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Abstract 
Matrix Stiffness Method (MSM) as a tool for static analysis of structures is 

premised on the principle of Finite Element Method (FEM), which in itself is 
a numerical/approximate method capable of giving only approximate results. 

However, Joint Resolution Method (JRM) is one of the most popular 

classical/exact methods of static analysis capable of giving exact results. This 

paper presents an analysis of a statically determinate 2-D truss using 

Exact/Joint Resolution Method (JRM) and Matric Stiffness Method (MSM) 

to ascertain the validity of the latter against the former. In the JRM, the 

support reactions and internal member forces were obtained from 

considerations of the equilibrium conditions of the entire truss and isolated 

joints respectively. On the other hand, a computer program was written in 

MATLAB 7.8.0 (R2009a) based on the principles of MSM for ease of 

computation and increased accuracy to solve for member forces and reactions 

of the same truss. The element properties were obtained and employed to 
calculate the element stiffness matrices, these were then assembled into the 

global stiffness matrix, from which the unknown displacements, member 

forces and support reactions were calculated. The results obtained from using 

both JRM and MSM were found to be exactly the same or very close, with 

percentage errors ranging between 0% and 3%. Hence MSM results as 

compared to JRM have 97% accuracy and above, and can therefore be relied 

upon. 
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1. Introduction 
 

Exact methods of analysis such as Joint Resolution Method, although have 

proven very useful over time, are found to be tedious, time consuming and 

highly prone to manual errors. This has led to the emergence of faster 
methods (e.g. Matrix Stiffness Method), which, although amenable to 

computer manipulations, are mostly premised on numerical methods which 

in themselves are approximate methods and give approximate results which 

must be checked/validated 

 

A truss is a Civil Engineering Structure consisting of an assemblage of 

straight members connected together at their ends. These members are 

subjected to loads and reactions only at the joints (Megson, 2005). An ideal 

truss is one whose members develop only axial forces (tension and 

compression) when the truss is loaded (Kassimali, 2009). 

 

For design requirements of safety, economy and aesthetic preservation as 
specified by BS 8110-1997 to be met, it is important that the truss be well 

designed, hence the internal forces in the members have to be correctly 

analyzed (Megson, 2005). It is worth mentioning that a structural design is 

only as good as the analysis that precedes it, which in turn depends on the 

accuracy of the method employed in the analysis.   

 

Various methods of analysis can be used for trusses, some of which are 

exact/classical methods while others are approximate/numerical methods. 

Classical methods, such as joint resolution method and method of sections 

for truss analysis, make use of analytical formulations that are applied to 

simple elastic models and are often solved manually, while numerical 
methods such as finite element analysis (for continuum structures) from 

which Matrix Stiffness Method of analysis emanates (for discrete or 

discontinuous structures) easily suites computers since they require majorly 

matrix manipulations (Chandramouli, 2013). The method of joint resolution 

is basically suited for the analysis of statically determinate structures and 

uses the free-body-diagram of joints in the structure to determine the forces 

in each member by using the force balance in the horizontal (x) and vertical 

(y) coordinates of the Cartesian plane at each of the joints in the truss 

structure. Matrix Stiffness Method on the other hand, is particularly suited for 

computer-automated analysis of complex structures including the statically 

indeterminate type as its steps are more definite rather than arbitrary. It is a 
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matrix method that makes use of the member’s stiffness relations for 

computing member forces and displacements in structures (Kharagpur, 

2008). In applying this method, the system is discretized as a set of simpler, 

idealized elements interconnected at the nodes. The material stiffness 

properties of these elements are then, through matrix mathematics, compiled 

into a single matrix equation which governs the behavior of the entire 

idealized structure, thus member forces of the truss as well as reactive forces 

are obtained. nIn this wise, the comparison of results as generated by both 

methods is worthwhile.  

 

2. Methodology 

 

Figure 1 shows a truss with thirteen (13) members and eight (8) nodes. This 

truss is analysed using JRM and MSM. Both methods involve the use of 

member angles, member lengths and node coordinates that can be gotten 

from basic trigonometric and mathematical theorems. 

 

 

 

Figure 1: A 12.5m by 9.5m Statically Determinate 2-D Truss 
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2.1 Joint Resolution Method (JRM) 

This method relies on the fact that a structure in equilibrium has all its 

constituent joints in equilibrium. The structure was descretized into 

joints/nodes, which were denoted by letters or numbers; equations of static 

equilibrium were then employed to obtain all forces emanating from and 

coming into each joint. This process was repeated until all member forces 

and reactions were obtained as specified by (Hibbeler, 2006). 

