Ly} S G k| \ i y0) o e 2% o e
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Taking the inverse Laplace of € ts/ ¢ = H(t — t; ) by equation (3), we obtain
£, 8

U H-1) "¢ 1) = a1 UET) = i &
(s+7r)
x4 s = -1
Thus, L—l{ gl tl/(s+r)} = H(t—1t5)e b B BT
YO o et g gy & -ocH(t—tj)+(xH(t——t1)e_r(t—tl)
r r

= Lozt bV oy(0) & st e H(E -t
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Figure 1. The spread of HIV/AIDS in a steady population of 10,000. In this figure, HIV-

positjve includes all persons infected with this virus, but not manifesting the symptoms of
AIDS...¢
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pulation who exhibit no
s are recognized, more
us. Because of the

the infection (week 1). The virus rapidly spreads through the host PO
sign of AIDS for the first 10 years. By the time the first AIDS .C'dSC &:
than half of the original population of 10,000 hosts are infected with the Vil e
relative dearth of susceptible hosts, the rate of spread of HIV to new hostb’das 8;1763 y
declined. Eventually, equilibrium is achieved and the infection maintains a steady stiate_rln

hosts not manifesting the

this endemic phase, the densities of susceptible hosts, HIV-positive ‘ gy
symptoms of AIDS, and AIDS patients level off. With these parameters, this endemic phase

. is reached in about 30 years.
infection was recognized as a
os Angeles, and New York in
bpopulations, Were already
time, HIV/AIDS may have
rate at which endemic
d AIDS patients

A historical interpretation of this result is that by the time HIV
specific disease in the gay male populations of San Francisco, L
the early 1980s, a substantial proportion of persons in those su

infected with the virus, Koopman JS,et.al (1997). Moreover, by that
se risk groups. The

already been approaching its endemic phase in the
phase is approached as well as the frequency of HIV-positive persons an
within a subpopulation depends on the absolute rate of transmission.

_ This is illustrated in Figure IB, the parameters used for generating this figure are identical to
those in Figure 1A, except for the maximum rates of increase, which have been reduced by a
factor of two, Ro; = Rz = Roz = 0.50. As consequence of this lower rate of transmission, the
endemic phase is not reached for more than 100 years, and the proportion of the population
that is HIV-positive and has AIDS is markedly reduced. '

The simple explanation of these results is that an epidemic cannot continue forever because
the number of uninfected hosts eventually declines, which stops the expansion of infections.
At equilibrium, the fraction of infected versus uninfected hosts depends -on various
parameters that may be are subsumed in the model. Using condoms, reducing the numbers of
sexual partners, faithful to you ners (in case of couples), providing sterile needles for

injection drug users, and any ot sion of the
virus would further reduce the fracti

affecting the rate of spread of the disease
risk group. We hope this rate can be reduced by education.

r part
her factor that reduces the likelihood of transmis
on of the subpopulation infected with HIV. Also

would be the rate at which susceptible hosts enter a

7. = CONCLUSION " . : :
In this paper, we have evaluated the possible consequences of different properties of HIV
transmission. However, despite all that has been learned about HIV/AIDS, existing

knowledge about the biology and epidemiology of this retrovirus is still too rudimentary to
employ empirical estimates of these parameters. Thus, it is not yet possible to make robust,
quantitative predictions about (and explanations for) the epidemic and endemic behavior of

HIV or the evolution of its virulence.

desired ends, however, it is believed that the mathematical models considered

Towards these
nt role of

here and other mathematical models of the epidemiology of HIV serve the importa
revealing which properties of infections with this retrovirus and transmission are critical t0

understanding how it spreads, how to control that spread, and to predict the direction of

evolution of its V(irulencc.
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Appendix;: Data generated for €quation (2 ) at different rate of infection

y (0) =10,000 t=0 e=2.7178
® = - [1-y()le ™
t(weeks) | r=0.001 r=0.02 r=0.05
0.._.| 10000 | 10000 | 10000_
_..1.._|'2990.006 [ 8802.007] 9512.343
_..5._ | 995013 ['0048 469 7788.029 \
_.10._|'8900.508 [8187.489 | 60657 _
_.520 __ | 9802.007 | 670353 | 3679.427
_..45._ | 9560019 | 4066.29 | 1054.887
_..52._ | 9493339 [3535.193 | 7436615
_.100 | 9048.469 [ 1354.217 | 68.37273
_.250 _ | 7788.229 | 6837273 1.037263
_.300 _ | 7408.441 | 2578504 | 1.003059
520 |5945.611 |[1.304204| 1

167




