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Abstact 

Two new Explicit Almost Runge-Kutta methods for numerical integration of initial value problems 

are derived, by a judicious choice of the free parameters obtained after applying the order and 

stability conditions associated with Runge-Kutta methods. These methods which have the same 

number of stages as the order are of orders 4 and 5 i.e s= 𝑝 = 4 and  𝑠 = 𝑝 = 5, respectively. 

Their convergence is established and numerical experiments with sample problems are conducted, 

in order to confirm their efficiency and reliability. 
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1. INTRODUCTION 

Almost Runge-Kutta (ARK) methods are a special type of general linear methods whose properties 

closely resemble those of explicit Runge-Kutta methods. They were introduced by Butcher (1997) 

for the purpose of preserving the multi-stage character of Runge-Kutta scheme as well as passing 

many values between steps, thereby giving the method a multi-value character (Rattenbury, 2005). 

Several authors have developed some Almost Runge-Kutta methods. Three values are passed 

between steps and they are  known as the starting values i.e 

𝑦(𝑥0),    ℎ𝑓(𝑦(𝑥0)) and  ℎ𝑓(𝑦(𝑥0) + ℎ𝑓(𝑦(𝑥0))) − ℎ𝑓(𝑦(𝑥0))        (1) 

It uses three input and output approximations and are represented by 4 matrices:    

 𝐴, 𝐵, 𝑈 and 𝑉   𝑜𝑟   [
𝐴 𝑈
𝐵 𝑉

]                                                               (2) 

Other authors who have made their input towards the development of this method include 

Abraham (2010) and Alimi (2014). 

 

2. Derivation of the Methods 

2.1 Derivation of ARK4 (𝑺 = 𝑷 = 𝟒) 

The general form of a fourth order four stage Almost Runge-Kutta scheme (𝑆 = 𝑃 = 4) method 

takes the form: 
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Given the abscissa vector 𝑐 = [𝑐1, 𝑐2, 𝑐3, 1]
𝑇,    𝑏𝑇 = [𝑏1, 𝑏2, 𝑏3, 0]     𝛽

𝑇 = [𝛽1, 𝛽2, 𝛽3, 𝛽4]. The 

first output approximations for order four with four stages are:

 

𝑏0 + 𝑏
𝑇𝑒 = 1                                                              (4) 

𝑏𝑇𝑐 =
1

2
                                                               (5) 

𝑏𝑇𝑐2 =
1

3
                                                            (6) 

𝑏𝑇𝑐3 =
1

4
                                                             (7) 

𝑏𝑇𝐴𝑐2 =
1

12
                                                                (8) 

𝑏𝑇 (
1

2
𝑐2 − 𝐴𝑐) = 0                                                    (9) 

Combining equations (6) and (9) we get 

𝑏𝑇𝐴𝑐 =
1

6
                                                           (10) 

From the annihilation conditions, it follows that, 

𝛽𝑇𝑒 + 𝛽0 = 0                                                          (11) 

𝛽𝑇𝑐 = 1                                                              (12) 

With the Runge-Kutta stability conditions: 

𝛽𝑇(𝐼 + 𝛽4𝐴) = 𝛽4𝑒4
𝑇                                               (13) 

𝑐1 = −2
𝑒𝑥𝑝4(−𝛽𝑠)

𝛽4𝑒𝑥𝑝3(−𝛽4)
                                          (14) 

(1 +
1

2
𝛽4𝑐1) 𝑏

𝑇𝐴2𝑐 =
1

4!
                                                 (15) 

𝑐1 = −
2(1 − 𝛽4 +

1
2
𝛽4
2 −

1
6
𝛽4
3 +

1
24
𝛽4
4)

𝛽4 (1 − 𝛽4 +
1
2
𝛽4
2 −

1
6
𝛽4
3)

                                 (16) 

    From equations (4) - (7), we obtained  
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𝑏0 + 𝑏1 + 𝑏2 + 𝑏3 = 1

𝑏1𝑐1 + 𝑏2𝑐2 + 𝑏3𝑐3 =
1

2

𝑏1𝑐1
2 + 𝑏2𝑐2

2 + 𝑏3𝑐3
2 =

1

3

𝑏1𝑐1
3 + 𝑏2𝑐2

3 + 𝑏3𝑐3
3 =

1

4

                     

}
  
 

  
 

                                      (17) 

   Which gives 

𝑏1 =
6𝑐2𝑐3 − 4𝑐2 − 4𝑐3 + 3

12𝑐1(𝑐1 − 𝑐3)(𝑐1 − 𝑐2)
                                                            (18) 

𝑏2 =
6𝑐1𝑐3 − 4𝑐1 − 4𝑐3 + 3

12𝑐2(𝑐1 − 𝑐2)(𝑐2 − 𝑐3)
                                                             (19) 

𝑏3 =
6𝑐1𝑐2 − 4𝑐1 − 4𝑐2 + 3

12𝑐3(𝑐2 − 𝑐3)(𝑐1 − 𝑐3)
                                                            (20) 

𝑏0 =
12𝑐1𝑐2𝑐3 − 6𝑐1𝑐2 − 6𝑐2𝑐3 + 4𝑐1 + 4𝑐2 + 4𝑐3 − 3

12𝑐1𝑐2𝑐3
                    (21) 

             And 

  𝑎21 =
1

12𝑏3𝑎32𝑐1(2 + 𝛽4𝑐1)
                                                 (21) 

   𝑎31 =

1
6 − 𝑏3𝑎32𝑐2 − 𝑏2𝑎21𝑐1

𝑏3𝑐1
                                             (23) 

𝑎32 =
1 − 2𝑐1

12𝑏3𝑐2(𝑐2 − 𝑐1)
                                                       (24) 

From (11) and (13), values of 𝛽𝑇 and vector 𝛽0  are evaluated to obtain the ARK4 method: 

SCHEME 1: ARK4 with 𝑐𝑇 = [
15

34
,
1

2
, 1, 1] , 𝛽4 = 4 
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2.2.  Derivation of ARK5 (𝑺 = 𝑷 = 𝟓) 

A Fifth order, five stage ARK method takes the form: 
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SCHEME 2: (𝑠 = 𝑝 = 5) ARK5 with 𝑐𝑇 = [
52

165
,
1

3
, ,
3

4
, 1,1]  
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3. CONVERGENCEANALYSIS 

Stability: The matrix 𝑉 must have bounded power for the method to be stable. 

