
7/12/2021 Information and Communication Technology and Applications | SpringerLink

https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#about 1/4

ICTA: International Conference on Information and Communication Technology and Applications

© 2021

Information and Communication Technology and Applications

Third International Conference, ICTA 2020, Minna, Nigeria, November 24–27,
2020, Revised Selected Papers

Editors
(view affiliations)

Sanjay Misra
Bilkisu Muhammad-Bello

Conference proceedings ICTA 2020

5 Citations
7.2k Downloads

Part of the Communications in Computer and Information Science book series (CCIS, volume 1350)

Papers
About

Table of contents

Previous
Page of 3

1. Information Science and Technology

1. A Scoping Review of the Literature on the Current Mental Health Status of Developers
Ghaida Albakri, Rahma Bouaziz
Pages 485-496

2. Gamifying Users’ Learning Experience of Scrum
Guillermo Rodriguez, Alfredo Teyseyre, Pablo Gonzalez, Sanjay Misra
Pages 497-509

3. Visualizing Multilevel Test-to-Code Relations
Nadera Aljawabrah, Abdallah Qusef, Tamás Gergely, Adhyatmananda Pati
Pages 510-519

4. Privacy Preservation in Mobile-Based Learning Systems: Current Trends, Methodologies, Challenges,
Opportunities and Future Direction
Muhammad Kudu Muhammad, Ishaq Oyebisi Oyefolahan, Olayemi Mikail Olaniyi, Ojeniyi Joseph
Adebayo

https://link.springer.com/conference/icta1
https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#editorsandaffiliations
https://citations.springer.com/book?doi=10.1007/978-3-030-69143-1
https://link.springer.com/bookseries/7899
https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#toc
https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#about
https://link.springer.com/book/10.1007/978-3-030-69143-1?page=2#toc
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_37
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_38
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_39
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_40

7/12/2021 Information and Communication Technology and Applications | SpringerLink

https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#about 2/4

Pages 520-534
5. Drug Verification System Using Quick Response Code

Roseline Oluwaseun Ogundokun, Joseph Bamidele Awotunde, Sanjay Misra, Dennison Oluwatobi
Umoru
Pages 535-545

6. A Novel Approach to News Archiving from Newswires
Bilkisu Larai Muhammad-Bello, Mudi Lukman, Mudi Salim
Pages 546-559

7. Mobile Application Software Usability Evaluation: Issues, Methods and Future Research Directions
Blessing Iganya Attah, John Kolo Alhassan, Ishaq Oyebisi Oyefolahan, Sulaimon Adebayo Bashir
Pages 560-573

8. Perception of Social Media Privacy Among Computer Science Students
Adebayo Omotosho, Peace Ayegba, Justice Emuoyibofarhe
Pages 574-587

9. An Efficient Holistic Schema Matching Approach
Aola Yousfi, Moulay Hafid El Yazidi, Ahmed Zellou
Pages 588-601

10. AnnoGram4MD: A Language for Annotating Grammars for High Quality Metamodel Derivation
Hamzat Olanrewaju Aliyu, Oumar Maïga
Pages 602-617

11. Design and Implementation of an IoT Based Baggage Tracking System
Olamilekan Shobayo, Ayobami Olajube, Obina Okoyeigbo, Jesse Ogbonna
Pages 618-631

12. Validation of Computational-Rabi’s Driver Training Model for Prime Decision-Making
Rabi Mustapha, Muhammed Auwal Ahmed, Muhammad Aminu Ahmad
Pages 632-644

13. Efficient Approaches to Agile Cost Estimation in Software Industries: A Project-Based Case Study
Shariq Aziz Butt, Sanjay Misra, Diaz-Martinez Jorge Luis, De la Hoz-Franco Emiro
Pages 645-659

14. Efficient Traffic Control System Using Fuzzy Logic with Priority
Ayuba Peter, Babangida Zachariah, Luhutyit Peter Damuut, Sa’adatu Abdulkadir
Pages 660-674

15. An Enhanced WordNet Query Expansion Approach for Ontology Based Information Retrieval System
Enesi Femi Aminu, Ishaq Oyebisi Oyefolahan, Muhammad Bashir Abdullahi, Muhammadu Tajudeen
Salaudeen
Pages 675-688

16. Design of a Robotic Wearable Shoes for Locomotion Assistance System
Bala Alhaji Salihu, Lukman Adewale Ajao, Sanusi Adeiza Audu, Blessing Olatunde Abisoye
Pages 689-702

17. Design of Cash Advance Payment System in a Developing Country: A Case Study of First Bank of
Nigeria Mortgages Limited
Saka John, Jacob O. Mebawondu, Ajayi O. Olajide, Mebawondu O. Josephine
Pages 703-714

18. Users’ Perception of the Telecommunication Technologies Used for Improving Service Delivery at
Federal University Libraries in Anambra and Enugu State
Rebecca Chidimma Ojobor
Pages 715-726

