
Grid-based Search Technique for Massive Academic
Publications

Mohammed Bakri Bashir1, Muhammad Shafie Abd
Latiff2

1,2Department of Computer Science,
Faculty of Computing, Universiti Teknologi Malaysia UTM,

Johor, Malaysia.
mhmdbakri@gmail.com1, shafie@utm.my2

Shafi’i Muhammad Abdulhamid3, Cheah Tek Loon4
3,4Department of Computer Science,

Faculty of Computing, Universiti Teknologi Malaysia UTM,
Johor, Malaysia.

shafii.abdulhamid@futminna.edu.ng3 ,

Abstract— the numerical size of academic publications that are

being published in recent years had grown rapidly. Accessing

and searching massive academic publications that are distributed

over several locations need large amount of computing resources

to increase the system performance. Therefore, many grid-based

search techniques were proposed to provide flexible methods for

searching the distributed extensive data. This paper proposes

search technique that is capable of searching the extensive

publications by utilizing grid computing technology. The search

technique is implemented as interconnected grid services to offer

a mechanism to access different data locations. The experimental

result shows that the grid-based search technique has enhanced

the performance of the search.

Keywords- Grid computing, academic publications, massive

data, search technique, data-intensive application .

I. INTRODUCTION

In many scientific research sectors, researchers need to
access and search distributed data collections of gigabyte and
terabyte scale. Moreover, in several cases data collections must
be shared by large communities of users that pool their
resources from different site location or a large number of
institutions [1]. In addition, sharing distributed academic
publications is the vital part of a distributed research
community, and an efficient search technique to handle the
shared data is crucial to making the distributed information
available to researchers. However, searching massively
distributed data in large-scale communities are very
challenging due to the potential large amounts of data,
diverseness, distributed arrangement, and dynamic nature in
which the data is growing rapidly [2]. Furthermore, Continuous
increase of the data size requires more resources to store the
newly produced data. Additionally, the execution time depends
on the number of the site involved in the search tasks and the
number of query that requires simultaneous processing.

Nonetheless, the aforementioned issues can be addressed by
using grid technology, which provides a means to access,
manage, control, and store the distributed data [3]. The grid
technology provides big organizations and scientific centers a
computing power in order to solve complex problems [4]. The
grid-based data sources have several features such as
decentralization, heterogeneous, and dynamic, in which,
searching these data sources are a distributed query [5]. The
addition of large-scale feature to the grid-based data source

makes the search for these data a complex task [6, 7]. Grid
computing can handle the dynamicity of the organizations
resources that join or leaves the system at any time.
Furthermore, grid computing presents the distribution of the
data and resources for the end user as one big supercomputer
that contains all the data. The searching process is performed as
grid job, which monitors and is distributed over the data sites
by the grid scheduler.

The paper describes and explains in details the design and
implementation of the Grid-based Academic Publications
Search (GAPS) technique. The paper starts with the review of
the related search technique by using grid computing. The
GAPS components, as well as their functions, are explained in
details. The experiments and the evaluation section are
conducted to validate the search technique. This paper ends
with a conclusion section.

II. RELATED WORK

The distributed shared data will be beneficial if supported
with access and search mechanism. The current sharing
systems provide diverse ways to implement the search
techniques for distributed data based on the grid infrastructure.
Furthermore, the majority of the data sources are not in the
form of database management system rather it is in a file form
that means the query processing will not be useful to search
these files.

 The techniques such as the ones proposed and discussed in
[8-10] [11] [12] [13] [14] proposed searching systems to
search the information in a different format depends on the the
data of the system. Furthermore, the majority of the data is not
a database management system but it is files (XML, HTML,
etc…), that means the query processing will not be useful to
search these files. Additionally, the searching techniques use
grid computing as a tool to facilitate the search and the harvest
of information across the federated locations. Moreover, all
those systems use grid computing for indexing and searching
so as to speedup query execution and to increase the
scalability of the techniques.