𝑉 =

[
 
 
 
 1

1

6
0

0 0 0

0 −
38

45
0]
 
 
 
 

                                                                               (28) 

The characteristic polynomial of  𝑉 is given as  

𝜌(𝜆) = 𝑑𝑒𝑡(𝜆𝐼𝑛 − 𝑉)     ⟹      𝑑𝑒𝑡(𝜆𝐼3 − 𝑉)   =          |𝜆𝛪3 − 𝑉|            (29) 

= 𝑑𝑒𝑡

(

 
 
[
𝜆 0 0
0 𝜆 0
0 0 𝜆

] −

[
 
 
 
 1

1

6
0

0 0 0

0 −
38

45
0]
 
 
 
 

)

 
 

                                                   (30) 

= |
|
𝜆 − 1 −

1

6
0

0 𝜆 0

0
38

45
𝜆

|
| = 𝜆3 − 𝜆2                                                                (31) 

To obtain the eigenvalues of the characteristic polynomial, we have 

𝜌(𝜆) = 𝜆3 − 𝜆2 = 0  ⟹  𝜆2(𝜆 − 1) = 0    𝜆1 = 1,    𝜆2 = 0,    𝜆3 = 0 (32) 
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Applying Cayley-Hamilton theorem, we obtain 

𝜌(𝑉) = 𝑉3 − 𝑉2 = 0   =>         𝑉3 = 𝑉2                                  (33) 

[
1

1

6
0

0 0 0
0 0 0

] − [
1

1

6
0

0 0 0
0 0 0

] = [
0 0 0
0 0 0
0 0 0

]                                               (34) 

Similarly, 

𝑉4 − 𝑉2 = 0    => 𝑉4 = 𝑉2,        𝑉5 − 𝑉2 = 0         => 𝑉5 = 𝑉2             (35) 

𝑉𝑛 = 𝑉2  for every n greater than 2, which shows that 𝑉𝑛 is bounded. This implies that scheme 1 

is stable. 

Consistency: By definition of consistency, the method is consistent since the order of the method 

is p = 4 > 1. Hence the method is convergent since it is both stable and consistent. 

4. NUMERICAL EXPERIMENT 

In order to validate the two developed methods, we carry out some numerical experiments and 

compared the obtained results with methods from Rattenbury (2005), Abraham (2010) and Alimi 

(2014).The results are presented in Figures 1- 6. 

 

Problem 1: 

𝑦′ = 𝑥 + 𝑦                           

𝑦(0) = 1             ℎ = 0.1         0 ≤ 𝑥 ≤ 2

𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:       𝑦𝐸(𝑥) = 2𝑒
𝑥 − 𝑥 − 1         

    }
 
 

 
 

                                      (36) 

 

 

Problem 2: 

𝑦′ =
𝑦

4
(1 −

𝑦

20
)                            

𝑦(0) = 1             ℎ = 0.1                 0 ≤ 𝑥 ≤ 2

𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:       𝑦𝐸(𝑥) = 𝑦𝐸(𝑥) =
20

1+19𝑒
−1
4
𝑥

         

    }
 
 

 
 

                                  (37)       

Problem 3: 

𝑦′ =
𝑦 + 𝑥

𝑦 − 𝑥
                           

𝑦(0) = 1             ℎ = 0.1       0 ≤ 𝑥 ≤ 2

𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:       𝑦𝐸(𝑥) = 𝑥 + √1 + 2𝑥
2   

    

    

}
 
 

 
 

                                (38) 
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Figure 1:  Comparison of Results for Scheme 1 (Problem 1, h=0.1) 

 

Figure 2: Comparison of Results for Scheme 2 (Problem 1, h=0.1) 
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Figure 3:  Comparison of Results for Scheme 1 (Problem 2, h=0.1) 

 

Figure 4: Comparison of Results for Scheme 2 (Problem 2, h=0.1) 
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Figure 5:  Comparison of Results for Scheme 1 (Problem 3, h=0.1) 

 

Figure 6: Results Comparison for Scheme 2 (Problem 3, h=0.1) 

DISCUSSION OF RESULTS  

From figures 1 – 6, on comparison of the obtained, we noticed that the results from scheme 1 and 

2 (Proposed method) produces less errors than errors from results of Abraham (2010) and 

Rattenbury (2005) methods, hence we concluded that our proposed behaved adequately excellent 

than the schemes of Rattenbury (2005), Abraham (2010) and Alimi (2014) for problems 1-3. 

CONCLUSION 

We proposed two Almost Runge-Kutta (ARK) methods, ARK4  (𝑠 = 𝑝 = 4) and ARK5 (𝑠 = 𝑝 =

5). The methods are proven to be stable and consistent, thereby guaranteeing their convergence. 
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By the foregoing, it is instructive that the proposed ARK methods of orders 4 and 5 exhibits 

efficiency and reliability, as evident by their respective inconsequential errors in relation to the 

exact solutions. They are accurate as they produce results which compared favorably with the 

results obtained from existing methods. Future studies can compare the existing explicit ARK 

methods with variable stepsize. 
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