 

2.2 Matrix Stiffness Method (MSM) using MATLAB 

This method uses the matrix equation 2.1 and 2.2 to obtain member forces, 
support reactions as well as nodal displacements. 

 

(
  

  
)  [

      

      
] (

  

  
)                                        (1) 

This implies that; 
(  )       (  ) 

(  )         (  )                                          (2) 

(Ray and Joseph, 1975 

 

Where      = external force applied at free node(s), Fc = support Reactive 

force(s)     = stiffness at the node(s) free in horizontal and vertical 

directions,      = stiffness at the node(s) free in horizontal and constrained in 

vertical directions,    = stiffness at the node(s) constrained in horizontal and 

free in vertical directions,    = stiffness at the node(s) constrained in          

   = constrained displacements 

 

In using MSM to analyze the given truss, some lines of codes were written 

for the MATLAB program as recommended by (Kattan, 2006) to determine 

the member forces in accordance with the operating principles of MSM. For 

this MATLAB program, two text files - element-properties file and load-

properties file are required. The first file contains the coordinates in x and y 

directions for nodes 1 and 2 respectively, for a particular member, cross 

sectional area, modulus of elasticity, and separated by tab, while the second 

text file contains the node number, load in x-direction, load in y-direction and 

support constraints (null- for external loads, roller for roller support and 
pinned for pin support) respectively, for nodes with loads/reactions and 

separated by tab. 
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2.3 Flow Chart for both Methods 

The procedures for the use of JRM and MSM (along with the MATLAB 

program) as employed in the truss analysis are as shown in the flow chart 

presented in Figure 2. Figure 2: Flowchart employed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Flowchart employed in the analysis 
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3. Results and Discussions 

 

3.1 Responses from using the Method of Joint Resolution 

Figure 3 shows the external forces acting on truss AB and the reactions 

developed therefrom, while the concurrent force at joint A are shown in 

Figure 4..  

 

 

 

 

 

 

 

 
Taking moment about Joint A in Figure 3 results in, 
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A typical JRM Operation on joint A 

 

From Figure .3, 
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Figure 3: A Section of external forces and the reactions 

developed reactions and external force 
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From Figure 4, 
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And, 
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From Equation (3), 

 

               (     )           

 

3.2 Responses from using the Matrix Stiffness Method  

First Input Data 

Tables 1 and 2 represent the input data for the written MATLAB program 

premised on the Matrix Stiffness Method. 
 

 

FAD 

θ1 

FAB 

27kN 

 

A 

Figure 4: Concurrent forces at joint A 
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Table 1: Externally applied loads and constraints 

Node Load in x-direction Load in y-direction Constraints 

1 0 -30 Null 

7 0 0 Roller 

8 0 0 Pinned 

 

Table 2: Element properties. 
X1coord Y1coord. X2coord Y2coord. Area Modulus Node1 Node2 

9.5 11 3.5 12.5 0.001 1000 1 2 

3.86 9.5 9.5 11 0.001 1000 4 1 

0.76 9.5 3.5 12.5 0.001 1000 3 2 

3.86 9.5 3.5 12.5 0.001 1000 4 2 

0.76 9.5 3.86 9.5 0.001 1000 3 4 

0.4 5 0.76 9.5 0.001 1000 6 3 

4.40 5 0.76 9.5 0.001 1000 5 3 

4.40 5 3.86 9.5 0.001 1000 5 4 

0.4 5 4.40 5 0.001 1000 6 5 

0 0 0.4 5 0.001 1000 8 6 

0 0 5 0 0.001 1000 8 7 

5 0 0.4 5 0.001 1000 7 6 

5 0 4.40 5 0.001 1000 7 5 

 

First Output Data 

The output/results as obtained from the MATLAB program are as shown 

below: 
matrixstiffnesstruss 

enter no of nodes:  

enter no of members:  

 

Second Input Data 

matrixstiffnesstruss 

enter no of nodes: 8 

enter no of members: 13 

 

Second Output Data 

A typical stiffness matrix (for member GF) 
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K(GF) = (1/ α)* 