19. A Step by Step Guide for Choosing Project Topics and Writing Research Papers in ICT Related
Disciplines
Sanjay Misra
Pages 727-744

2. Back Matter

https://link.springer.com/chapter/10.1007/978-3-030-69143-1_41
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_42
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_43
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_44
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_45
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_46
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_47
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_48
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_49
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_50
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_51
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_52
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_53
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_54
https://link.springer.com/chapter/10.1007/978-3-030-69143-1_55

7/12/2021 Information and Communication Technology and Applications | SpringerLink

https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#about 3/4

Pages 745-746
PDF

Previous
Page of 3

About these proceedings

Introduction

This book constitutes revised selected papers from the Third International Conference on Information and
Communication Technology and Applications, ICTA 2020, held in Minna, Nigeria, in November 2020. Due to the
COVID-19 pandemic the conference was held online.

The 67 full papers were carefully reviewed and selected from 234 submissions. The papers are organized in the
topical sections on Artificial Intelligence, Big Data and Machine Learning; Information Security Privacy and
Trust; Information Science and Technology.

Keywords

artificial intelligence communication channels (information theory) communication systems computer hardware
computer networks computer security cryptography data mining data security machine learning
network protocols signal processing software design software engineering telecommunication networks
telecommunication systems wireless telecommunication systems

Editors and affiliations

Sanjay Misra 1View author's OrcID profile
Bilkisu Muhammad-Bello 2View author's OrcID profile

1.Covenant UniversityOtaNigeria
2.Federal University of Technology MinnaMinnaNigeria

Bibliographic information

Book Title Information and Communication Technology and Applications
Book Subtitle Third International Conference, ICTA 2020, Minna, Nigeria, November 24–27 , 2020,
Revised Selected Papers
Editors Sanjay Misra
Bilkisu Muhammad-Bello
Series Title Communications in Computer and Information Science
Series Abbreviated Title Communic.Comp.Inf.Science
DOI https://doi.org/10.1007 /97 8-3-030-69143-1
Copyright Information Springer Nature Switzerland AG 2021
Publisher Name Springer, Cham
eBook Packages Computer Science Computer Science (R0)
Softcover ISBN 97 8-3-030-69142-4
eBook ISBN 97 8-3-030-69143-1
Series ISSN 1865-0929
Series E-ISSN 1865-0937
Edition Number 1
Number of Pages XXIV, 7 46
Number of Illustrations 86 b/w illustrations, 240 illustrations in colour

https://link.springer.com/content/pdf/bbm%3A978-3-030-69143-1%2F1.pdf
https://link.springer.com/book/10.1007/978-3-030-69143-1?page=2#toc
https://orcid.org/0000-0002-3556-9331
https://orcid.org/0000-0002-4020-7175
https://link.springer.com/search?facet-content-type=%22Book%22&package=11645&facet-start-year=2021&facet-end-year=2021
https://link.springer.com/search?facet-content-type=%22Book%22&package=43710&facet-start-year=2021&facet-end-year=2021

7/12/2021 Information and Communication Technology and Applications | SpringerLink

https://link.springer.com/book/10.1007/978-3-030-69143-1?page=3#about 4/4

Topics Information Systems and Communication Service
Computer Systems Organization and Communication Networks
Artificial Intelligence
Data Structures and Information Theory
Computing Milieux
Computer Appl. in Social and Behavioral Sciences

https://link.springer.com/search?facet-sub-discipline=Information%20Systems%20and%20Communication%20Service&facet-content-type=Book
https://link.springer.com/search?facet-sub-discipline=Computer%20Systems%20Organization%20and%20Communication%20Networks&facet-content-type=Book
https://link.springer.com/search?facet-sub-discipline=Artificial%20Intelligence&facet-content-type=Book
https://link.springer.com/search?facet-sub-discipline=Data%20Structures%20and%20Information%20Theory&facet-content-type=Book
https://link.springer.com/search?facet-sub-discipline=Computing%20Milieux&facet-content-type=Book
https://link.springer.com/search?facet-sub-discipline=Computer%20Appl.%20in%20Social%20and%20Behavioral%20Sciences&facet-content-type=Book

AnnoGram4MD: A Language for Annotating Grammars

for High Quality Metamodel Derivation

Hamzat Olanrewaju Aliyu
1
 and Oumar Maïga

2

1School of Info. & Comm. Tech., Federal University of Technology, Minna, Nigeria
2 Université des Sciences, Techniques et Technologies, Bamako, Mali

hamzat.aliyu@futminna.edu.ng, maigabababa78@yahoo.fr

Abstract. The quests for transfers of software artifacts between the model ware

and grammar ware technical spaces have increased in recent decades. Particu-

larly, the need to port grammar-based concepts into the model ware space has

birthed efforts to synthesise Ecore-based metamodels from Extended Backus

Naur Form (EBNF)-based grammars. However, automatic derivation of high-

quality metamodels from grammars is still a challenge as existing solutions

produce metamodels containing either superfluous classes or anonymous classi-

fiers or both, making the results less useful. AnnoGram4MD addresses these is-

sues by adding special annotations to the grammar as complementary informa-

tion to guide the derivation algorithm towards producing high-quality meta-

models. A comparison of AnnoGram4MD with existing solutions when applied

to a sample grammar reduced the number of EClassifiers by 52% and without

anonymous EClassifiers in the generated metamodel.