However, some of these systems suffer from bottleneck
problems that affect the response time and the scalability
feature of the searching technique. As a result, the ratio of
system failure will increase with the number of user queries.
Furthermore, most of the proposed researches do not support
the real time search engine instead search indexed data. The

The 2014 Third ICT International Student Project Conference (ICT-ISPC2014)

choose of grid over cloud is because the cloud is an on-
demand resource, while the grid is relatively free.

III. GRID-ENABLER SEARCH TECHNIQUE

The Grid-Based Academic Publications Search technique
(GAPS) is a group of modules that communicate with each
other to provide a means to search the distributed academic
publications as illustrated in Figure 1. The technique is
implemented as modules distributed over grid architecture to
provide a mechanism to interaction among the VOs. The
GAPS was implemented and integrated as grid services to
enable data search to run over grid architecture and to
orchestrate the interaction over the grid nodes. The local
Search Service module was a Java program installed in each
worker node, in a grid architecture and was responsible for
performing the search process in the local dataset.
Additionally, the other modules are implemented on the head
node (broker) of every VO.

A. GAPS Components

The research integrates two diverse fields namely
academic publications search operations and grid services. On
one hand, grid is required to provide a platform to facilitate all
the grid services such as data transfer, data location, and data
replication. On the other hand, the search operations have been
determined after studying different search applications and
after identifying the nature of these search techniques as well
as the requirement of the grid to work under these techniques.
The design and the functionality of the search components will
be discussed in the following sections.

Figure 1: Grid-enabler Search components.

1) Query Search Engine (QEE)

QEE is the component that orchestrates and coordinates the
query execution over the grid nodes. Additionally, the QEE
has several instances distributed among VOs, in which each
VO have instance of the QEE. This distribution of the services
provides a decentralized search execution, which prevents the
system from bottleneck and scalability problems. It means that
each VO is equipped with one QEE service, and each node in
the VO deploys a copy of the local search service. The QEE
determines the nodes that will perform a search at run time by
utilizing its internal modules.

After the user submits the search text, the QEE will request
the resources information from the Resource Manager, who
stores the status and all information about system resources.
The lists of the data sources that are involved in the search
task are gathered from the Data Source Locator component.
The list of available resources and data sources are submitted
to the QEE to produce the execution plan of the search jobs.
The execution plan that distributes the datasets over the nodes
depends on the previous performance and produces the best
combination to handle the query. The QM executes the search
tasks and returns the result of the search to the end user.

2) Query Manager (QM)

QM is the component that involves several functions to
execute the user query in grid nodes and returns the best result
relevant for the query to the user. One of the QM functions is
to receive the list of all available resources in the grid that can
be used to perform the query. A list of resources is assigned
with the suitable data source that provides a better
performance. Additionally, the QM creates the Job
Description File (JDF) with all jobs that will be distributed
over grid nodes. The JDF contains the location of all data
sources and the local search services that will participate on
the search process. Additionally, the JDF includes the user
query text as well as the location that should receive the result
of the search. Furthermore, the QM keeps track of all job
execution in the system by keeping the job information in the
database. After the search task is completed, the QM sends the
information about resource performance to the database to be
used in the future search tasks.

3) Search Service (SS)

The distributed data sources are difficult to be accessed and
to be searched by centralized search application. Instead, a
centralized application that enables the local search
applications to be run on each node have data source and will
collect the result of the search. The GAPS implements the SS
that runs on each node that participates in the search tasks.
The SS is implemented as a grid service and is installed to be
run with the globus container. The globus container is run
once the node starts, and it continues to run until the node
shuts down. By applying this method, the SS does not need to
wait time to load on the memory when the node receives
search job request. Additionally, running the SS as a grid
service saves the time required to starts the SS every time the

The 2014 Third ICT International Student Project Conference (ICT-ISPC2014)

search is performed. The SS is designed and developed based
on the object-oriented technology, which allows a new
component to be added easily. This feature offers the SS the
ability to support more data types.

