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ACT: In this study we use a Compartmental Mathematical Model (MSEIR) to examine the dynamics
les spread within a population with constant size. We rely on a compartmental model expressed by a set
WiSerential equations based on the dynamics of measles infection. We examine the stability of the equilibria

with respect to the basic reproductive number R, (number of secondary infections); the disease  free-state is
s and globally stable and the endemic state is also stable. The model is mathematically and

sologically well posed.
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I. INTRODUCTION.

e is best known for causing a rash in childhood, but measles can affect other parts of the

i sometimes occurs in adults. There are two types of measles, each caused by different

wees. Although both produce a rash and fever, they are really different diseases:
e ~ubeola virus causes "red measles,” also known as "hard measles” or just "measles.” Although
st people recover without problems, rubeola can lead to pneumonia or inflammation of the

= (encephalitis).

. —ubella virus causes "German measles," also known as "three-day measles." This is usually a
) M y
=der disease than red measles. However, this virus can cause significant birth defects if an

“mected pregnant woman passes the virus to her unborn child.

o5 the rubeola and rubella viruses are spread through the respiratory route. This means they are
ssmtagious through coughing and sneezing. In fact, the rubeola virus is one of the most contagious
wruses known to man. As a result, it can spread rapidly in a susceptible population. Infected

people carry the virus in their respiratory tract before they get sick, so they can spread the disease

wothout being aware of it.

¥ people are immune to the virus (cither through vaceination or by having had measles in the past),
¢ cannol get the discase causcd by that virus, For t'X‘lII!{)lt'| someone who had rubeola as a child
wonild not be able to get the disease again. It is to be noted that rubella and rubeola are different

wruses. An infection with one of these viruses does not protect against infection with the other.

Measles is a discase that sull has the tendency ol killing people in developing countries, in fact in

March 2010, over 40 children died n a renewed measles outbreak that ravaged nine communitics
Southern ljaw local government area ol Bayelsa State in Nigeria.

There are prevention measures like vaccination for this disease but there is no specific treatment or

cure for measles.
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In this study we will not concern ourselves with the prevention measures or the cure but rat
will center our study on the dynamics ol the discase using the well known MSEIR model with
modifications to gain insights into the discase. The model we will be proposing will be nppli
1o the type ol measles caused by rubella virus since we will be assuming that mothers infected
the past or with vacanation will pass |m|num)glnhulms class G ([gG) to their children.

2. THE MODEL
We represent the population density at any time t of the passively-immune newborns, suscepts
exposed, mlected and récovered population by M(t), S(t), E(t), [(t) and R(t) respectively. We
assume that the birth rate & and natural death rate @ are constant, so that we will be able to
keep our population N(t) (say) constant too. We can represent the dynamism of the disease wi
the following diagram;
ryiurths births
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Figure | Transfer diagram between the epidemiology classes

Newborns will enter the susceptible class at the rate 48 where § is the susceptible class
corresponding to newborns whose mothers are susceptible and some will enter the passive

immune state at the rate (N = 8) corresponding to passive unmune class M.

Death will oceur to individuals in the susceptible class at the rate @S also newborns in the
unmune class will migrate to susceptible class at the rate 6M . All women would definitely be out
of the passively immune class long before their childbearing years; theoretically a passively immune
mother would transfer some IgG antibodies to her newborn child, so the infant would have passive

immunity. Again death will occur to those in the immune class at the rate uM .

For viral diseases, it is useful to define both a contact rate and the fraction of contacts that can
result into transmission, but for dircctly-transmitted diseases spread primarily by aerosol droplets,
transmission may occur by entering a room, hallway, building, etc, that is currently or has been
occupied by an infective. Since there is no clear definition of a contact or a transmission fraction,
they are replaced by a definition that includes both. An adequate contact is a contact that is
slficient for transmission of infection from an infective to a susceptible. Let the contact rate £ be

the average number of adeqguate contacts per person per unit time, so that the force ol infection

(17
s the average number of contacts with inlectives per unit time. Then the incidence (the
i!
e ‘ o pLs )
number ol new cases per unit time) is @S, i.e, ——, since it is the number of contacts with
nfeetives per unit time of the § susceptibles. This standard representation for the incidence

i consistent with numerous studies which show that the contact rate ff is nearly independent of the
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2 size. The people in the exposed class will migrate to the infected class at the rate ¢k,
l occur to the exposed class at the rate @ E, the recovery rate from the infectious class is
I death will occur to individuals in the infected class at the rate @/ and infection
death at the rate @/ . Due to treatment , the rate a which individual in the infected class

10 recovered class is PR, which is the same thing as the rate of loss of immunity. Then
gmics of the interaction of the classes is governed by following system of differential

—(e+a)E (1.1)

cnience we will follow the approach of Hetheote (2000) in converting (1.1) to fractions of
e« This can be done by dividing through by the population constant number N and

ing s by setting s=1-m-e - i—r , where m,s,e,i,r are the proportions (fractions) of
that are in the passive-immune, susceptible, exposed, infected, recovered classes

st;, we will obtain equation (1.2) Irom equation (1.1).

wlm+e+ivr)—(o+a)m

Bill -m—e—i—r)—(c+a)e
()

—(y+a+)

i—(p+a)r
M

N ) respectively and M,E,L,R and N are as

Z| =

E I
N'N

hat in equation (1.2) (m,e,i,r)=(—,

d in equation (1.1) above.

pndition for equation (1.2) to hold is that the death rate must be equal to the birth rate so
e flow in and out of the population is constant and so the population will be constant, so

(1.2) becomes;

e n I
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dm "
—=aleti+r)—0m
di

gg:ﬁi(l—m=e—f—r)—(£+a)e

dt

£=S€—(}/+a’+§0)l. (1.3)
dt

dr .