Keywords: Grammar to Metamodel, EBNF to MOF, Reverse Engineering,

1 Introduction

Metamodels and grammars define software languages in the modelware and gram-

marware technical spaces (TSs) respectively [1, 2]. Thus, "metamodel" and "gram-

mar" occupy equivalent meta positions in the two orthogonal TSs. Researches in

Model-Driven Engineering (MDE) [3, 4] have prompted the need to establish equiva-

lences between the two TSs to facilitate the exchange of specified domain concepts

between them. In fact, bridging the two TSs is considered a prerequisite to several

MDE activities [5] especially in reverse engineering and/or model-driven software

evolution [6] where codes are transformed to high-level models for use in the model-

ware TS. For example, a "semantic-preserving" grammar-metamodel translation is

needed to reuse Z language-based specifications[7, 8] in the modelware TS. The three

most significant deficiencies of the metamodels obtained using the existing grammar-

metamodel translation techniques are:

 Superfluous Eclassifiers (Classes and Enums) and EReferences.

 Presence of poorly named or anonymous Eclassifiers and EReferences.

 Missing elements due to incomplete extraction of concepts from grammars.

mailto:hamzat.aliyu@futminna.edu.ng

2

To address these issues, we view the challenges from two perspectives:

Difference in the goals of grammars and metamodels: An EBNF grammar [9] speci-

fies both the abstract and concrete syntaxes of a language while a metamodel defines

only the former. Thus, the mechanism for deriving metamodels from grammars must

be able to filter out those concrete syntax elements that will add noise to the output.

Difference in the details required to specify languages in the two TSs: Grammars use

fewer details than metamodels to define clear language elements. e.g., "Exp := Exp1 +

Exp1;" is understood once the token Exp1 is defined in the grammar. However, a

metmodel must define the roles of each operand wrt the operator "+". Thus, a mecha-

nism to infer a metamodel from the grammar must have a deterministic way to aug-

ment the limited information in the grammar to derive a complete metamodel.

This paper presents the Annotated Grammar for Meta-model Derivation (An-

noGram4MD), a language for annotating grammar specifications as directives for

automated derivation of "high-quality" metamodels. AnnoGram4MD defines special

annotations which guide the metamodel derivation algorithm to filter out “noisy”

concrete syntax elements and add extra information where necessary.

Section 2 lays the foundation for subsequent sections and presents a running exam-

ple to illustrate the approach. AnnoGram4MD's syntax and semantics are presented in

Sections 3 and 4 respectively with applications to the running example at different

stages. Section 4 discusses the related works before the conclusion in Section 5.

2 Background

2.1 Elements of a Software Language

We assume the reader has a basic knowledge of the elements of a software language

specification; hence they are not discussed here due to space constraints. If necessary,

interested readers may consults [10-12] for detailed descriptions of the elements.

2.2 Grammars

A (context-free) grammar specifies a language by defining all the keywords and con-

crete symbols to render its sentences in specified patterns[12]. They are used to define

programming languages, and to formalise other string-processing applications.

Mathematically, a grammar, G, can be defined as in Equation (1) [13]:

 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 ; 𝑉 ∩ 𝑇 = ∅. (1)

𝑉, 𝑇 and 𝑃 are finite sets of variables, terminals and production rules respectively.

While 𝑡 ∈ 𝑇 is an irreducible element of the language, 𝑣 ∈ 𝑉 describes an independ-

ent entity in the language vocabulary, which is defined recursively in terms of other

variables and/or terminals by production rules. 𝑆 ∈ 𝑉 is the root variable called the

starting symbol; every other element (variable or terminal) must be reachable from S.

EBNF [9] uses the model in Equation (1) to formally specify grammars. An EBNF

description is an unordered list of EBNF (production) rules, each having three parts: a

left-hand side (LHS), a right-hand side (RHS), and the special character “:=” (read as

"is defined as") separating the two sides. The LHS, a variable 𝑣 ∈ 𝑉, is defined by

the RHS which contains elements of (𝑉 ∖ 𝑆) ∪ 𝑇 in four major configurations [9]:

3

 Sequence. An ordered list of zero or more variables and/or terminals from left-to-

right. For example, the RHS of the rule 𝑣 ∶= 𝑣1𝑡1𝑣2 is a sequence.

