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Abstract

This paper compares the approach and results of all the interval-based superstructure
methods for the synthesis of optimal heat and mass exchange networks. Differences in
approach are largely due to how the interval boundaries are defined. Approaches based
on the stagewise superstructure simply define the number of intervals, whereas the
interval-based superstructures define the interval boundaries by stream supply or target
temperatures/compositions. Comparison of results over a range of heat and mass
exchange network examples shows that not one of these approaches gives the solution
with the lowest total annual cost for more than a few of the examples. Approaches that
use more of the intervals generated tend to give better solutions. The non-linear sub-
optimisation step of the heat exchanger network stagewise superstructure gives the
largest number of best solutions.

Keywords: Heat exchanger network synthesis, Mass exchanger network synthesis,
Superstructure, MINLP.

1. Introduction

The tasks of synthesizing cost effective heat exchanger networks (HENs) and mass
exchanger networks (MENs) are key areas of process synthesis. Heat exchanger
network synthesis (HENS) has received much attention over the years, stimulated by the
development of the Pinch Approach by Linnhoff and Flower (1978). MENS has
received less attention than HENS. El-Halwagi and Manousiouthakis (1989) first
applied the pinch concept of HENS to MENS for targeting the minimum mass
separating agent (MSA) usage.

An important development in process synthesis has been the development of interval
based superstructures for simultaneous optimization of all the competing costs in HENS
(Yee and Grossman, 1990, Isafiade and Fraser, 2008a, Azeez ef al., 2011 and 2012) and
in MENS (Chen and Hung, 2005, Szitikai, et al., 2006, Comeaux, 2000, Isafiade and
Fraser, 2008b, Azeez, et al., 2011 and 2012). Lewin (1998) adopted the genetic
algorithm (GA) approach for simultaneous synthesis of heat exchanger networks while
Krishna and Murty (2007) used a differential evolution (DE) technique.

Yee and Grossman (1990) developed the stagewise superstructure (SWS) for HENS,
where the number of stages were determined by the maximum number of hot or cold
streams present in the synthesis task. The MENS analogue of Yee and Grossmann’s
SWS (1990) was first presented by Chen and Hung (2005), using one more stage than
Yee and Grossman did. Szitikai, et al. (2006) also used the key SWS idea of Yee and
Grossman to develop a similar superstructure for MENS. Sztikai, et al., suggested
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adding the number of rich and lean streams in the synthesis task to set the maximum
number of stages in the superstructure, for moderate numbers of streams.

Isafiade and Fraser (2008a) developed the interval based mixed integer non linear
programming (MINLP) superstructure (IBMS) for HENS using either the supply and
target temperatures of hot streams in a hot based superstructure or the supply and target
temperatures of cold streams in a cold based superstructure. They also developed the
mass exchange analogue of the IBMS for MENS (Isafiade and Fraser, 2008b).
Subsequently, Azeez, et al. (2012) presented the Supply based Superstructure (SBS)
approach for HENS and MENS, where the superstructure interval boundaries were
defined using the supply temperatures of both the hot and the cold streams. They
further developed this approach to both the Supply and Target-based Superstructure and
the Target and the Supply-based Superstructure (T&SBS) (Azeez, et al., 2011).

The purpose of this paper is to compare the methodology and results of all these
interval-based mathematical programming techniques.

2. Methodology

Table 1 shows the differences between the various HENS superstructures as well as
their similarities, in terms of their formulation and implementation, and Table 2 does the
same for the various MENS superstructures. The major difference in the formulation of
the superstructures is the way in which intervals have been defined. This leads to
different ways of fixing the boundaries in each of the superstructures. The ways on
which the boundaries are fixed also informs the intervals where the HEN/MEN streams
will be present for heat/mass to be exchanged. Another important difference between
the various approaches is the variation in the number of intervals created for heat/mass
exchange.

3. Results, Discussion and Conclusions

The results of all the studies being compared in this paper are shown in Table 3, both
for HENS examples (Examples 1 — 7) and for MENS examples (Examples 8 — 11).
This table gives information about the structure of the solution (number of matches and
number of stream splits), the usage of the intervals created (number and % used), and
also the Total Annual Cost (TAC) of each of the solutions (with each being compared to
the lowest TAC for that example).

What stands out in comparing the results for all the examples shown in Table 3 is that
ot one method consistently gives the solution with the lowest TAC. This is an
important finding, in that it is clear that none of the methods developed so far achieves
the global optimum solution for all the examples studied. Another finding to come out
of this comparison is that in general, the better solutions in terms of TAC are those
which use a greater proportion of the intervals created. When formulating the SBS,
S&TBS and T&SBS approaches, we had thought that they might lead to better solutions
because by providing more intervals they would enlarge the solution space. This now
appears to not be the case, unless the intervals created can be fully utilised.

It is also clear from Table 3 that the SWS for heat exchanger network synthesis, with its
non-linear sub-optimisation step does generally outperform all the other techniques.
More work needs to be done to ensure a better comparison of the different approaches,
with a view to developing a technique that will consistently give the best solution over a
wide range of HENS and MENS problems.
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Table 3. Comparison of results using different methods.

DM Fraser, et al.

No of intervals/No of intervals| % intervals

TAC Percent

Example Method Noof units | Stream Splits [ L™ T e, 2 bifference (%)]
T&SBS. s )i o [ 3 S0 { I 500 |
S&TBS (Type 2) s 3 3 60 I 208 |
| 4SP1 (Lee er al., 1970) SBS“’ : “ : i = . ! ‘1 o]
S&TBS (Type I} B | 5 | 4 80 i 195
T&SBS 6 | 3 50 2.06
1BMS (Cold bascd) 5 [ 3 60 167
IBMS (Hot based) 5 80 102
2.451 (Shenoy, 1995) i 5 o 02
S&TBS (Both Types) 67 0.16
SW. 100 0.00
S&TBS (Type 1) 0 1634
i S&TBS (Type 2) 3 50 1295 |
3, Linnhoft, et al. (1982) SBS 7 75 1277 |
| T&SBS 5 0 | 3 4 80 913 |
SWS 5 2 [ 2 I 2 100 i 000 |
Cold based (IBMS) 7 | 3 | 3 100 i 381
T&SBS i I 3 £y 67 T 33
4 Magnots Problem Hot based (IBMS) 7 [ z i 3 4 1 2|
(Yee and Grossmann, 1990) |—>1 B3 (Tpe 1) i ' ! 3 e Al
< SBS 8 6 | 4 67 [ 5%0.0: 19
SNTBS (Type2) | 10 | | 7 I B 71 577,602 .77 |
SWS 7 1 3 | - - [ 576640 | 06 |
| S&TBS (Type 1) 13 3 9 i B 56 [ 2979000 | 5 |
5. Aromatic Plant Ji] SBS 14 6 9 [ 5 56 2976000 | 4 1
(Linnhott & Ahmad, 1990) S&TBS (Type 2) 1] 1 9 i s 56 [ 2.940.000 |
T&SBS 17 7 0 I 3 60 202200 | 059 |
T&SBS 7 ] 1 6 I 5 I 83 101,893 96
S&IBS 6 2 5 4 30 T 101889 S
azMulpIEUheE] SBS 3 % 3 < I T w1 ml 89 B
(Shenoy et al., 1998) .
IBMS 9. | - i | - | - 97.211
SWS 7 | [ - I 3 1 97019 | 0.00
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