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Abstract — We inve&tigatéd the flow of slowly reacting.non-
Newtonian fluids between two parallel horizontal plates. The
viscosity of the fluid is an exponential function of the fluid mean
temperature. The reaction rate is assumed to take the form of a
power function according to the Arrhenius law and the system is
characterized by very large activation energy. We non-
dimensionalize both the momentum and energy equations and the
steady state equations were solved analytically and numerically. We
proved that the steady state problem has a solution using the
shooting method technique. It is shown that the system parameters i
have significant influence impact on the solutions. A major result
of the paper is the existence of two solutions for the yelocity. -
equation. * % : Ry e
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I. INTRODUCTION

Much research efforts have been devoted to the study of
heat transfer and-thermal ‘stability of reacting non-Newtonian
{luids [for instance 1-5]. Poiseuille flow constitutes a class of
parallel flows in fluid mechanics with miany applications in
modeling of severa] biological and epg’in’éering systems. This
type of flow normally occurs between two parallel Planes due
lo an imposed constant pressure or flow .uniformity on both
planes [1-2]. The flow behaviour of non-Newtonian fluids has
wide applications in many branches of science and
engineering. :

of pflrticul:ir interest is the thermal behaviour of fluids
whosé Videosity ‘chaniges With' températire’ and’ the' oW 8
accompanied by a simultaneous transfer of mass, energy and
momentum in the system due to reaction occurring between
the fluids. The ability to adequately describe such systems is
necessary for the prediction of its thermal stability among
others. This is of extreme importance not to compromise on
safety of life and materials during handling and processing of
such fluids [6,7]; and for quality control purposes in many
manufacturing and  processing industrics  [1,3].  An
improvement in, thermal recovery and. utjlization. during .the
convective flow in any fluid is one of the fundamental
problems of the engineering processes. An improved thermal
integration of such systems will provide. for better material
processing, energy. conservation and more environmentally
benjgn process [8].

The first published work in modeling of flow of chemically
ceactive fluids was credited to Liljenroth [9]. He investigated
how autocatalyticity led to ignitions and multiple steady states

fthe existenice" of !

S

h.an S reastor. He also studied the balance between
heat pré&ixcﬁfoh by an exothermic reaction and its removal by
convective flow of the process streams. N
JFollowing up on this ground breaking work, Adler [10]
using numerical techniques, studied the temperature and radius
of the hot gas bubble in 2 chemically reactive flow system
consisting of viscous, incompressible fluids to obtain the
. criteria, for: the initiation thermal explosion. In this work
hox-vevei",\ ‘the work failed to account for the viscosity
depcpdénce as wal‘ as Lhe;;g:qvity,eff_,ect_s._’_l_"he possibility of

a ' considerable " resistance to” heat transfer

" beuween the reacting fluids and system as 2 result of low
rcﬁ:onducting f.luids;_?r‘ l?i gblvy conductive vessel wall, resulting in
gradient, was reported by Frank-

significant temperature
Kamenetskii [11].
. Various constitutive models have been proposed to describe
the properties of non-Newtonian fluids. The major problem
however is that none of these models can adequately describe
the peculiarity of these class of fluids. In recent time, the
HiathetHARLAl fotnlultion of thermally critical “Systems mainly

focuses on the determination of the critical regimes separating
the regions of explosivity and non-explosivity of chemical
reactions. "Adesanya et al [12] reported the existence of a
secondary flow for a temperature dependent viscous Couctte
flow. A detail review of various works on stability of flows
was reported by Billingham [14]. Yihao Zheng et al. [15]
investigated the kinetic behavior and hydrodynamics of
pressure-driven Poiseuille flow. Makinde [5] studied the
thermal:istability . ofi.a. reactive third-grade -liquid flowing
stexdily - between . twor parallel plates with symmetrical
conveclive cooling at the walls. Shonhiwa [16] succeeded in
obtuining transitional values for reactive plane-Poiseuille flow
with approximation to the Arrhenius-rate term. ‘
_ ‘i'he effect of the dimensionless non-Newtonian coefficient
on the thermal stability of a reactive viscous liquid flowing
betveen two parallel heated plates was investigated by Okoya
[17]. In the work, values for transition (that is, where criticality
disuppeared) ranging from n=0 to 2 were obtained. For a)
bimolecul'alt‘atemperature:dcpendence, n was reported-to be Ya;
b) n = 0 for Arrhenius or zero-order reaction and c) for
ser-itized-temperature dependence, n = -2. Extending the work
to steady <How—of reactive incompressible  third-grade
hon:ogeneous fluids between two parallel plates with the lower
plaie at rest and the upper plate in uniform motion, Okoya [18]
employed numerical methods to obtained the critical and
transitional values of the flow parameters for the ahove three
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cases. For generalized Couette flow Okoya [19] mvesugated ;

the thermal transition of a reactive flow of a third- -grade fluid

with viscous heating and chemical reaction.

Also, extensive work has been carried out on the subject for “E

various shapes of the cross-section of the-thermal - -explosion;,
[22-27). Hence the study of hydlodynan'ucs and thermal
explosion within a channel is very important for pracUcal
purpases.