—= ¥~ (o+a)r

!
in domain @

I'he defimtion of domain @ is

©={(me,ir)p:mz20e20i>0andr =0 with(m+e+i+r)<1

Fhe domain s positively invariant, because no solution paths leave through any boundary. The
right hand sides of (1.3) are smooth, so that initial value problems have unique solutions that exsss
on maximal intervals (Hale, 1969).
Since paths cannot leave @, solutions exist for all positive time. Thus, the model is mathematicalle
and epidemiologically well posed (Hetheote, 2000).

For our model (Measles dynamics) the lincar transfer terms 8,£,7, o in (1.3) correspond to

waiting times with negative exponential distributions, so that when births and deaths are ignored,

I 1
the mean passively immune period is g , the mean latent period is —, the mean infections period
&

1 1
is —, and the mean period of infection-induced immunity is — (Hethcote etal, 1981). These
]/

periods would be — = 12 months,

1 1
— =15 days, —= 8 days and l=10years ;
2 Y e

3. THE BASIC REPRODUCTION NUMBER AND THE EQUILIBRIUM.

3.1 Basic Reproduction Number R,

The basic reproduction number R (the average number of secondary infection due to intr
ol'an infected individual into a disease Iree population) for this model is the same as the contaes
number @ given by the product of the contact rate fand the average death-adjusted infectioss

| .
period —————— times the {raction
yY+a+@ E+a

ol exposed people surviving the latent class E.

Thus, the reproductive number R is given as:

pe

:(y+(z+(p)(£+a)

Rn:U (14)

This shows that R, for this model, is still the average number of secondary infections due 1w &=

infective during the infectious period, when everyone in the population is susceptible.

3.2 Disease Free Equilibrium.

The disease free equilibrium is when the immuned class, exposed class, infected class and
recovered class are all zero, i.e, m° =0,¢" =0, =0, =0 and so s° =1.

3.3 Endemic Equilibrium.

At equilibrium, (1.3) becomes:
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ng S(p+a)y+a+p) N gd(p+a) .
S (a+d)(p+ra)y+a+@)|+ey (a+d)|(p+a)y+a+e@)]l+ey
i (1.5)
oey [)’.s'—(y+a+(p)(a+a))
(@+d8)(p+a)y +a+))+ey Be
_O(pra)y+a+p)fe-(r+a+g)e+a)l (1.6)
Pe(a+0)(p+a)y+a+o+e)+ey]
__sS(pra)yra+o)lfe-(r+ator)e+a)l -
Be(a+8)y+a+@)l(p+a)y+a+p+e)+ey]
__ redlPe-(r+a+e)eta)l (1.8)
Pe(ax+8)(p+a)y+a+@+e)+ey] ‘
From cquations (1.4) - (1.8) we have ‘Llu: following unique endemic equilibrium:
e (- L)
e S@ra” R
. s(p+raly+a+e) (!__l_)
o (a+d)lpra)yratere)rey] R, (1.9)
- eS(p+a) (I—L) '
Y (atd)l(pra)ytatetre)ter] R
_— 0y (1_*1“_)
o (a@+d)(pra)yta+e+e)ter] R
and

]
s, =— for R, >0
R,

v

Lemma 3.1
The disease will be eradicated from the population if the basic reproduction number R, is one

(Hetheote, 2000).

3.4 Local and Global stability of discase-free and endemic equilibra.

Using lincarizaton, the discase-frec equilibrium s locally asymptotically stable if R, <1 and is an
unstable hyperbolic equilibrium with a stable manifold outside @ and an unstable manitold
tangent to a vector into @ when K, > 1. On using the Liapunov functional V' = ge + (& + )i
the disease-free equilibrium can be shown to be globally asymptotically stable in domain D if

R, 1. The Laipunov derivative ol V is
V =[Pes—(e+a)(y+a+@))i<0since & < (£ +a)(y +a +@) . Following the approach of

di
(Hethcote etal, 1981), the set where V' =0 is the face of @ with i=0; but F: = ge on this

w0
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- dr
the lace unless ¢ =0. When e=1=0, T = —ur, so that r — 0.
ar

I :
Whes ¢ =i=r =0, then [T ==dm, s0 m — 0.By definition of @, the origin is the only

dt N
sesctively mvariant subsct of the set and so V=0 ; so by Liapunov-Lasalle theorem (Hale, 1969)
2!l paths in @ approach the origin and so the disease-free equilibrium is globally asymptotically
stable in @ if R <1.
Ihe characterisue polynomial of the Jacobian at the endemic equilibrium is of order four and it can

be analyze to show that the Routh-Hirwitz criteria are satisfied if Ro > 1 (Li etal, 1995, Simon

ctal, 1992 and Thieme, 1983). Therefore the endemic equilibrium is locally asymptotically stable

whenitisin @ Lastly, il' R > 1, then the disease-free equilibrium is unstable and the endemic

equihibrium s iuc.l”)' asvmplnlu'a“v stable.

4. CONCLUSION.
By using the concept of reproduction number, we were able to determine the equilibra states
(chiscase-free and endemic) and their stability. The parameter R had enabled us to show that when

it cqual tol the disease will die out in the population and all the individuals in population will be
i the susceptible class which is consistent with other studies.
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