 Selection. Two or more independent definitions (choices) separated by the

"stroke" character (|) from which exactly one is chosen. e.g., 𝑣 ∶= 𝑣1|𝑡1|𝑣2 .

 Option. An element appearing zero or one time at its specified location

 Repetition. One or more successive appearances of an element in a rule. Optional

repetition implies zero or more successive appearances of an element in a rule.

Listing 1 is an excerpt from syntax of the Z specification language [14], which serves

as a running example in this paper. The starting variable of the excerpt is Predicate.

Listing 1. A sample grammar

2.3 Metamodels

“A metamodel is a model of a modelling language” [1]. It defines the abstract syntax

(set of domain concepts and their legal relationships) of a modelling language. A

metamodel may be described using a subset of the Unified Modeling Language

(UML)'s class diagram [15].

2.4 Annotations

Annotations are special metadata that provide additional information about pro-

gram/model elements during processing without altering their semantics [16]. They

are used in programming languages like Java for documentations and to associate

specific properties with program artefacts. In the modelware, annotations are used in

UML to aid code syntheses. They are also used sparingly in grammarware to filter

undesired grammar elements or add role information to grammar elements [17]. In

AnnoGram4MD, we adopt the Java convention [16] to annotate EBNF grammar

rules. This convention can be described in general using EBNF as:

Annotation:= @annotationType[(param1 = ‘value1’,..., paramn = ‘valuen’)]

3 AnnoGram4MD

This section presents the key elements of AnnoGram4MD language specification; i.e.,

the syntaxes, syntax mapping, semantics domain and semantics mapping.

3.1 Abstract and Concrete Syntaxes

The metamodel in Fig. 1 shows the abstract syntax of AnnoGram4MD. The language

combines major grammar concepts with annotations embedded in production rules.

Therefore, the abstract syntax has two parts with one describing grammar elements as

summarized in Section 2.2 and the other describing the proposed abstract annotations.

4

Fig. 1. Abstract syntax of AnnoGram4MD.

Grammar Concepts in AnnoGram4MD. This part is contained within the dotted

box on the right side of Fig. 1. A grammar (Class Grammar) has a vocabulary which

is a set of named Elements. An element may be a Variable, Terminal or any of the

different configurations described previously in Section 2.2.

AnnoGram4MD Annotations. They are specified in the dashed box on the left side

of Fig. 1. A productionRule (i.e., in the grammar concepts) may contain some annota-

tions attached to it. The various kinds of annotation in AnnoGram4MD are:

Ignore Annotation. It is used to filter tokens that serve only as concrete syntax ele-

ments in the grammar and, as such, are to be excluded from the generated metamodel.

Given that a rule defines a set as “𝑆 ≔ 𝑎, 𝑏 ; ", metamodelling simply sees 𝑆 as com-

prising 𝑎 and 𝑏 while all other symbols on the RHS are concrete syntax elements. We

represent the annotation as “@ign” preceding a token. In the rule “SetExp” in Listing

1, the curly brackets “{” and “}” in the two choices and the bullet symbol “” are not

needed in the metamodel. These can be removed by annotating the rule as follows:

SetExp:=@ign{[Expression,...,Expression]@ign}
|@ign{SchemaText[@ignExpression]@ign};

Role Annotation. It is used to precise the role of an element in a sequence configura-

tion. The grammar only indicates the presence of each element at certain locations in

a sequence without any clue its role. This becomes more important when a particular

element appears at different positions in the sequence. While the role is intuitive in

the grammar, it will be difficult to differentiate them when translated to a metamodel.

Therefore, this annotation adds unique role names to variables and terminals where

necessary. It is denoted by @role(`roleName'). We illustrate its application on one of

the choices in the selection that produces the variable Expression in Listing 1:

Expression:=@role(‘lhs’)Expression1 @role(‘op’)InFun @role(‘rhs’)Expression1;
In this example, the production rule describes an infix operator “InFun” with two

operands each of type “Expression1”. When translated into a metamodel, each ele-

ment in this sequence will be a kind of structural features (e.g., attribute or reference)

of class “Expression” which should have a “name” and a “type”. Since only the types

are explicit in the grammar, this annotation provides the “roleName” to complement

the available information for a complete metamodel derivation.

5

Plain Annotation.It indicates variables whose productions are selections of only ter-

minal choices; e.g., “Rel” and “InFun” in Listing 1. Such entities are expressed in

metamodels as enumerations with each of the choices as a literal; more details of this

will be provided in the semantics. The annotation is used by simply placing @plain

before the variable. By applying it to the “Rel” and “InFun” variables, we have:

@plainRel:=equal|neq|greater|memberOf|geq|leq|contains;
@plainInFun:=plus|minus|mult|div|mod|union|intersection;

Proxy Annotation.We can see from Fig. 1 that the outer-most configuration presented

by the RHS of a productionRule may embed some other configurations. e.g., embed-

ding sequences within selections. While this enhances the compactness of the gram-

mar, it also leads to shortage of information when translating the grammar to meta-

model, thereby leading to the creation of anonymous Eclassifiers in the metamodel.