         1          2         3          4  

    0.1522   -0.0380   -0.1522    0.0380 

 -0.0380    0.0095    0.0380   -0.0095 

   -0.1522    0.0380    0.1522   -0.0380 

    0.0380   -0.0095   -0.0380    0.0095 

 

Displacements in mm 

   = 1228.0975α;     = -5434.2496α;    = 2028.4194α; 

   = -704.6498α;     = 517.3803α;       = 268.6877α;  

   = 331.3803α;     = -696.4495α;                   = -59.7653α;  

    =-354.5233α;       =-14.7653α;                     = 137.4793α; 

    = -10.8000α;       = 0.0000α;       = 0.0000α   

    = 0.0000α; where α=     

 

Reactive Forces  

     = 57.0000kN 

     =-0.0000kN 

     =-27.0000kN 

 

Member Forces 

 (  )         ,         (  )          (C);  F(EF) = 73.92 kN (T); 

F(HF) = 69.61 kN (C);   F(EH) = 60.00 kN (C);  F(DE) = 38.37 kN (T); 

  (  )  = 21.00 kN (T);  (  ) = 85.19 kN (C);         (  ) = 11.25 kN (C); 

  (  ) = 27.09 kN (T);   (  ) = 2.16 kN (C);  (  ) = 15.29 kN (T); 

 (  ) = 68.74 kN (C); 

 

3.3 Comparison of Responses from both Methods 

Table 3 shows the forces in each member of the truss using JRM and MSM. 

The table shows that the forces in members AB, AD, DC, CH and GF are 

exactly the same while forces in members BD, BC, DE, CE, EF,  EH, HF and 

HG differ by a little percentage, with 2.91% as the highest percentage error in 

the member forces which may have resulted from accumulated 

approximations. It can therefore be deduced from the results that the Matrix 

Stiffness Method has at least 97% accuracy as compared to the Joint 
Resolution Method. The reactions at nodes A and B are 57 and -27 kN, 

respectively for Joint resolution and Matrix Stiffness methods, 

correspondingly as presented in Table 4. 
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Table 3: Forces in each member using both methods 

 

Table 4: Reactions as obtained from both methods 

Reactions Method of Joint 

Resolution(kN) 

Matrix Stiffness 

Method (kN) 

RA 57 57 

RB -27 -27 

 

4. Conclusions 
 

The analysis of the 2-D statically determinate truss was successfully carried 

out. It was based on the Joint Resolution Method (an exact method) and 

Matrix Stiffness Method (an approximate method) to determine the member 

forces and support reactions. The Joint Resolution Method used was 

essentially done manually, while MATLAB 7.8.0. (R2009a) was employed to 
write a computer program on the basis of the Matrix Stiffness procedure. F 

For the Joint Resolution Method, the different member forces were obtained 

by resolving each joint one after the other until all the internal forces were 

gotten. For the Matrix Stiffness Method, the element and load properties 

were gotten and placed in the text files, the program was then run, 

afterwards, the number of nodes and members were entered as the inputs to 

Member Method of Joint 

Resolution( 

kN) 

Matrix Stiffness 

Method  

(kN) 

Difference 

in Forces 

(kN) 

Percentage 

Difference 

(%) 

AB 2.16(C) 2.16(C) 0.00 0.00 

AD 27.09(C) 27.09(C) 0.00 0.00 

BD 15.28(T) 15.29(T) 0.01 0.06 

BC 68.73(C) 68.74(C) 0.01 0.01 

DE 38.41(T) 38.37(T) 0.04 0.10 
DC 11.26(C) 11.26(T) 0.00 0.00 

CE 21.02(T) 21.00(T) 0.02 0.10 

CH 85.19(C) 85.19(C) 0.00 0.00 

EF 73.90(T) 73.92(T) 0.02 0.03 

EH 61.80(C) 60.00(C) 1.80 2.91 

HF 69.13(C) 69.61(C) 0.48 0.69 

HG 60.16(C) 60.17(C) 0.01 0.02 

GF 59.93(T) 59.93(T) 0.00 0.00 
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the program, and this gave the necessary parameters and also the internal 

forces for each member of the truss as the output.  

From the outcome of the study, the following conclusions were drawn: 

(i) the member forces from the JRM and MSM, when compared, were found 

to be very close with at least 97% similarity.  