The goal of thxs papet is to investigate the variations of '

velocity profile for a steady, fully developed, incompressible;
fluid whose viscosity depends strongly on temperature.

s

I0. MATHEMATICAL MODEL

We consider the flow ‘of an incompressible viscous fluid
between two parallel plates. The equations governing the
motion of the fluid are:

. win ot il ..;A-A,: i
Momentum equation,

P AN AN
* ) Hy\"y) a M
1 ' %
Energy eéu;non' bR ] . $ s 17 Cago
or oT ) oT E
C Voo |[=—| k e %
;i (a‘ ay) a_y( ay)+QEXP[ RT)» @
where pis the’ density, /£ s the viscosity, G, is’ heat

capacity, u.and V, are velocity components along x and y axis
respectively, T is the temperature, P is pressure, k is thermal
conductivity, x is the co- ordmate in the direction of flow, E is
the activation energy, R i is the universal g constant and Qi 1s
heat released per unit mass durmg 1eacnons Bt

sind

The boundary and the initial condition of the flow are:

“u(h, )y =u(=h,1) =0,u(y,0) =0,
T(h,t) =Ty,T(=h,1) =Ty,

T»,0)=T, ST
We assume a temperature dependent viscosity
Foae tste atib iy,
1=ty expl(a(T ~Ty)] @
III.. NON-DIMENSIONALIZATION
Let,
) E « A
= — = == i
R e e R )
et
where 20 is a reference time .

Then, equations (1) and (2) becomes

i

= —a—(exp(/lﬁ)

L)

Jy ©)
‘ay—2+f exp(1+69) @
-";"_whcre: g :
v >1 £ K op kt,
= 20220 Lui50 I5D. = o e d= 5
g HR . Y pV, ox P
15 E:0ex b
P RIZ e 0 p(zm)
-3 p.CLRT;
Initial conditions are:
9(y,0) 0,4(y,00=0 ()
? Boundary condmons are:
6(=1,1)=0,4(-1,1)=0,6(1,1) =0,4(1,0)=0 ©)

aty

90 J0[yISTEADY STATE

We assume that the fluid properties and the variables of this

flow are independent of time, i.e —Z—[:O , then we have
(10)
d—¢—bi xp(lé’)—?- +M
dy dy
and
1 C g g2 9 an
ad_szd_H fcxp(-—)
dy- o dy? 1+&8
as £—0, 1+e£6_6’
let a=0, b=1, 0, - M=1, d= f =0 then
Equauons (9) and (10) becomes,
Fo S RILAY S b
af. ¢
—| exp(A8)— [+1=0 12
dy[ p( dy) (12)
p-1)=¢1)=0 (13)
a?
—dee.xp(@):o (14)
' S ‘
6(-1)=6(1)=0 (15)
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From equation (13), we have Buckmaster and Ludford [28],

6= ZIH{eXp(H";X ]sec hcy} : (16) e
exp(8) = exp(Bpax ) SEC hzc)’ (¢¥)] i o)
% differentiate,
and iy . 0
ek S e .'{¢"_,j—'ta'1)hcy¢."=>.—cosh'cy;exp(——";X) i 26)
‘:2 =_§exp(gmax) - (18) - X \
2 3 . and N
-1 = = 27
taking 6=04 , ., =022/328 P =01=0 @7
Also, we resolve the above into system of equation
A CASEIL A=1 53
X Y
Equation (12) becomes G L tn® e RO ¢
! LA . . g 2
il e (19) 2,
oy dy i
differentiate; : & x o T :
§" =2 tanh cyp2cyexp(~Gm) Gl ! e
i) 1
= ¢ |= »3 .
- ” ; # «}’.3>[?nh(ﬁ’h)¢'.;—:C°Sh.(,¢’)’1)-5xlf(':—*;‘"‘—))
P-D=¢1)=0 1) .
d > salisfying 3y
we resolve the above into system of equation 1 30)
S G ) =1
Y, : ; _ |y,eni=| 0
4 @2 »,60) (8,
y,) \#
£oF 1 ) 1 :
’ p Fri where [ is guessed such that y (D=0, o(-1)=0.
6 1 = y 2

A - @3)
Yyi) - \@ 2y3tanhcy (cosh ¢y, )exp(=Gnax)

C. Theorem 1:

Satishying. The equations (9) and (10) which satisfy the boundary
- 1 conditions (14) and (15) has a unique solution (¢, &) for each
y‘ ¥ iy ¢ I ,
24
|nenll o SIS _
¥ D B
where /3 is guessed such that y, (1) =0 and ¢(-1)=0. Proof: . .
; : ; s
_ GXP(Q)l)Jrl 31
dy dy dy
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that both velocity and temperature reaches the maximum at the

middle of the channel (y = 0) .

-1 =) =0 6
Let
y) (4
¢ = ¢2' (33)
¢’ ?3 2
and
5 34)
b3 =exp(®2p +1+exp(6)9, .
ay. 3
then, :
& 1 -
4 |= #
&) | B-peeors) (e
exp(8)
where : :
(6 2 36)
exp(0) = {EXP( r;ax Jsec hcy}

¢, ©)=0, ¢,0=0, ¢|(O) = prescribed to satisfy
#(1) =1 ™ :

K =f,(09,.9,.9.)
b= f,(0.0,.8,.6.)
= F00.6,.0,.0)

Ther i, ; 121,23 are lipshits continuous.

Hence by existence theorem the solution is unique.

V. CONCLUSIONS

It has been shown [29] that the temperature & has two
solutions. We investigated the behaviour of the velocity when
viscosity, 4 depends exponentiatty—on temperature, @. The
——=xistence of two velocity solutions for temperature depend SN e
viscous flow is just discovered here. From our results, it shows

that the smaller value of maximum temperature ((@mian)

cortesponds to the higher value of velocity. The graphs show
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Figure 1: The velocity profiles (a) 2= 1.0, Oqax = 0.22, ¢ = 0.4992(- curve)
and Biax = 3.28, ¢ = 2.3055(.- curve); (b) ) A = 0.5, Omax = 0.22, ¢
0:4992(-curve), and Bmax = 3.28, ¢ = 2.3055 (- curve), (¢) Omax = 3.28, ¢
2.3055, X = 0.5(- curve) and A= 1:0(.- curve), (d) Omax = 0:22 ¢ = 0.4992, &
= (.5(.- curve)
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