To address this problem, we define a variable, “substitute”, through a proxy annota-

tion to replace the embedded configuration while itself (substitute) is defined by the

“principal” configuration being replaced. It is applied by preceding a configuration to

be replaced with @prox('substitute'). We apply it to the rule SetExp in Listing 1, thus:

SetExp:= @prox(‘EnumeratedSet’){[Expression,...,Expression]}
|@prox(‘SetBuilder’){SchemaText[Expression]};

After processing the annotations, the rule will be broken into simpler rules as follows:

SetExp := EnumeratedSet|SetBuilder;
EnumeratedSet := {[Expression,...,Expression]};
SetBuilder := {SchemaText[Expression]};

Type Annotation. Recall from Section 2.2 that terminals are indivisible elements in a

grammar which are usually expressed in metamodels as attributes of primitive types

like integer, boolean etc. Given a grammar describing a domain, a domain expert may

intuitively decipher the group to which a terminal belongs but this must be explicitly

defined in a metamodel. We use the type annotations to add type information to ter-

minals where necessary. It is denoted by @type(„type‟) preceding a terminal. Given

an hypothetical production rule, Article := name value; describing an article in

a store where terminals “name” and “value” refer to the article's name and price re-

spectively. While a reader can intuitively respectively assign types string and double

to the terminals, a transformation algorithm must be told. We apply the annotation as:

Article := @type('string')name @type('double')value;
Collect-and-Merge Annotation. This is a combo annotation that provides directives

for refactoring a particular pattern of definition by providing a simple general equiva-

lent definition for a group of choices in a selection. It is used to tell the parser that a

group of two or more choices in a selection configuration can actually be collected

and merged into one choice as a common denominator in a metamodel. There are two

requirements to be met by all choices in the group to merit being merged:

i. All choices in the group are described by a sequence of same elements in the

same order; the only difference being the terminals at one particular position

in each sequence

ii. The distinguishing terminals at the specific position must be semantically

suitable to be grouped into one category in the domain being described.

6

For instance, given a production rule describing the mathematical expression as

Exp:=Exp1 + term|Exp1 - term|Exp1 * term|Exp1 div term;, all the

four choices in the selection are expressed as sequences of same elements in same

order with the only difference being the middle terminals (+, -, * and div). Interest-

ingly, these terminals can be semantically grouped into a category 'ArithOps', i.e.,

Arithmetic operators. If we generate a metamodel from this rule as is, it will give four

superfluous sub-classes of Exp, each denoting the different operations. However, it is

sufficient to merge the four choices into one by replacing the middle terminals with a

variable 'ArithOps'. In that way, the rule can be replaced by the following two rules:

Exp := Exp1 ArithOps term;
ArithOps := +|-|*|div;

Similarly, the first three choices in the production of variable Predicate in Listing 1

typifies this situation; the differences between the three choices are the terminals ∀, ∃

and ∃1 in the first position of each sequence. Semantically, the three terminals belong

to the group of “Quantifier" and so can be collected and merged in a variable. Collect-

and-Merge combines two annotations, @merge and @col, which are defined as:
@merge(colRole=‟role‟,colType=‟varName‟,denomintor=‟replacement‟)(choice1|...|choicen)

choice1|...|choicen are the choices to be merged. The collect parts of the annotation,

denoted by @col(„termi‟), identify the unique terminals in their respective choices.

The parameter “colType” of @merge specifies the name of the general variable to

replace the unique terminals while “colRole” specifies its role name in the refactored

grammar and “denominator” defines a general replacement for the merged of choices.

After processing the directives given by this group of annotations,

(choice1|...|choicen) will be replaced by @role(„role‟) varName replacement;

in the original rule and a new rule varName:= term1|...|termn; is created. We illustrate

this combo-annotation by applying it to the production rule of Predicate in Listing 1.

Predicate:= @merge(colRole='quantifier',colType ='Quantifier',
denominator='Quantifier SchemaText Predicate')(@col('forAll')
∀SchemaText  Predicate|@col('exists') ∃SchemaText  Predi-
cate |@col('unique') ∃1SchemaText  Predicate) | Predicate1;
The @merge part of the annotation covers the first three choices of the selection con-

figuration while the @col parts provide the identities to distinguish the terminals.

Therefore, after processing these directives, the rule will be refactored as follows:
Predicate := @role('quantifier') Quantifier SchemaText Predicate
|Predicate1; Quantifier := forAll | exists | unique;

Consequently, instead of having three superfluous classes - each describing one of the

merged choices - in the resulting metamodel, we will have one class with an attribute,

quantifier, of type Quantifier while Quantifier itself will generate an enumeration with

literals “forAll”, “exists” and “unique”.