(ii) the Matrix Stiffness Method can, therefore, be safely used in the analysis 

of trusses as its approximations were found to be reasonable.    
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Appendix I 
 

Written Functions used in the Program MATLAB (R2009a) 

To calculate the Individual Member Stiffnesses 

functionmemstiff = assembly( lengt,area,modulus,cos_angle,sin_angle) 

%ASSEMBLY collates and returns the individual member stiffnesses 

%   Function ASSEMBLY helps to develop the individual member stiffnesses 

%   of a truss, once the element properties are gotten and passed in the  

%   right order. 

%     Calling sequence: 

%     memstiff = assembly(length,area,modulus,angle,node1,node2 ) 

%     Define variables: 

%     constant = stiffness constant 

 

      constant = area * modulus/lengt;  

 memstiff =  

[cos_angle^2cos_angle * sin_angle -(cos_angle^2) - (cos_angle* sin_angle)          

cos_angle * sin_anglesin_angle^2 -(cos_angle* sin_angle) -(sin_angle^2) 

 -(cos_angle^2) -(cos_angle * sin_angle) cos_angle^2cos_angle* sin_angle-(cos_angle* 

sin_angle) -(sin_angle^2) cos_angle * sin_anglesin_angle^2] .*constant;         

End 

 

To calculate the Global stiffness Matrix 

function [ globstiff ] = assembled(globstiff,memstiff,node1,node2 ) 

%ASSEMBLED collates and returns the entire global stiffness.  

%   Function ASSEMBLED helps to develop the global stiffness matrix for  

%   the entire truss structure, once the member stiffnesses and node  

%   numbers of the members are known and passed in the right order. 

 

%     Calling sequence: 

%     globstiff = assembled(globstiff,memstiff,node1,node2 ) 

 

%       Define variable: 

%       position = Array containing the sequential values of the degrees   

%       of freedom for that member 

 

 position = [(2 * node1)-1 (2 * node1) (2 * node2)-1 (2*node2)]; 

globstiff(position, position) = globstiff(position, position) + memstiff;  

end 

 

To calculate the Internal Member Forces 

function [ meforce ] =  

memforce( area, modulus, lengt, cos_angle, sin_angle, u, node1, node2) 

%MEMFORCE collates and returns the internal member forces of a truss. 

%   Function MEMFORCE helps to calculate the internal member forces in a 

%   truss once the element properties are known and passed in the right 

%   order. 

%     Calling Sequence: 

%     meforce =  
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memforce( area, modulus, lengt, cos_angle, sin_angle, u, node1, node2) 

 

%     Define Variable: 

%     displacement = displacement vector for each member 

    displacement =  

[(u((2 * node2)-1) - u((2 * node1)-1)); (u(2 * node2) - u(2 * node1))]; 

meforce =  

(area * modulus /lengt) .* ([cos_anglesin_angle] * displacement);     

end 

 

Appendix Ii 
 

MATLAB (R2009a) script (Matrix Stiffness Method for 2-D truss) 

% Script file :Matrixstiffness.m 

% Purpose: 

%     This program calculates the member forces of a 2-D truss from a   

%     given set of data for each element. 

% Define Variables: 

%     nodes = The number of nodes in the truss. 

%     member = The number of members in the truss. 

%     area = The area of the member. 

%     modulus = modulus of the member. 

%     x1coord,y1coord,x2coord,y2coord = Coordinates in x and y directions  

%     for the first and second nodes of a member respectively. 

%     node1,node2 = The first and second nodes of a member respectively. 

%     node = The nodes with either external forces or support reactions.  

%     loadx,loady = Loads in x and y-directions on a node respectively. 

%     constraints = conditions- stating either null for external loads,  

%     pinned for pin support or roller for roller support. 

%     memstiff = Cell array containing the individual member stiffnesses. 

%     meforce = Array containing the internal member forces. 

%     dof = The total number of degrees of freedom for the truss. 

%     globstiff = The global stiffness for the entire truss. 

%     pins, rollers = The number of pinned and roller supports in the  

%     truss respectively. 

%     lengt = Array containing the lengths of each member. 

%     cos_angle, sin_angle = The cos and the sine of the angle formed  

%     respectively by each member. 

%     i, m, k = loop index. 

%     restnode = The number of restricted degrees of freedom. 

%     loads = Array containing external loads. 

%     position = Array containing the degrees of freedom for each member. 

%     const = Arrays containing the restricted degrees of freedom. 

%     kcu = Stiffness corresponding to constrained-unconstrained. 