4) User Search Interface

The User Search Interface (USI) is an interaction
mechanism proposed to provide the end user access point to
deal with the system as illustrated in Figure 2. Additionally,
USI offers the end user interface to perform a search task by
using GAPS. The USI provides keyword-based and
multivariate-based search types to execute on the grid nodes.
The experiment shows that the USI overhead is very small as
compared with the response time. Furthermore, the result
shows the ability of the USI to deal with several VOs.

Figure 2: Grid-enabled user search interface.

IV. EXPERIMENT AND EVALUATION

The goal of this experiment is to investigate the usage of
grid computing to search large and distributed academic
publications in order to enhance the performance of the search
processes. The GAPS is evaluated by using the response time,
the speed up, and the efficiency of the search technique.
The experiment conducted in the grid test-bed which contains
12 computer nodes distributed among three Virtual
Organizations (VO) and each VO contains four nodes. One of
four nodes has two roles as grid broker equipped with
Certificate Authority (CA) server and as a computing node.
The grid nodes have different specifications by using Red Hat
Enterprise Linux 3 as OS. The Globus toolkit 4.0.2 is installed
in each broker node because the broker is considered as a CA
server. The datasets used are articles collected from different
academic repositories, which contain the open access
information about the articles. The worker is equipped with
datasets files of different sizes that scale from 10 million
records.

1) Response Time

This experiment is conducted to measure the search
response time by increasing both the data size and the

computing nodes. The goal of the experiment is to identify the
effect of the GAPS in searching massive academic
publications and to measure the enhancement achieved by
using the GAPS. Using the GAPS technique as conducted the
experiment technique.

Figure 3 shows that the response time starts to decrease
when small number of nodes is used and then increases when
the number of nodes is more than 5. The result shows that the
GAPS has better response time as compared to the traditional
search. The response time of the GAPS remains to be faster
than the traditional search with 60% while other response time
reaches 100%, and some response time decreases to reach
54%. The result shows that the GAPS has fast response time
and better performance as compared to the traditional search.

Figure 3: Response time scales as the increase of size.

2) Speed up

The speed up is used to measure the performance of the
search techniques. The speedup is defined as the ratio of the
time to execute the job on a small system until the time to
execute the same job on large systems. An experiment is
conducted to measure the speedup of the GAPS when the
number of nodes is increased. The speedup is defined as :

Figure 4 shows that the speedup of the GAPS is increased
with the increasing number of the search nodes that scale from
1.55 in the case of 2 nodes in order to reach 2.59 in the case of
11 nodes. The traditional search speedup starts with 1.2 and
continues to go up until it reaches 1.9 in when using 5 nodes.
However, it starts decreasing to 1.5 when using 11 nodes to
perform a search task. This result shows that the GAPS is
suitable for large scale dataset size. Furthermore, the GAPS
obtained the speed up that is 33% better than the traditional
search when two nodes were used. Additionally, the GAPS
obtained a better performance of 73% as compared to the
traditional search when the number of the nodes is 11.

The 2014 Third ICT International Student Project Conference (ICT-ISPC2014)

Figure 4: Speedup scales as the increase of size.

3) Efficiency

The efficient search technique is a technique that utilizes the
resource in a good manner. This experiment is conducted to
calculate the GAPS efficiency and to compare its performance
with the traditional search. The efficiency is calculated by
dividing the speed up by the number of nodes used in the test,
which produce an amount of less than 1.0. The perfect and the
best efficiency is equal to or very close to 1.0.

Figure 5: Efficiency scales as the increase of size.

The large dataset experiment reported that the GAPS

efficiency started with 0.88 with 2 nodes and decreased to
0.27 with 11 computing nodes. On the other hand, the
traditional search efficiency started with 0.62 and decreased
until 0.17, as depicted on Figure 5. The result shows that the
GAPS has a better efficiency as compared to the traditional
search. The GAPS efficiency is 43% better than the traditional
search in the case of two nodes, and it is 100% better when
using 11 nodes.