3.2 Case Study

Listing 2 presents the application of appropriate annotations to the entire grammar in

Listing 1. Note the applications of multiple annotations on the same elements. The

semantics will be provided in the next section.

7

Listing 2. AnnoGram4MD Annotated Grammar

3.3 Semantics Domain

Fig. 2. Abridged Ecore Kernel

The semantics of AnnoGram4MD is based on the Ecore, an implementation of the

Object Management Group (OMG)'s Essential Meta-Object Facility (EMOF) [18] for

the Eclipse Modeling Framework (EMF) [19]. Ecore contains a part of the UML class

that is sufficient to create abstractions of classes and class structures.

Fig. 2 is an abridged Ecore kernel that defines the semantics of AnnoGram4MD.

ENamedElement is the base class of all uniquely named elements in a metamodel.

EClass describes an independent entity which may have some attributes (eAttributes)

and/or references (eReferences) as structural features and may inherit from other

Eclasses by referencing them as its superTypes. Every attribute has a type that is de-

fined by a data type or an Enumeration. The allowable limits of occurrence of an at-

tribute or reference in a class are defined by lowerBound and upperBound.

3.4 Semantics Mapping

The semantics mapping occurs in two phases: normalization and derivation. The deri-

vation phase generates metamodel from the normalized annotated grammar by map-

ping its elements to the corresponding elements of the Ecore.

8

Normalization. In AnnoGram4MD, a normalized grammar is one in which:

i. There are no concrete syntax-specific symbols except those for recognising

configurations and the separators ';' that mark the ends of production rules.

ii. No selection has any other configuration embedded in any of its choices

iii. No sequence has a selection embedded within it

iv. No option or repetition has any other kind of configuration embedded in it

v. No selection contains choices that may be merged into a compact choice

Condition (i) can be satisfied by processing all @ign annotations in the grammar,

conditions (ii)-(iv) by processing all @prox annotations while condition (v) is satis-

fied by processing the @merge-and-@col annotations. Algorithm 1 presents the nor-

malization algorithm to process all occurrences of the aforementioned annotations in

the grammar in the normalization phase. A normalization of the annotated grammar in

Listing 2 produces a normalized annotated grammar as shown in Listing 3.

Listing 3. Normalized Annotated Grammar

Derivation. The derivation phase maps the elements of the normalized annotated

grammar obtained in the previous phase to Ecore elements to generate metmodels.

The derivation process follows two general rules:

9

Table 1. Mapping table for productions of class variables *Assume L to be the EClass gener-

ated for variables

Configuration Element Annotation Ecore Element

Sequence

class variable C @role(“rolename”)

A reference of L with name "rolename", cardinality '1..1'

and type C. If no @role annotation, reference name same

as C in lowercase.

enum variable E @role(“rolename”)

An attribute of L with name "rolename", cardinality '1..1'

and type E. If no @role annotation, reference name as L

in lowercase.

terminal T
@role(“rolename”)

@type(“typename”)

An attribute of L with name "rolename", cardinality '1..1'

and type @type("typename"). If no @role annotation,

reference name as T in lowercase.

Selection C1|C2|...|Cn N/A EClasses C1, C2, ..., Cn are subclasses of L

Option Same as in Sequence but with cardinality '0..1'

Repetition Same as in Sequence but with cardinality '1..*'

Optional repetition Same as in Sequence but with cardinality '0..*'

i. Every lhs variable with @plain annotation translates into an EEnum such that

the choices at the rhs of the production become the eLiterals of the EEnum.

ii. Every lhs variable without a @plain annotation translates into an EClass.

Table 1 provides a summary of how the rhs elements are translated to build the

EClass obtained from the lhs following from these rules, henceforth; we refer to vari-

ables with and without the @plain annotation as enum variables and class variables

respectively. In Table 1, `L' represents the EClass generated from the class variable on

the lhs of the production rule.

Algorithm 2 gives the details about the implementation of the rules in the table.

Function 𝑑𝑒𝑟𝑖𝑣𝑒 (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑉, 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑚𝑚𝑎𝑟 𝐺) takes two parameters; V

and G (where V is a variable in G) and returns a metamodel EClass or EEnum derived

from the description of V in G. In the process of building the metamodel representa-

tion of a variable, the function recursively builds the corresponding metamodel ele-

ments of all variables and terminals that define its production rule. The result obtained

by processing the normalized grammar in Listing 1.3 with the derivation algorithm is

shown in Fig. 3(a). The R@role and R@type clauses in the derive function refer to

the information attached to R by the @role and @type annotations respectively.