%     kuu = Stiffness corresponding to unconstrained-unconstrained. 

%     uu = Unknown displacements. 

%     react_force = Support Reaction Forces. 

%     u = Total displacements. 
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nodes = input ('enter no of nodes: '); 

member = input ('enter no of members: '); 

[x1coord,y1coord,x2coord,y2coord,area,modulus,node1,node2] = ..... 

textread ('C:/Users/Dania/Desktop/elementproperties.txt','%f%f%f%f%f%f%d%d'); 

[node,loadx,loady,constraints] =   

 textread('C:/Users/Dania/Desktop/loadproperties.txt','%d%f%f%s');             

memstiff = cell(member,1); 

meforce = zeros(member, 1); 

dof = 2 * nodes; 

globstiff = zeros (dof); 

 pins = 0; 

 rollers = 0; 

lengt = zeros(member); 

cos_angle = zeros(member); 

sin_angle = zeros(member); 

fori = 1:member; 

lengt(i) =  

sqrt((x2coord(i) - x1coord(i))^2 + (y2coord(i) -     y1coord(i))^2); 

cos_angle(i) = (x2coord(i) - x1coord(i))/lengt(i); 

sin_angle(i) = (y2coord(i) - y1coord(i))/lengt(i); 

end; 

fori = 1:max(size(node)); 

ifstrcmpi('roller',constraints(i)); 

         rollers = rollers + 1; 

elseifstrcmpi('pinned',constraints(i)); 

             pins = pins + 1; 

end; 

end; 

end; 

restnode = 2 * pins + rollers; 

 loads = zeros((dof - restnode), 1); 

 letters = ['G','F','E','H','C','D','B','A']; 

for m = 1:member; 

memstiff{m} =   

assembly( lengt(m),area(m),modulus(m),cos_angle(m),sin_angle(m)); 

fprintf ('K(%s%s) \n', letters(node1(m)), letters(node2(m))); 

    position =  

[(2 * node1(m))-1 (2 * node1(m)) (2 * node2(m))-1 (2*node2(m))]; 

firstPos = position(1); 

secondPos = position(2); 

thirdPos = position(3); 

fourthPos = position(4); 

fprintf('%10d%10d%10d%10d \n', firstPos, secondPos, thirdPos, fourthPos); 

disp(memstiff{m}); 

globstiff = assembled(globstiff,memstiff{m},node1(m),node2(m)); 

end; 

disp('K ='); 

disp(globstiff); 

const = zeros (1,restnode); 
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fori = 1:max(size(node)); 

ifstrcmpi('roller',constraints(i)); 

const (i) = 2 * node(i); 

elseifstrcmpi('pinned',constraints(i)); 

const (i) = (2 * node(i)) - 1; 

const (i + 1) = 2 * node(i); 

else 

loads((2 * node(i)-1):(2 * node(i))) = [loadx(i);loady(i)]; 

end; 

end; 

end; 

fori = 1:max(size(const)); 

if (const(1) == 0) 

const(i) = []; 

end; 

end; 

transposed_load = loads'; 

disp('External loads ='); 

disp(transposed_load); 

globstiff(:,const) = []; 

kcu = globstiff(const,:); 

globstiff(const,:) = []; 

kuu = globstiff; 

disp('Kuu ='),disp(kuu); 

disp('Kcu ='),disp(kcu); 

uu = kuu \ loads; 

react_force = kcu * uu; 

u = uu; 

u(const) = 0; 

for k = 1:dof 

fprintf ('U%d = %.4fmm;\t', k , u(k)); 

end; 

fprintf('\n'); 

disp('Reaction Forces =') 

disp (react_force); 

disp('Member Forces =') 

for k = 1:member 

meforce(k)  =memforce(area(k), modulus(k), lengt(k), cos_angle(k), sin_angle(k), u, node1(k), 

node2(k)); 

if (meforce(k) > 0) 

fprintf ('F(%s%s) = %.2fkN (T);\t', letters(node1(k)), letters(node2(k)), abs(meforce(k))); 

elseif (meforce(k) < 0) 

fprintf ('F(%s%s) = %.2fkN (C);\t', letters(node1(k)), letters(node2(k)), abs(meforce(k)));  

else 

fprintf ('F(%s%s) = %.2fkN;\t', node1(k), node2(k), meforce(k)); 

end; 

end; 

end; 