V. CONCLUSION

The paper has highlighted the issues of a massively
distributed data and the issues related to the grid-based
academic publications search processes. The Grid-based
Search Academic Publications technique GAPS was proposed
in order to allow the end user to search and access academic
publications distributed over a number of organizations. An
experiment was performed to measure the performance of the
GAPS technique and the suitability of using grid computing as
the data sharing infrastructure. The experiment results show
that the distribution of the data over the grid and the nodes’
capabilities are the key issues that reduce the search
performance. Additionally, the GAPS remains the good
performance when the system and the publication sources
grow for large scale, and it also shows good performance with
an increase of publication size.

REFERENCE

[1] L. Wang, J. Lin, and D. Metzler, "Learning to efficiently rank,"
in Proceedings of the 33rd international ACM SIGIR conference

on Research and development in information retrieval, 2010, pp.
138-145.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Y. Lu, "Cloud Computing and
Grid Computing 360-Degree Compared," Gce: 2008 Grid

Computing Environments Workshop, pp. 60-69, 2008.
[3] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-

Amarie, "BlobSeer: Next-generation data management for large
scale infrastructures," Journal of Parallel and Distributed

Computing, vol. 71, pp. 169-184, 2011.
[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The physiology

of the grid," Grid computing: making the global infrastructure a

reality, pp. 217–250, 2003.
[5] S. Venugopal, R. Buyya, and K. Ramamohanarao, "A taxonomy

of Data Grids for distributed data sharing, management, and
processing," ACM Comput. Surv., vol. 38, p. 3, 2006.

[6] J. Smith, P. Watson, A. Gounaris, N. W. Paton, A. A. Fernandes,
and R. Sakellariou, "Distributed query processing on the grid,"
International Journal of High Performance Computing

Applications, vol. 17, pp. 353-367, 2003.
[7] S. M. Abdulhamid, M. S. A. Latiff, and M. B. Bashir, "On-

Demand Grid Provisioning Using Cloud Infrastructures and
Related Virtualization Tools: A Survey and Taxonomy,"
International Journal of Advanced Studies in Computer Science

and Engineering (IJASCSE), vol. 3, pp. 49-59. , 2014.
[8] J. Zhang and T. Yang, "Research of Retrieving Model for Digital

Library Based on Semantic Grid," in Information Technology

and Applications (IFITA), 2010 International Forum on, 2010,
pp. 431-434.

[9] Z. Jidong and X. Yanzi, "HBUTiGrid: A Knowledge
Management Model of Digital Library Based on Semantic Grid,"
in Management and Service Science (MASS), 2010 International

Conference on, 2010, pp. 1-4.
[10] L. Yi, "The Application of Semantic Grid in Digital Library

Knowledge Management Software Engineering and Knowledge
Engineering: Theory and Practice," in Software Engineering and

Knowledge Engineering: Theory and Practice. vol. 114, Y. Wu,
Ed., ed: Springer Berlin / Heidelberg, 2012, pp. 879-886.

[11] N. Nakashole, "A Hybrid Scavenger Grid Approach to Intranet
Search," PhD, University of Cape Town, 2009.

[12] A. Chen, L. Di, Y. Bai, Y. Wei, and Y. Liu, "Grid computing
enhances standards-compatible geospatial catalogue service,"
Computers & Geosciences, vol. 36, pp. 411-421, 2010.

[13] C.-T. Yang, C.-H. Chen, and M.-F. Yang, "Implementation of a
medical image file accessing system in co-allocation data grids,"
Future Generation Computer Systems, vol. 26, pp. 1127-1140,
2010.

[14] C. Town and K. Harrison, "Large-scale grid computing for
content-based image retrieval," in Aslib Proceedings, 2010, pp.
438-446.

The 2014 Third ICT International Student Project Conference (ICT-ISPC2014)