There are other smaller functions called within the function derive() which we cannot

provide their detailed definitions due to space constraint. We will however provide

brief descriptions. newClass(V) returns an EClass named 'V' if already created, it

creates and returns a new class named 'V' if otherwise. newEnum(V) is similar to

newClass(V) except that it returns an EEnum instead. addAttribute(C, word, T, mult)

adds an attribute 'word' of type 'T' with cardinality 'mult' to EClass 'C'. addLiteral (E,

word) adds an eLiteral named 'word' to an EEnum 'E'. connectSubClass(C1, C2) cre-

ates an inheritance relationship between classes C1 and C2 with the former as the

superType of the later. Finally, compose(C1, C2, role, mult) creates a composition

10

association named 'role' with cardinality 'mult' between classes 'C1' and 'C2' with the

former as the container. Algorithm 3 describes the main transformation function that

cascades the normalization and derivation processes. It takes a raw annotated gram-

mar and its starting variable as input to generate an equivalent metamodel.

4 Related Works

Alanen and Porres [20] made one of the earliest proposals that gave impetus to further

studies of this subject. The idea is to map each token in a sequence configuration to

ordered unidirectional composite properties (references and attributes). Properties

generated for successive tokens in a sequence are numbered in increasing alphabetical

orders to document their order of occurrences in the source grammar. The rules for

11

generating the cardinalities of such properties are similar to that used in our approach.

For every terminal symbol (including the concrete syntax-specific elements), an enu-

meration is created having the string value of the terminal as its only literal, then an

attribute is added to the class with this enumeration as its type. When a selection con-

figuration is encountered, a class is generated with an automatically generated no-

menclature and it is sub classed by the classes generated for all choices in the selec-

tion. Similar automatically-named classes are generated for repetitions and options

which are then connected to the corresponding classes under them according to the

rule for sequence configuration. An attempt to use this approach has shown that it will

produce a metamodel that is very difficult to (re)use. There are issues such superflu-

ous classes, properties and enumeration. Another aspect that needs improvement in

this approach is the area of nomenclature of metamodel elements which is also ac-

knowledged by the authors; the use of alphabets in ascending order as names of

metamodel elements will not help the user to understand the domain being modeled.

Using this approach, the metamodel derived from the grammar in Listing 1. is shown

in Fig. 3(b). When compared with the metamodel generated by AnnoGram4MD in

Fig. 3(a), we observe that the latter generated a total of 20 classes and enums com-

pared to 42 in the latter; that is about 52.4% reduction in the size of the output. More-

over, out of the 42 classifiers in Fig. 3(b), only 9 have comprehensible names while

others bear some anonymously generated identities. This is also compounded by the

generated references, which all have anonymous identities.

AnnoGramm4MD proffers solutions to these drawbacks as shown in the Fig. 3(a)

with the metamodel elements bearing names extracted from the source grammar and

the embedded annotations. Due to space constraint, we cannot do side-by-side com-

parisons of the metamodel generated by AnnoGramm4MD and every other work in

the literature; nevertheless, we present as much of such comparisons as possible in the

rest of this section.

Fig. 1. Derived metamodels from grammars

12

Wimmer and Kramler [21] have also proposed solutions to some of the drawbacks of

[20]. They proposed a three-stage process to generate high-quality MOF-based meta-

models from EBNF grammars. The first stage, parsing stage, generates what is re-

ferred to as a raw metamodel from a given EBNF grammar. It generates a stereotyped

class for every kind of configuration encountered (e.g., sequence, repetition) that has

the appropriate references to the metamodel elements generated from the grammar

tokens they encapsulate.

 Having recognized the possibility of the raw metamodel having exaggerated num-

ber of classes, the second - optimization- stage removes undesired elements while

documenting the changes made in a "change model". The result obtained from the

second stage is called the “condensed metamodel”.

The third - customization - stage adds annotations to the condensed metamodel to

provide additional semantics that are not expressed in the original EBNF grammar.

From the annotated condensed metamodel, a “customized” metamodel is automati-

cally generated which is considered to be of high quality.

While this is an interesting approach especially considering the fact that it uses the

native annotation techniques in the target MOF, we are of the opinion that unless a

strict measure is taken, the user may have to redo the annotation in the event that the

grammar (source) changes and existing annotations are overwritten during regenera-

tion. Moreover, the user will most likely have to redo the optimization and customiza-

tion processes as many times as changes are made in the grammar. AnnoGram4MD

add annotations to the grammar itself and automates all other processes to avoid the

possible situations of repeated work at the different stages when some changes are

made in the grammar since they will all be automated. Another advantage of doing

the annotation at the source is that it allows for building the metamodel directly from

the knowledge of grammar; even someone with only the knowledge of grammars can

play with the annotations and obtain a usable metamodel of the domain.

A more recent approach by Kunert [17] proposed another interesting multistage so-

lution. The author is also of the opinion that it will be more convenient to add abstract

concepts directly to the grammar as the user will have only one source file to contend

with; an opinion that arguably gives more credence to the approach proposed in the

current paper. Kunert [17] however did not propose a complete solution to this hypo-

thetical problem. Though the paper also uses annotations in the grammar, its use is

limited to identifying grammar specific concrete syntax elements that are not required

in a metmodel; it used a special character `!' to annotate concrete syntax elements

such as delimiters and identifiers in the grammar to prevent them from being trans-

ferred to the generated metamodel. The annotated grammar is then fed into a parent

compiler that produces what is called the “simple metamodel" which is considered to

be of low quality. The simple metamodel is processed further in a second stage by

removing unwanted classes and providing additional annotations to provide informa-

tion such as alternative class names to produce a “good metamodel". The paper identi-

fies the need for annotating only grammars and automating all other processes, though

it did not provide a complete solution to the problem. It, however, provides the moti-

vation for further contributions such as AnnoGram4MD.

13

5 Conclusions

We have presented the AnnoGram4MD, a language that formally blends java-like

annotations with grammar concepts to facilitate the addition of complementary infor-

mation to EBNF-based grammars for automated synthesis of equivalent domain

metamodel of high quality. This has become necessary particularly to facilitate the

reuse of grammar-based formal specification languages in the MDE environments.

This paper documents the syntax and semantics of the language as well as a case

study to illustrate its usability in a step-by-step application of the different techniques.

AnnoGram4MD offers the means to underscore grammar elements that are not de-

sired in metamodels as well as add domain-specific information not captured in the

grammar concepts but required to build useful metamodels while the metamodel deri-

vation process can be completely automated.

It is however important to state here that our current solution does not directly pro-

vide support for adding information that could be used to derive constraints for static

semantics as is sometimes required to complement a metamodel. But it supports the

derivation of usable Ecore-based metamodels. Moreover, unlike most of the existing

solutions, there is currently no support for bidirectional transformation between

grammars and metamodel though our grammar to metamodel track claims some im-

portant advantages compared to many other proposals. We believe the documentation

provided in this paper can serve as guide towards the implementation of supporting

tools for the language.

References
1. Favre, J.-M. Foundations of meta-pyramids: Languages vs. metamodels--episode ii:

Story of thotus the baboon1. in Dagstuhl Seminar Proceedings. 2005. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik.

2. Favre, J.-M. Towards a basic theory to model model driven engineering. in 3rd

Workshop in Software Model Engineering. 2004.

3. Schmidt, D.C., Model-driven engineering. Computer-IEEE Computer Society-, 2006.

39(2): p. 25.

4. Brambilla, M., J. Cabot, and M. Wimmer, Model-driven software engineering in

practice. Synthesis lectures on software engineering, 2017. 3(1): p. 1-207.

5. Bergmayr, A. and M. Wimmer. Generating Metamodels from Grammars by

Chaining Translational and By-Example Techniques. in First International Workshop

on Model-driven Engineering By Example. 2013.

6. Izquierdo, J.L.C. and J.G. Molina, Extracting models from source code in software

modernization. Software & Systems Modeling, 2014. 13(2): p. 713-734.

7. Smith, G., The Object-Z specification language. Vol. 1. 2012: Springer Science &

Business Media.

8. Spivey, J.M. and J. Abrial, The Z notation. 1992: Prentice Hall Hemel Hempstead.

9. Feynman, R., EBNF: A Notation to Describe Syntax. Режим доступа: http://www.

ics. uci. edu/~ pattis/misc/ebnf2. pdf. 2016. 1-19.

http://www/

14

10. Kolovos, D.S., et al. Bridging the Epsilon Wizard Language and the Eclipse

Graphical Modeling Framework. in Modeling Symposium, Eclipse Summit Europe,

Ludwigsburg, Germany. 2007.

11. Kleppe, A. A language description is more than a metamodel. in Fourth international

workshop on software language engineering. 2007. megaplanet. org.

12. Kleppe, A., Software language engineering: creating domain-specific languages

using metamodels. 2008: Pearson Education.

13. Hopcroft, J.E., R. Motwani, and J.D. Ullman, Introduction to automata theory,

languages, and computation. Acm Sigact News, 2001. 32(1): p. 60-65.

14. Spivey, J.M., Understanding Z: a specification language and its formal semantics.

Vol. 3. 1988: Cambridge University Press.

15. Booch, G., The unified modeling language user guide. 2005: Pearson Education.

16. Cazzola, W. and E. Vacchi, @ Java: Bringing a richer annotation model to Java.

Computer Languages, Systems & Structures, 2014. 40(1): p. 2-18.

17. Kunert, A., Semi-automatic generation of metamodels and models from grammars

and programs. Electronic Notes in Theoretical Computer Science, 2008. 211: p. 111-

119.

18. OMG, OMG Meta Object Facility (MOF) Core Specification. 2019, Object

Management Group.

19. Steinberg, D., et al., EMF: eclipse modeling framework. 2008: Pearson Education.

20. Alanen, M. and I. Porres, A Relation Between Context-Free Grammars and Meta

Object Facility Metamodels. 2003.

21. Wimmer, M. and G. Kramler. Bridging grammarware and modelware. in

International Conference on Model Driven Engineering Languages and Systems.

2005. Springer.

